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Abstract

Maximally monotone operators and firmly nonexpansive mappings play key roles in modern
optimization and nonlinear analysis. Five years ago, it was shown that if finitely many firmly
nonexpansive operators are all asymptotically regular (i.e., the have or “almost have” fixed
points), then the same is true for compositions and convex combinations.

In this paper, we derive bounds on the magnitude of the minimal displacement vectors of
compositions and of convex combinations in terms of the displacement vectors of the underly-
ing operators. Our results completely generalize earlier works. Moreover, we present various
examples illustrating that our bounds are sharp.
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1 Introduction and Standing Assumptions

Throughout this paper,

X is a real Hilbert space with inner product 〈·, ·〉 (1)
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and induced norm ‖ · ‖. Recall that T : X → X is firmly nonexpansive (see, e.g., [3], [14], and
[15] for further information) if (∀(x, y) ∈ X × X) ‖Tx − Ty‖2 ≤ 〈x− y, Tx− Ty〉 and that a set-
valued operator A : X ⇒ X is maximally monotone if it is monotone, i.e., {(x, x∗), (y, y∗)} ⊆ gra A⇒
〈x− y, x∗ − y∗〉 ≥ 0 and if the graph of A cannot be properly enlarged without destroying mono-
tonicity1. These notions are equivalent (see [18] and [12]) in the sense that if A is maximally mono-
tone, then its resolvent JA := (Id+A)−1 is firmly nonexpansive, and if T is firmly nonexpansive,
then T−1 − Id is maximally monotone2.

In optimization, one main problem is to find zeros of (sums of) maximally monotone operators
— these zeros may correspond to critical points or solutions to optimization problems. In terms
of resolvents, the corresponding problem is that of finding fixed points. For background material
in fixed point theory and monotone operator theory, we refer the reader to [3], [7], [8], [10], [14],
[15], [21], [22], [24], [23], [25], [27], [28], and [26]. However, not every problem has a solution;
equivalently, not every resolvent has a fixed point. To make this concrete, let us assume that
T : X → X is firmly nonexpansive. The deviation from T possessing a fixed point is captured by
the notion of the minimal (negative) displacement vector which is well defined by3

vT := Pran(Id−T)(0). (2)

If T “almost” has a fixed point in the sense that vT = 0, i.e., 0 ∈ ran(Id−T), then we say that T is
asymptotically regular. From now on, we assume that

I := {1, 2, . . . , m}, where m ∈ {2, 3, 4, . . .}

and that we are given m firmly nonexpansive operators T1, . . . , Tm; equivalently, m resolvents of
maximally monotone operators A1, . . . , Am:

(∀i ∈ I) Ti = JAi = (Id+Ai)
−1 is firmly nonexpansive,

and we abbreviate the corresponding minimal displacement vectors by

(∀i ∈ I) vi := vTi = Pran(Id−Ti)(0). (3)

A natural question is the following: What can be said about the minimal displacement vector of T
when T is either a composition or a convex combination of T1, . . . , Tn?

Five years ago, the authors of [5] proved the following:

If each Ti is asymptotically regular, then so are the corresponding compositions and convex
combinations.

1 We shall write dom A =
{

x ∈ X
∣∣ Ax 6= ∅

}
for the domain of A, ran A = A(X) =

⋃
x∈X Ax for the range of A, and

gra A =
{
(x, u) ∈ X× X

∣∣ u ∈ Ax
}

for the graph of A.
2 Here and elsewhere, Id denotes the identity operator on X.
3Given a nonempty closed convex subset C of X, we denote its projection mapping or projector by PC.
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This can be expressed equivalently as

(∀i ∈ I) vi = 0 ⇒ vT = 0, (4)

where T is either a composition or a convex combination of the family (Ti)i∈I . It is noteworthy
that these results have been studied recently by Kohlenbach [17] and [16] from the viewpoint of
“proof mining”.

In this work, we obtain sharp bounds on the magnitude of the minimal displacement vector of
T that hold true without any assumption of asymptotic regularity of the given operators. The proofs
rely on techniques that are new and that were introduced in [5] and [1] (where projectors were
considered). The new results concerning compositions are presented in Section 2 while convex
combinations are dealt with in Section 3. Finally, our notation is standard and follows [3] to which
we also refer for standard facts not mentioned here.

2 Compositions

In this section, we explore compositions.

Proposition 2.1. (∀ε > 0) (∃x ∈ X) such that ‖x− TmTm−1 · · · T1x‖ ≤ ε + ∑m
k=1‖vk‖.

Proof. The proof is broken up into several steps. Set

(∀i ∈ I) Ãi := −vi + Ai(· − vi). (5)

and observe that [3, Proposition 23.17(ii)&(iii)] yields

(∀i ∈ I) T̃i := JÃi
= vi + JAi = vi + Ti. (6)

We also work in

X := Xm =
{

x = (xi)i∈I
∣∣ (∀i ∈ I) xi ∈ X

}
, with 〈x, y〉 = ∑

i∈I
〈xi, yi〉 , (7)

where we embed the original operators via

T : Xm → Xm : (xi)i∈I 7→ (Tixi)i∈I and A : Xm ⇒ Xm : (xi)i∈I 7→ ×(Aixi)i∈I . (8)

Denoting the identity on Xm by Id, we observe that

JA = (Id+A)−1 = T1 × · · · × Tm = T. (9)

Because ran(Id−T) = ran(Id−T1)× · · · × ran(Id−Tm) and hence ran(Id−T) = ran(Id−T1)×
· · · × ran(Id−Tm), we have (e.g., by using [3, Proposition 29.3])

v := (vi)i∈I = Pran(Id−T)0. (10)
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Finally, define the cyclic right-shift operator

R : Xm → Xm : (x1, x2, . . . , xm) 7→ (xm, x1, . . . , xm−1) and M := Id−R, (11)

and the diagonal subspace
∆ :=

{
x = (x)i∈I

∣∣ x ∈ X
}

, (12)

with orthogonal complement ∆⊥.

CLAIM 1: v ∈ ran (A(· − v) + M).
Indeed, (3) implies that (∀i ∈ I) vi ∈ ran (Id−Ti) = ran (Id−JAi) = ran JA−1

i
= dom (Id+A−1

i ) =

dom A−1
i = ran Ai = ran Ai(· − vi). Hence, v ∈ ran A(· − v) = ran A(· − v) + 0 ⊆

ran A(· − v) + ∆⊥. On the other hand, we learn from [5, Corollary 2.6] (applied to A(· − v)) that
ran (A(· − v) + M) = ran A(· − v) + ∆⊥. Altogether, we obtain that v ∈ ran (A(· − v) + M) and
CLAIM 1 is verified.

CLAIM 2: (∀ε > 0) (∃(b, x) ∈ X× X) ‖b‖ ≤ ε and x = v + T(b + Rx).
Fix ε > 0. In view of CLAIM 1, there exists x ∈ X and b ∈ X such that ‖b‖ ≤ ε and b ∈
−v+A(x− v)+Mx. Hence, b+Rx = b+ x−Mx ∈ x+A(x− v)− v = (Id+(−v+A(· − v))x.
Thus, x = J−v+A(·−v)(b + Rx) = v + T(b + Rx), where the last identity follows from (6), (9) and
(10).

CLAIM 3: (∀ε > 0) (∃(c, x) ∈ X× X) ‖c‖ ≤ ε and x = c + v + T(Rx).
Fix ε > 0, let b and x be as in CLAIM 2, and set c := x− v− T(Rx) = T(b + Rx)− T(Rx). Then,
since T is nonexpansive, ‖c‖ = ‖T(b + Rx)− T(Rx)‖ ≤ ‖b‖ ≤ ε, and CLAIM 3 thus holds.

CONCLUSION:
Let ε > 0. By CLAIM 3 (applied to ε/

√
m), there exists (c, x) ∈ X× X such that ‖c‖ ≤ ε/

√
m and

x = c + v + T(Rx). Hence ∑i∈I ‖ci‖ ≤ ‖c‖
√

m ≤ ε and (∀i ∈ I) xi = ci + vi + Tixi−1, where
x0 := xm. The triangle inequality and the nonexpansiveness of each Ti thus yields

‖TmTm−1 · · · T1x0 − x0‖ = ‖TmTm−1 · · · T1x0 − xm‖
=
∥∥TmTm−1 · · · T2T1x0 − TmTm−1 · · · T2x1

+ TmTm−1 · · · T3T2x1 − TmTm−1 · · · T3x2

+ TmTm−1 · · · T4T3x2 − TmTm−1 · · · T4x3

+ · · ·
+ TmTm−1xm−2 − Tmxm−1

+ Tmxm−1 − xm
∥∥

≤ ‖TmTm−1 · · · T2T1x0 − TmTm−1 · · · T2x1‖
+ ‖TmTm−1 · · · T3T2x1 − TmTm−1 · · · T3x2‖
+ ‖TmTm−1 · · · T4T3x2 − TmTm−1 · · · T4x3‖
+ · · ·
+ ‖TmTm−1xm−2 − Tmxm−1‖
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+ ‖Tmxm−1 − xm‖
≤ ‖T1x0 − x1‖+ ‖T2x1 − x2‖+ ‖T3x2 − x3‖

+ · · ·+ ‖Tm−1xm−2 − xm−1‖+ ‖Tmxm−1 − xm‖
= ‖c1 + v1‖+ ‖c2 + v2‖+ · · ·+ ‖cm + vm‖

≤
m

∑
k=1
‖ci‖+

m

∑
k=1
‖vi‖

≤ ε +
m

∑
k=1
‖vi‖, (13)

as claimed. �

We are now ready for our first main result.

Theorem 2.2. ‖vTm···T2T1‖ ≤ ‖vT1‖+ · · ·+ ‖vTm‖.

Proof. By Proposition 2.1, we have (∀ε > 0) ‖vTm···T2T1‖ ≤ ε + ‖vT1‖+ · · ·+ ‖vTm‖ and the result
thus follows. �

As an immediate consequence of Theorem 2.2, we obtain the first main result of [5]:

Corollary 2.3. [5, Corollary 3.2] Suppose that v1 = · · · = vm = 0. Then vTm···T2T1 = 0.

We now show that the bound on ‖vTm···T2T1‖ given in Theorem 2.2 is sharp:

Example 2.4. Suppose that X = R, T1 : X → X : x 7→ x − a1, and T2 : X → X : x 7→ x − a2, where
(a1, a2) ∈ R×R. Then (vT1 , vT2 , vT2T1) = (a1, a2, a1 + a2) and |a1 + a2| = |vT2T1 | ≤ |v1| + |v2| =
|a1|+ |a2|; moreover, the inequality is an equality if and only if a1a2 ≥ 0.

Proof. On the one hand, it is clear that ran(Id−T1) = {a1} and likewise ran(Id−T2) = {a2}.
Consequently, (v1, v2) = (a1, a2). On the other hand, T2T1 : X → X : x 7→ x − a1 − a2 = x −
(a1 + a2), therefore ran(Id−T2T1) = {a1 + a2}. Hence, vT2T1 = a1 + a2, |vT2T1 | = |a1 + a2| and
|v1|+ |v2| = |a1|+ |a2|, and the conclusion follows. �

The remaining results in this section concern the effect of cyclically permuting the operators in
the composition.

Proposition 2.5. vTmTm−1···T2T1 = vTm−1Tm−2···T1Tm = · · · = vT1Tm···T2 .

Proof. We start by proving that if S1 : X → X and S2 : X → X are averaged4, then

vS2S1 = vS1S2 . (14)

4Let S : X → X. Then S is α-averaged if there exists α ∈ [0, 1[ such that S = (1− α) Id+αN and N : X → X is
nonexpansive.
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To this end, let x ∈ X and note that S2S1 and S1S2 are α-averaged where α ∈ [0, 1[ by, e.g., [3,
Remark 4.34(iii) and Proposition 4.44]. Using [19, Proposition 2.5(ii)] applied to S2S1 and S1S2
yields

‖vS2S1 − vS1S2‖2 ← ‖(S2S1)
nx− (S2S1)

n+1x− ((S1S2)
nS1x− (S1S2)

n+1S1x)‖2

= ‖(S2S1)
nx− (S2S1)

n+1x− (S1(S2S1)
nx− S1(S2S1)

n+1x)‖2

= ‖(Id−S1)(S2S1)
nx− (Id−S1)(S2S1)

n+1x‖2

≤ α
1−α (‖(S2S1)

nx− (S2S1)
n+1x‖2 − ‖S1(S2S1)

nx− S1(S2S1)
n+1x‖2)

≤ α
1−α (‖(S2S1)

nx− (S2S1)
n+1x‖2 − ‖(S1S2)

nS1x− (S1S2)
n+1S1x‖2)

→ α
1−α (‖vS2S1‖

2 − ‖vS1S2‖2) = 0, (15)

where the last identity follows from [4, Lemma 2.6]. Because Tm−1Tm−2 . . . T1 is averaged by
[3, Remark 4.34(iii) and Proposition 4.44], we can and do apply (14), with (S1, S2) replaced by
(Tm−1Tm−2 . . . T1, Tm), to deduce that vTmTm−1···T2T1 = vTm−1Tm−2···T1Tm . The remaining identities fol-
low similarly. �

Proposition 2.6. We have

vTmTm−1···T1 ∈ ran(Id−TmTm−1 · · · T1)⇔ vTm−1···T1Tm ∈ ran(Id−Tm−1 · · · T1Tm) (16a)
⇔ · · · (16b)
⇔ vT1Tm···T2 ∈ ran(Id−T1Tm . . . T2). (16c)

Proof. We prove the implication “⇒” of (16a): Suppose that (∃y ∈ X) vTmTm−1···T1 = y −
TmTm−1 · · · T1y, i.e., y ∈ Fix(vTm···T1 + Tm · · · T1). By [6, Proposition 2.5(iv)], we have vTmT···T1 =
(Tm · · · T1)y− (Tm · · · T1)

2y. Using Proposition 2.5, we obtain

‖vTm−1···T1Tm‖ = ‖vTm···T2T1‖ = ‖(TmTm−1 · · · T1)y− (TmTm−1 · · · T1)
2y‖

≤ ‖Tm−1 · · · T1y− (Tm−1 · · · T1Tm)Tm−1 · · · T1y‖
≤ ‖y− TmTm−1 · · · T1y‖ = ‖vTmTm−1···T1‖ = ‖vTm−1···T1Tm‖. (17)

Consequently, ‖vTm−1···T1Tm‖ = ‖Tm−1 · · · T1y− (Tm−1 · · · T1Tm)Tm−1 · · · T1y‖ and hence

vTm−1...T1Tm = Tm−1 · · · T1y− (Tm−1 · · · T1Tm)Tm−1 . . . T1y ∈ ran(Id−Tm−1 . . . T1Tm). (18)

The opposite implication and the remaining m− 2 equivalences are proved similarly. �

The following example, taken from De Pierro’s [11, Section 3 on page 193], illustrates that the
conclusion of Proposition 2.6 does not necessarily hold if the operators are permuted noncyclically.

Example 2.7. Suppose that X = R2, m = 3, C1 = R × {0}, C2 = R × {1}, C3 ={
(x, y) ∈ R2

∣∣ y ≥ 1/x > 0
}

, and (T1, T2, T3) = (PC1 , PC2 , PC3). Then, vT3T2T1 = vT3T1T2 = 0,
vT3T2T1 ∈ ran(Id−T3T2T1) but vT3T1T2 6∈ ran(Id−T3T1T2).
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Proof. Note that T2T1 = PC2 PC1 = PC2 = T2 and T1T2 = PC1 PC2 = PC1 = T1. Conse-
quently, (T3T2T1, T3T1T2) = (PC3 PC2 , PC3 PC1). The claim that vT3T2T1 = vT3T1T2 = 0 follows from
[1, Theorem 3.1], or Theorem 2.2 applied with m = 3. This and [2, Lemma 2.2(i)] imply that
Fix T3T2T1 = Fix PC3 PC2 = C3 ∩ C2 6= ∅, whereas Fix T3T1T2 = Fix PC3 PC1 = C3 ∩ C1 = ∅. Hence,
vT3T2T1 ∈ ran(Id−T3T2T1) but vT3T1T2 6∈ ran(Id−T3T1T2). �

Figure 1: A GeoGebra [13] snapshot that illustrates the behaviour of the sequence ((P3P2P1)
nx0)n∈N

in Proposition 2.6. The first few iterates of the sequences (P1(P3P2P1)
nx0)n∈N (blue points),

(P2P1(P3P2P1)
nx0)n∈N (green points), and ((P3P2P1)

nx0)n∈N (black points) are also depicted.

Figure 2: A GeoGebra [13] snapshot that illustrates the behaviour of the sequence ((P3P1P2)nx0)n∈N

in Proposition 2.6. The first few iterates of the sequences (P1(P3P1P2)nx0)n∈N (green points),
(P2P1(P3P1P2)nx0)n∈N (blue points), and ((P3P1P2)nx0)n∈N (black points) are also depicted.
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3 Convex Combinations

We start with the following useful lemma.

Lemma 3.1. Suppose (∀i ∈ I) Ai is 3∗ monotone5 and dom Ai = X. Let (αi)i∈I be a family of nonnegative
real numbers. Then the following hold:

(i) ∑i∈I αi Ai is maximally monotone, 3∗ monotone and dom (∑i∈I αi Ai) = X.
(ii) ran(∑i∈I αi Ai) = ∑i∈I αi ran Ai.

Proof. Note that (∀i ∈ I), αi Ai is maximally monotone, 3∗ monotone and dom αi Ai = X.

(i): The proof proceeds by induction. For n = 2, the 3∗ monotonicity of α1A1 + α2A2 fol-
lows from [3, Proposition 25.22(ii)], whereas the maximal monotonicity of α1A1 + α2A2 follows
from, e.g., [3, Proposition 25.5(i)]. Now suppose that for some n ≥ 2 it holds that ∑n

i=1 αi Ai is
maximally monotone and 3∗ monotone. Then ∑n+1

i=1 αi Ai = ∑n
i=1 αi Ai + αn+1An+1, which is maxi-

mally monotone and 3∗ monotone, where the conclusion follows from applying the base case with
(α1, α2, A1, A2) replaced by (1, αn+1, ∑n

i=1 αi Ai, An+1).

(ii): Combine (i) and [20, Corollary 6]. �

From this point onwards, let (λi)i∈I be in ]0, 1] with ∑i∈I λi = 1, and set

T := ∑
i∈I

λiTi. (19)

We are now ready for our second main result.

Theorem 3.2. ‖vT‖ ≤ ‖∑i∈I λivTi‖.

Proof. It follows from [3, Examples 20.7 and 25.20] that (∀i ∈ I) Id−Ti is maximally monotone,
3∗ monotone and dom(Id−Ti) = X. This and Lemma 3.1(ii) (applied with (αi, Ai) replaced by
(λi, Id−Ti) imply that

ran
(
Id−T

)
= ran ∑

i∈I
λi(Id−Ti) = ∑

i∈I
λi ran(Id−Ti). (20)

Now, on the one hand, it follows from the definition of vT that(
∀y ∈ ran

(
Id−T

))
‖vT‖ ≤ ‖y‖. (21)

On the other hand, the definition of vi implies that (∀i ∈ I) vi ∈ ran(Id−Ti). Hence, λivi ∈
λi ran(Id−Ti). Therefore, ∑i∈I λivi ∈ ∑i∈I λi ran(Id−Ti) ⊆ ∑i∈I λi ran(Id−Ti) = ran

(
Id−T

)
,

where the last identity follows from (20). Now apply (21) with y replaced by ∑i∈I λivi. �

As an easy consequence of Theorem 3.2, we obtain the second main result of [5]:
5We recall that a monotone operator B : X ⇒ X is 3* monotone (see [9]) (this is also known as rectangular) if (∀(x, y∗) ∈

dom B× ran B) sup(z,z∗)∈gra B 〈x− z, z∗ − y∗〉 < +∞.
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Corollary 3.3. [5, Theorem 5.5] Suppose that v1 = · · · = vm = 0. Then vT = 0.

The bound we provided in Theorem 3.2 is sharp as we illustrate now:

Example 3.4. Let a ∈ X and suppose that T : X → X : x 7→ x − a. Then vT = a and therefore
Fix T 6= ∅ ⇔ a = 0. Set (∀i ∈ I) Ti = T. Then T = ∑i∈I λiTi = T, (∀i ∈ I) vi = vT = a.
Consequently, ‖vT‖ = ‖a‖ = ‖∑i∈I λia‖ = ‖∑i∈I λivi‖.

Example 3.4 suggests that the identity vT = ∑i∈I λivi holds true; however, the following exam-
ple provides a negative answer to this conjecture.

Example 3.5. Suppose that m = 2, that T1 : X → X : x 7→ x− a1, and that T2 : X → X : x 7→ 1
2 x− a2,

where (a1, a2) ∈ (X r {0})× X. Then ran(Id−T1) = {a1}, ran(Id−T2) = X, ran(Id−T) = X, and
0 = vT 6= λ1v1 + λ2v2 = λ1a1.

Proof. On the one hand, one can easily verify that (v1, v2) = (a1, 0); hence, λ1v1 + λ2v2 = λ1a1 6= 0.
On the other hand, T : X → X : x 7→ λ1+1

2 x− (λ1a1 + λ2a2). Hence, T is a Banach contraction, and
therefore, Fix T 6= ∅. Consequently, vT = 0. �
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