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Abstract We say that a positively homogeneous function admits a saddle rep-
resentation by linear functions iff it admits both an inf-sup-representation and
a sup-inf-representation with the same two-index family of linear functions.
In the paper we show that each continuous positively homogeneous function
can be associated with a two-index family of linear functions which provides
its saddle representation. We also establish characteristic properties of those
two-index families of linear functions which provides saddle representations of
functions belonging to the subspace of Lipschitz continuous positively homo-
geneous functions as well as the subspaces of difference sublinear and piecewise
linear functions.
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1 Introduction

Positively homogeneous (p.h.) functions play a crucial role in nonsmooth anal-
ysis and optimization. Let us recall that directional derivatives widely used as
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first order approximation of nonsmooth functions in different theories of gen-
eralized differentiation (see, for example, Demyanov and Rubinov [1,2], Mor-
dukhovich [3,4], Pallaschke and Rolewich [5], Rockafellar and Wets [6] and
references therein) are p.h. functions. Besides, nonlinear programming prob-
lems with p.h. objective and constraint functions are used as approximations
of initial nonsmooth nonlinear programming problems in deriving optimality
conditions [7] and in numerical methods [8]. Moreover, optimization problems
with homogeneous data are of independent interest as an important class of
mathematical models describing real problems (see, for instance, [9] and [10]).
Both necessary and sufficient optimality conditions in nonsmooth optimization
problems are often formulated as a condition of nonnegativity or positivity of
a some p.h. function formed by directional derivatives of functions involved in
the optimization problem under consideration. At the same time, since a p.h.
function is uniquely defined by its restriction to the unit sphere, it may be so
much complicated as an arbitrary function defined on the unit sphere. It shows
that the verification of properties (even such simple ones as nonnegativity or
positivity) of p.h. function may be rather difficult in general. To overcome
these difficulties we need to study the structure of most important classes of
p.h. functions, in particular, the possibilities of their representation through
linear functions.

The paper deals with the representations of p.h. functions by families of
linear functions using consecutive operations of the pointwise infimum and the
pointwise supremum. Such representations were studied by Demyanov [11,12],
Castellani [13,14], Castellani and Uderzo [15], Gorokhovik and Starovoitova
[16]. The novelty of the results presented in this note is that we are inter-
ested in existing such two-index families of linear functions which provides
both an inf-sup-representation and a sup-inf-representation of a p.h. function
simultaneously; such representations are referred below as saddle ones. The ad-
vantage of saddle representations in comparison with inf-sup-representations
and sup-inf-representations is their universality: for example, the same saddle
representation of a p.h. function can be used for to derive dual characteristics
of both its nonnegativity and its nonpositivity as well as for to find both a
direction of steepest descent and a direction of steepest ascent.

2 Preliminaries

Recall that a function p : Rn → R is said to be positively homogeneous (of
first degree) iff p(λx) = λp(x) for all x ∈ R

n and all positive reals λ > 0.

With respect to standard algebraic operations, the collection of p.h. func-
tions, defined on R

n, forms a real vector space denoted below by P(Rn). In
addition, both the pointwise maximum and the pointwise minimum of a fi-
nite subfamily of p.h. functions are also p.h. functions. These order operations
are consistent with algebraic operations in such a way that P(Rn) is a vector
lattice.



Saddle representations of p.h. functions 3

Here, we restrict ourselves with consideration of p.h. functions belonging
to a number of subspaces of P(Rn), in particular, to the subspace PC(R

n) of
continuous p.h. functions, the subspace PL(R

n) of Lipschitz continuous p.h.
functions, the subspace PDC(R

n) of difference sublinear functions, the sub-
space PL(Rn) of piecewise linear functions, and the subspace L(Rn) of linear
functions. These subspaces are connected to each other with the following
chain of inclusions

L(Rn) ⊂ PL(Rn) ⊂ PDC(R
n) ⊂ PL(R

n) ⊂ PC(R
n) ⊂ P(Rn). (1)

Each of the above subspaces, except the subspace of linear functions L(Rn),
contains both the pointwise maximum and the pointwise minimum of a finite
subfamily of functions belonging to it and, consequently, is a vector sublattice
of P(Rn).

Apart from the aforementioned subspaces of p.h. functions, we will consider
the classes of sublinear (convex and positively homogeneous) and superlinear
(concave and positively homogeneous) functions denoted below by Psubl(R

n)
and Psupl(R

n) respectively. These classes are convex cones in PDC(R
n). More-

over, both Psubl(R
n) and Psupl(R

n) are generating for PDC(R
n), that is

PDC(R
n) = Psubl(R

n)−Psubl(R
n) and PDC(R

n) = Psupl(R
n)−Psupl(R

n). In
addition, Psubl(R

n) = −Psupl(R
n) and Psubl(R

n) ∩ Psupl(R
n) = L(Rn).

Due to the isomorphism between sublinear functions and compact convex
sets (see, for instance, [17]) each sublinear function ϕ : Rn → R can be uniquely
associated with the convex compact subset

∂ϕ := {a ∈ R
n : 〈a, x〉 ≤ ϕ(x) ∀ x ∈ R

n},

such that

ϕ(x) = max
a∈∂ϕ

〈a, x〉 ∀ x ∈ R
n.

Thus, each sublinear function ϕ is the pointwise maximum (upper envelope)
of the collection of its linear minorants. The set ∂ϕ is called the (lower) subd-
ifferential of ϕ (at the null point).

Likewise, each superlinear function ψ : Rn → R can be uniquely associated
with the convex compact subset

∂+ψ := {a ∈ R
n : 〈a, x〉 ≥ ψ(x) ∀ x ∈ R

n},

called the upper subdifferential of ψ (at the null point), such that

ψ(x) = min
a∈∂+ψ

〈a, x〉 ∀ x ∈ R
n}.

Consequently, each superlinear function ϕ is the pointwise minimum (lower
envelope) of the collection of its linear majorants.

Now, let us consider a family of sublinear functions Φ ⊂ Psubl(R
n) and

assume that

inf
ϕ∈Φ

ϕ(x) > −∞ ∀ x ∈ R
n.
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Since sublinear functions are continuous on R
n, we have due to [18, p. 300]

that the function
p(x) := inf

ϕ∈Φ
ϕ(x) ∀ x ∈ R

n

is upper semicontinuous and positively homogeneous on R
n.

Likewise, whenever a family of superlinear functions Ψ ⊂ Psupl(R
n) holds

sup
ψ∈Ψ

ϕ(x) < +∞ ∀ x ∈ R
n,

the function
q(x) := sup

ψ∈Ψ

ϕ(x) ∀ x ∈ R
n

is lower semicontinuous and positively homogeneous on R
n.

Demyanov and Rubinov [1,2,19] proved the converse statement: any upper
(lower) semicontinuous p.h. function p : Rn → R is the pointwise infimum
(supremum) of some family of sublinear (superlinear) functions. These results
were extended firstly by Uderzo [20] to infinite-dimensional uniformly convex
Banach spaces and then by Gorokhovik [21] to arbitrary normed spaces.

Proposition 1 [19,20,21] Let p : Rn → R be a positively homogeneous func-
tion. Then

(i) p : Rn → R is upper semicontinuous on R
n if and only if there exists a

family Φ of sublinear functions such that

p(x) = inf
ϕ∈Φ

max
a∈∂ϕ

〈a, x〉 ∀ x ∈ R
n; (2)

(ii) p : Rn → R is lower semicontinuous on R
n if and only if there exists a

family Ψ of superlinear functions such that

p(x) = sup
ψ∈Ψ

min
a∈∂+ψ

〈a, x〉 ∀ x ∈ R
n; (3)

(iii) p : Rn → R is continuous on R
n if and only if there exist both a family Φ

of sublinear functions and a family Ψ of superlinear functions which hold
the equality (2) and the equality (3), respectively.

It follows from representations (2) and (3) that lower and upper semicon-
tinuous p.h. functions can be “constructed” from families of linear functions
by means of consecutive operations of the pointwise infimum and the point-
wise supremum. For continuous p.h. functions the both representations, (2)
and (3), hold.

We say that a p.h function p : Rn → R admits an inf-sup-representation
by linear functions iff there exists a two-index family {bis ∈ R

n | i ∈ I, s ∈ S}
(here and throughout below I and S are index sets) such that

p(x) = inf
i∈I

sup
s∈S

〈bis, x〉 ∀ x ∈ R
n. (4)
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Likewise, we say that a p.h function p : Rn → R admits a sup-inf-representation
by linear functions iff there exists a two-index family {cis ∈ R

n | i ∈ I, s ∈ S}
such that

p(x) = sup
s∈S

inf
i∈I

〈cis, x〉 ∀ x ∈ R
n. (5)

It follows from Proposition 1 that each upper (lower) semicontinuous p.h.
function admits an inf-sup-representation (a sup-inf-representation) by lin-
ear functions while each continuous p.h. function admits both an inf-sup-
representation and a sup-inf-representation by linear functions. It is worth
observing that due to Proposition 1 an inf-sup-representation and a sup-inf-
representation of the same continuous p.h. function p are generally provided
with different two-index families {bis ∈ R

n | i ∈ I, s ∈ S} and {cis ∈ R
n | i ∈

I, s ∈ S}.
In some cases, it is more convenient to use an inf-sup-representation, while

in other cases a sup-inf-representation is more convenient. For example, the
usage of an inf-sup-representation of continuous positively homogeneous func-
tion is more convenient than its sup-inf-representation when we need to char-
acterize nonnegativity of this function, and conversely, for characterization of
nonpositivity a sup-inf-representation is more convenient. Motivated by these
circumstances Demyanov [12] for Lipshitz continuous positively homogeneous
functions and Gorokhovik and Trafimovich [22] for continuous ones developed
methods for converting a inf-sup representation into a sup-inf-representation
and vice-versa.

We say that a p.h function p : Rn → R admits a saddle representation by
linear functions iff there exists a two-index family {ais ∈ R

n | i ∈ I, s ∈ S}
such that

p(x) = inf
i∈I

sup
s∈S

〈ais, x〉 = sup
s∈S

inf
i∈I

〈ais, x〉, ∀ x ∈ R
n, (6)

that is, iff there exists a two-index family {ais ∈ R
n | i ∈ I, s ∈ S} which

provides both an inf-sup-representation and a sup-inf-representation of p by
linear functions.

The main result of the paper is the proof that we can associate with each
continuous p.h. function p such two-index family {ais ∈ R

n | i ∈ I, s ∈ S}
which provides a saddle representation of p by linear functions. We also es-
tablish additional characteristic properties of those two-index families which
provides saddle representations of Lipschitz continuous p.h. functions as well
as difference-sublinear and piecewise-linear ones.

3 Main results

Theorem 1 For a function p : Rn → R to be positively homogeneous and
continuous on R

n, it is necessary and sufficient that there exists a two-index
family {ais ∈ R

n | i ∈ I, s ∈ S} which satisfies, for each x ∈ R
n, the conditions

−∞ < inf
i∈I

〈ais, x〉 ∀ s ∈ S and sup
s∈S

〈ais, x〉 < +∞ ∀ i ∈ I, (7)
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and provides the saddle representation (6) of p.

Proof Let p : Rn → R be continuous p.h. function and let Φ = {ϕi : i ∈ I}
and Ψ = {ψs : s ∈ S} be families of sublinear and superlinear functions, which
satisfy equalities (2) and (3), respectively. The existence of such families is
provided by the statement (iii) of Proposition 1. For any given i ∈ I and
s ∈ S we have from the equalities (2) and (3) that

ψs(x) ≤ p(x) ≤ ϕi(x) ∀ x ∈ R
n.

Since the function ψs is superlinear and the function ϕ is sublinear, it follows
from separation theorems of convex sets [23] that there exists a linear function
x→ 〈ais, x〉, where ais ∈ R

n, such that

ψs(x) ≤ 〈ais, x〉 ≤ ϕi(x) ∀ x ∈ R
n. (8)

Taking the infimum over i ∈ I in the last inequalities, we obtain

ψs(x) ≤ inf
i∈I

〈ais, x〉 ≤ inf
i∈I

ϕi(x) ∀ x ∈ R
n. (9)

It shows that
−∞ < inf

i∈I
〈ais, x〉 ∀ s ∈ S.

Now, taking the supremum over s ∈ S in the inequalities (9), we get

p(x) = sup
s∈S

ψs(x) ≤ sup
s∈S

inf
i∈I

〈ais, x〉 ≤ inf
i∈I

ϕi(x) = p(x) ∀ x ∈ R
n

Consequently,
p(x) = sup

s∈S

inf
i∈I

〈ais, x〉 ∀ x ∈ R
n.

If we take firstly the supremum over s ∈ S in the inequalities (8) and then
the infimum over i ∈ I, we prove that

sup
s∈S

〈ais, x〉 < +∞ ∀ i ∈ I,

and
p(x) = inf

i∈I
sup
s∈S

〈ais, x〉 ∀ x ∈ R
n.

The necessary part of Theorem 1 is proved.
To prove the sufficient part we first observe that a function p : Rn → R

which admits an inf-sup-representation or a sup-inf-representation by linear
functions is positively homogeneous.

Besides, an arbitrary function p : Rn → R admitting an inf-sup-representa-
tion p(x) = inf

i∈I
sup
s∈S

〈ais, x〉 ∀ x ∈ R
n with such two-index family {ais ∈ R

n | i ∈

I, s ∈ S} which satisfies, for each x ∈ R
n, the condition sup

s∈S

〈ais, x〉 <

+∞ ∀ i ∈ I, is upper semicontinuous on R
n. Really, in this case p is the lower

envelope of the family of sublinear functions {ϕi : x → sup
s∈S

〈ais, x〉, i ∈ I}
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each of which takes finite values for all x ∈ R
n. Because real-valued sublinear

functions ϕi, i ∈ I, are continuous on R
n, their lower envelope, that is the

function p, is upper semicontinuous on R
n.

Likewise, a function p : Rn → R admitting an sup-inf-representation p(x) =
sup
s∈S

inf
i∈I

〈ais, x〉 ∀ x ∈ R
n with such two-index family {ais ∈ R

n | i ∈ I, s ∈ S}

which satisfies, for each x ∈ R
n, the condition −∞ < inf

i∈I
〈ais, x〉 ∀ i ∈ I, is

lower semicontinuous on R
n. ⊓⊔

Remark 1 It follows from the proof of Theorem 1 that the two-index family
{ais ∈ R

n | i ∈ I, s ∈ S} which provides the saddle representation for the
given continuous positively homogeneous function p : Rn → R is nonuniquely
defined. The nonuniqueness arises from the nonunique choice of exhaustive
families of upper convex and lower concave approximations of the function
p and, in addition, from the possible nonuniqueness of a linear function x →
〈ais, x〉 which separates an upper convex approximation ϕi and a lower concave
one ψs in (8).

Remark 2 Let {ais ∈ R
n | i ∈ I, s ∈ S} be the two-index family of linear

functions providing a saddle representation for the p.h. function p that was
constructed in the proof of Theorem 1. It is evident that the cardinalities of
the index sets I and S are equal to those of the exhaustive families of upper
convex and lower concave approximations which were used for constructing
this family. Consequently, the less the cardinalities of the exhaustive families,
the less those of I and S. Clearly, we are interested in reducing the cardinalities.
To this end we can use the methods of reducing exhaustive families which were
developed in [24,25,26].

For the next theorem we need the following characterizations of Lipschitz
continuous positively homogeneous functions.

Proposition 2 [16] The following statements are equivalent

(i) p : Rn → R is positively homogeneous and Lipschitz continuous on R
n;

(ii) there exists a uniformly bounded family Φ of sublinear functions which sat-
isfies the equality (2);

(iii) there exists a uniformly bounded family Ψ of superlinear functions which
satisfies the equality (3).

The family Γ of positively homogeneous functions is called uniformly bounded
if there exists a constant M > 0 such that |p(x)| ≤ M‖x‖ for all x ∈ R

n and
all p ∈ Γ.

We also note that for a sublinear (respectively, superlinear) function p the
condition |p(x)| ≤ M‖x‖ ∀ x ∈ R

n is equivalent to p(x) ≤ M‖x‖ ∀ x ∈ R
n

(respectively, to −M‖x‖ ≤ p(x) ∀ x ∈ R
n).

Theorem 2 For a function p : Rn → R to be positively homogeneous and
Lipschitz continuous on R

n, it is necessary and sufficient that there exists
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a two-index family {ais ∈ R
n | i ∈ I, s ∈ S} which satisfies, for some fixed

M > 0 and each x ∈ R
n, the conditions

−M‖x‖ < inf
i∈I

〈ais, x〉 ∀ s ∈ S and sup
s∈S

〈ais, x〉 < M‖x‖ ∀ i ∈ I, (10)

and provides the saddle representation (6) of p.

Proof Let p : Rn → R be a Lipshitz continuous positively homogeneous
function. Then, due to Proposition 2, we can choose a uniformly bounded
family Φ of sublinear functions as well as a uniformly bounded family Ψ of
superlinear functions which satisfy the equalities (2) and (3), respectively.
Repeating the arguments of the proof of Theorem 2 with the chosen families
Φ and Ψ we construct a two-index family {ais, i ∈ I, s ∈ S}, which satisfies
the conditions(10) and provides for p the saddle representation (6).

Conversely, it follows from (6) and (10) that the family of superlinear
functions ψs : x → inf

i∈I
〈ais, x〉, s ∈ S, is uniformly bounded and satisfies the

equality (3). Hence, the function p is positively homogeneous and, due to
Proposition 2, it is Lipschitz continuous. ⊓⊔

Theorem 3 A function p : R
n → R is difference sublinear if and only if

there exist two bounded families of vectors in R
n, {bs ∈ R

n | s ∈ S} and {ci ∈
R
n | i ∈ I}, such that the two-index family {ais := bs − ci ∈ R

n | i ∈ I, s ∈ S}
generated by this families provides the saddle representation (6) of p by linear
functions.

Proof A function p : R
n → R is difference sublinear if and only if p

can be represented as a difference of two sublinear functions. Let p(x) =
ϕ1(x) − ϕ2(x) ∀ x ∈ R

n, where ϕ1, ϕ2 ∈ Psubl(R
n), be some such repre-

sentation of p. Consider the subdifferentials ∂ϕ1 and ∂ϕ2 of the functions ϕ1

and ϕ2, respectively, and denote by {bs | s ∈ S} the set of exposed points of
the subdifferential ∂ϕ1 indexed by elements of S, and by {ci | i ∈ I} the set
of exposed points of the subdifferential ∂ϕ2 indexed by elements of a set I.
Since ∂ϕ1 and ∂ϕ2 are compact, the families {bs | s ∈ S} and {ci | i ∈ I} are
bounded. Besides,

p(x) = sup
s∈S

〈bs, x〉−sup
s∈S

〈ci, x〉 = sup
s∈S

inf
i∈I

〈bs−ci, x〉 = inf
i∈I

sup
s∈S

〈bs−ci, x〉 ∀ x ∈ R
n.

This completes the proof of the necessary part of the theorem.
The sufficiency is obvious. ⊓⊔

Recall, that a function p : R
n → R is called piecewise linear iff it is

continuous and there exists a finite covering of Rn with solid convex cones
K1, K2, . . . ,Ks such that the restriction of p to each cone Ki, i = 1, 2, . . . , s
coincides with the restriction of some linear function to this cone.

This definition of piecewise linearity of functions goes back to Bank B. et
al. [28] (see also [29])
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Theorem 4 A function p : Rn → R is piecewise linear if and only if there
exists a finite two-index family {ais ∈ R

n | i ∈ I, s ∈ S} which provides the
following saddle representation of p by linear functions:

p(x) = min
i∈I

max
s∈S

〈ais, x〉 = max
s∈S

min
i∈I

〈ais, x〉, ∀ x ∈ R
n, (11)

Moreover, for each piecewise linear function p : Rn → R the family {ais ∈
R
n | i ∈ I, s ∈ S} can be chosen in such a manner that {ais := bs − ci ∈

R
n | i ∈ I, s ∈ S} where {bs ∈ R

n | s ∈ S} and {ci ∈ R
n | i ∈ I} are two finite

families of vectors in R
n.

Proof Due to [27, Theorem 5.4] a function p : Rn → R is piecewise linear
if and only if there exist both a finite family Φ of sublinear functions and a
finite family Ψ of superlinear functions which satisfy the equalities (2) and (3),
respectively. Repeating the arguments of the proof of Theorem 2 with the finite
families Φ and Ψ we construct a finite two-index family {ais, i ∈ I, s ∈ S, },
which provides for p the saddle representation (11).

The converse also is true, since a function p admitting the presentations
(11) is piecewise linear [29].

The last statement of the theorem follows from the presentation of each
piecewise linear function p as a difference of two polyhedral sublinear functions
[30] (see, also, [27, Theorem 5.3]), p(x) = max

s∈S
〈bs, x〉 −max

i∈I
〈ci, x〉, ∀ x ∈ R

n,

with I and S being finite. ⊓⊔

4 Conclusions

In the paper we show that each continuous p.h. function can be associated
with a two-index family of linear functions which provides its saddle repre-
sentation. This means that it admits both an inf-sup-representation and a
sup-inf-representation with the same two-index family of linear functions. We
also establish characteristic properties of those two-index families of linear
functions which provides saddle representations of functions belonging to the
subspace of Lipschitz continuous p.h. functions as well as the subspaces of
difference sublinear and piecewise linear functions.
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