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Abstract

The paper deals with optimization problems with uncertain constraints and
linear perturbations of the objective function, which are associated with given
families of perturbation functions whose dual variable depends on the uncer-
tainty parameters. More in detail, the paper provides characterizations of stable
strong robust duality and stable robust duality under convexity and closedness
assumptions. The paper also reviews the classical Fenchel duality of the sum of
two functions by considering a suitable family of perturbation functions.

Key words Stable robust duality - Stable strong robust duality - Fenchel duality of
the sum - Deterministic conjugate duality

1 Introduction

Robust duality and stable duality have attracted in recent years the attention of many
researchers. For instance, on the one hand, su¢ cient conditions for robust duality
theorems in uncertain in�nite linear optimization are provided in [8], and in uncertain
convex optimization in [12] and [14], while a subdi¤erential constraint quali�cation has
been used in [16] to characterize robust duality in the latter setting. On the one hand,
stable duality theorems (without uncertainty) have been provided in [7], [11] and [13],
among others, also in the framework of convex optimization. On the other hand, both
types of duality are simultaneously studied in [2] and [5], where characterizations of
robust and robust stable strong duality are given for non-convex and/or convex robust
problems. It is worth mentioning that among the mentioned papers, some provide
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perturbational schemes covering optimization problems with uncertain constraints and
linear perturbations of the objective functions, such as [3], [5], [14].

In this short paper, following [3], we consider a given family fFu : u 2 Ug of per-
turbation functions, where the index set U is called the uncertainty set of the family,
Fu : X � Yu ! R1 := R [ f+1g; and the decision space X and the parameter spaces
Yu; u 2 U; are locally convex Hausdor¤ topological vector spaces. In contrast with
the �classical" robust duality scheme (as in [14]), where a unique parameter space Y
is considered, in our model the parameter space Yu depends on u (this dependence is
illustrated with a realistic production planning problem in [3, Section 2, Case 3]). Here,
we specialize the totally general results obtained in [3] to problems satisfying certain
convexity and closedness properties. Applying this approach to a suitable family of
perturbation functions, we also obtain calculus rules for conjugacy of the sum of func-
tions in a non-standard way (the standard one being Fenchel conjugacy) which may
recall the way that [15] obtains calculus rules for support functions from intersection
formulas for normals to convex sets.

We associate with the family of perturbation functions fFu : u 2 Ug and a given
continuous linear functional x� 2 X� a robust (or pessimistic) primal problem

(RP)x� : inf
x2X

�
sup
u2U

Fu(x; 0u)� hx�; xi
�
;

where 0u is the null vector of Yu; and its corresponding robust (or optimistic) dual
problem

(ODP)x� : sup
(u;y�u)2�

�F �u (x�; y�u);

where � := f(u; y�u) : u 2 U; y�u 2 Y �u g is the disjoint union of the parameter spaces Y �u ,
u 2 U and F �u : X� � Y �u ! R := R [ f�1g is the Fenchel conjugate of Fu, i.e.,

F �u (x
�; y�u) := sup

(x;yu)2X�Yu
fhx�; xi+ hy�u; yui � Fu(x; yu)g ;8(x�; y�u) 2 X� � Y �u :

It is known that
sup (ODP)x� � inf (RP)x� ; (1.1)

where inf (RP)x� represents the optimal value of (RP)x� and sup (ODP)x� is the optimal
value of (ODP)x� (max (ODP)x� when the supremum is attained).

This paper continues our research in [3], specifying to a family of convex problems
with certain closedness properties, to give characterizations of the two following desir-
able duality properties of the above primal-dual pair of problems:

� Stable robust duality, i.e., inf (RP)x� = sup (ODP)x� for all x� 2X�;

� Stable strong robust duality, i.e., inf (RP)x� = max (ODP)x� for all x� 2X�:

The following two functions, p : X �! R1 and q : X� �! R (in short, p 2 RX1 and
q 2 RX

�
), play a crucial role in this paper:

p := sup
u2U

Fu(�; 0u) and q := inf
(u;y�u)2�

F �u (�; y�u): (1.2)
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In fact, since

p�(x�) = � inf (RP)x� and q(x�) = � sup (ODP)x� ;

stable robust duality holds if and only if p�(x�) = q(x�) for all x� 2 X�; and stable
strong robust duality holds if and only if p�(x�) = q(x�) with attainment at the second
member for all x� 2 X�:

The paper is organized as follows: Section 2 contains the necessary notations and
basic results, while Sections 3 and 4 characterize stable strong robust duality and stable
robust duality under the convexity of q and the closedness of certain sets, respectively.
Moreover, Section 4 revisits the classical Fenchel duality of the sum of two functions
by considering a suitable family of perturbation functions.

2 Preliminaries

Let us introduce the necessary notations. Given a locally convex Hausdor¤ topological
vector space Z, we consider its dual space Z� equipped with the weak� (w� in short)
topology. We denote by 0Z and 0�Z the null vectors of Z and Z

�; respectively. Given a
set V contained in either Z or Z�; coV and V denote its convex hull and its closure
w.r.t. the corresponding topology, respectively, while coV := coV .

Given an extended real-valued function h 2 RZ , by epih and epis h we represent
the epigraph and the strict epigraph of h; and by [h � r] and [h < r]; r 2 R,
the corresponding sublevel and strict sublevel sets. The domain of the function f is
dom f := fz 2 Z : f(z) < +1g. Recall also that the Fenchel conjugate function of the
function f , f � 2 RZ

�
, is the one de�ned by f �(z�) := supfhz�; zi � f(z) : z 2 Zg

for any z� 2 Z� while the bi-conjugate of f , f �� 2 RZ , is de�ned by f ��(z) =
supfhz�; zi � f �(z�) : z� 2 Z�g for all z 2 Z. By @"h(a), " � 0, we represent the
"�subdi¤erential of h at a point a 2 Z such that h(a) 2 R (if h(a) is not real,
@"h(a) = ;):

@"h(a) = fz� 2 Z� : h(z) � h(a) + hz�; z � ai � "; 8z 2 Zg
=

�
z� 2 (h�)�1(R) : h�(z�) + h(a) � hz�; ai+ "

	
:

If h is convex and h(a) 2 R, then @"h(a) 6= ; for all " > 0 if and only if h is lower semi-
continuous (lsc, in brief) at a. The inverse of the set-valued mapping @"h : Z � Z� is
denoted by M "h : Z� � Z: We have:

M "h(z�) = "�argmin(h�z�) =
�
fz 2 Z : h(z)� hz�; zi � �h�(z�) + "g ; if h�(z�) 2 R;
;; if h�(z�) 62 R:

We note that M "h(z�) 6= ; whenever h�(z�) 2 R and " > 0.
The lsc hull of h is the function h 2 RZ de�ned by

h(z) := infft : (z; t) 2 epihg = lim inf
y!z

h(y):
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We have epih = epih and h is the greatest lsc minorant of h. One has h�� � h � h.
If h is convex and has a continuous a¢ ne minorant (that means domh� 6= ;), then
h�� = h:

We need to introduce for each " � 0 the ("-active indexes) set-valued mapping
I" : X � U with

I"(x) =

�
fu 2 U : Fu(x; 0u) � p(x)� "g ; if p(x) 2 R;
;; if p(x) 62 R: (2.1)

For each ("; x) 2 R+ �X, let us de�ne

C"(x) :=
\
�>0

[
"1+"2="+�
"1>0; "2>0

[
u2I"1 (x)

projuX�(@"2Fu)(x; 0u); (2.2)

where projuX� :X� � Y �u �! X� is the projection mapping projuX�(x�; y�u) = x
�.

Theorem 2.1 (Stable robust duality I) [3, Theorem 6.1] Assume that dom p 6= ;.
The next statements are equivalent:

(i) inf (RP)x� = sup (ODP)x� for all x
� 2 X�,

(ii) @"p(x) = C"(x) for all ("; x) 2 R+ �X,
(iii) there exists �" > 0 such that @"p(x) = C"(x) for all ("; x) 2]0; �"[�X.

For each " � 0, de�ning

D"(x) =
[

"1+"2="
"1>0;"2>0

[
u2I"1 (x)

projuX�(@"2Fu)(x; 0u); 8("; x) 2 R+ �X; (2.3)

we have
C"(x) =

\
�>0

D"+�(x); 8("; x) 2 R+ �X; (2.4)

and D"(x) = C"(x) = @"p(x) = ; whenever p(x) 62 R. The next result characterizes
the stable strong robust duality in terms of "-subdi¤erential formulas.

Theorem 2.2 (Stable strong robust duality) [3, Theorem 7.1] Assume that dom p 6=
;. The next statements are equivalent:
(i) inf (RP)x� = max (ODP)x� = max

u2U
y�u2Y �u

�F �u (x�; y�u) for all x� 2 X�,

(ii) @"p(x) = D"(x) for all ("; x) 2 R+ �X.
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3 Using convexity and closedness in robust duality

Given Fu : X � Yu ! R1; u 2 U , recall that we de�ned p = sup
u2U

Fu(�; 0u), and

q = inf
(u;y�u)2�

F �u (�; y�u). As general facts we observe that

q� = sup
(u;y�u)2�

(F �u (�; y�u))
� =sup

u2U
F ��u (�; 0u); (3.1)

and by this,
q� � p and p� � q�� � q;

while stable robust duality means that p� = q.

De�ning
E :=

[
u2U

projuX��RepiF
�
u ;

where projuX��R :X
� � Y �u � R �! X� � R is projuX��R(x

�; y�u; �) = (x
�; �), and

Es :=
[
u2U

projuX��RepisF
�
u ;

we have straightforwardly:
episq = Es � E � epi q: (3.2)

Let us equipX� (resp. X��R) with the w�-topology and denote by q (resp. qco; resp.
qco = qco) the w�-lsc hull (resp. the convex hull, resp. the w�-lsc convex hull) of q.
From (3.2) we get that

epi q = E; epi qco = co E; (3.3)

and, consequently,

E convex =) q convex =) q convex () E convex:

Lemma 3.1 Assume that dom p 6= ;, and

p�� = sup
u2U

F ��u (�; 0u): (3.4)

Then p� = qco:

Proof. By (3.1) and (3.4), p�� = q� = (qco)� ; and p� = p��� = (qco)�� : Since
dom (qco)� = dom p�� � dom p 6= ;; we have dom (qco)� 6= ; and (qco)�� = qco = qco:
Hence, p� = qco:

Proposition 3.1 Assume that dom p 6= ; and (3.4) holds. Then, stable robust duality
holds if and only if q is convex and w��lsc.
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Proof. Thanks to Lemma 3.1, q is convex and w��lsc amounts to say p� = q, that is
stable robust duality.

Let us recall that A � X� � R is said to be w��closed and convex regarding B �
X� � R if (see [6])

(coA) \B = A \B:

Proposition 3.2 Assume that dom p 6= ; and that (3.4) holds and let x� 2 X�. Then,
strong robust duality holds at x� if and only if E is w��closed and convex regarding
fx�g � R.

Proof. We start by proving the necessity. Let (x�; r) 2 co E. By (3.3) and Lemma
3.1, p�(x�) = (qco)(x�) � r: Since strong robust duality holds at x�, there will exist
(u; y�u) 2 � such that p�(x�) = F �u (x

�; y�u) � r and, by de�nition of E, (x�; r) 2 E.
For the su¢ ciency, we proceed with the following discussion. If p�(x�) = +1 we are

done as, then, q(x�) = +1 = F �u (x
�; y�u) for all (u; y

�
u) 2 �. Since dom p 6= ;, we have

p�(x�) 6= �1. Assume that p�(x�) 2 R. Then, (x�; p�(x�)) 2 epi p� and, by Lemma
3.1 and (3.3), (x�; p�(x�)) 2 coE. Since E is w��closed and convex regarding fx�g�R,
one concludes that (x�; p�(x�)) 2 E and, by the own de�nition of E, there must exist
(u; y�u) 2 � such that ((x�; y�u); p

�(x�)) 2 epiF �u ; and consequently

q(x�) � F �u (x�; y�u) � p�(x�) � q(x�);

and this entails that strong robust duality holds at x�.

Corollary 3.1 Assume that dom p 6= ; and that (3.4) holds. Then, stable strong robust
duality holds if and only if E is w��closed and convex.

Proof. This is due to the fact that E is w��closed and convex if and only if E is
w��closed and convex regarding fx�g � R for any x� 2 X�:

Lemma 3.2 Let " � 0, x 2 X, and D"(x) be as in (2.3). We have

D"(x) =
n
x� 2 X� : 9 (u; y�u) 2 � s:t: F �u (x

�; y�u)� hx�; xi+ p(x) � "
o
: (3.5)

Proof. Let us denote by E"(x) the right-hand side of (3.5), and let x� 2 D"(x). Then,
there exist "1 � 0, "2 � 0, u 2 I"1(x), and y�u 2 Y �u such that "1 + "2 = ", and
(x�; y�u) 2 (@"2Fu)(x; 0u). Consequently,

F �u (x
�; y�u)� hx�; xi+ p(x) = F �u (x

�; y�u) + Fu(x; 0u)� hx�; xi+ p(x)� Fu(x; 0u)
� "2 + "1 = ";

that means that x� 2 E"(x), and hence D"(x) � E"(x).
Let us prove the opposite inclusion. Let x� 2 E"(x). Then, there will exist u 2 U ,

y�u 2 Y �u such that
F �u (x

�; y�u)� hx�; xi+ p(x) � ":
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If p(x) 2 R, it follows that Fu(x; 0u) 2 R and we have �1 + �2 � ", where �1 :=
p(x) � Fu(x; 0u) 2 R+ and �2 := F �u (x

�; y�u) + Fu(x; 0u) � hx�; xi 2 R+. Thus, there
exist "1 � 0, "2 � 0 such that �1 � "1 �2 � "2, "1 + "2 = ". Now �1 � "1 means
that u 2 I"1(x), and �2 � "2 means that (x�; y�u) 2 (@"2Fu)(x; 0u): According to this,
x� 2 D"(x). In case p(x) 62 R, by our convention (page 4), D"(x) = ; and, in this case,
it is clear that E"(x) = ; and the proof is complete.

Lemma 3.3 For each " � 0 and each x 2 X; one has

D"(x) � @"p(x):

Proof. Since @"p(x) is w�-closed, it su¢ ces to check that D"(x) � @"p(x). Let x� 2
D"(x). By (2.3), there exist "1 � 0; "2 � 0; u 2 U; such that "1 + "2 = ", u 2 I"1(x)
and x� 2 projuX�(@"2Fu)(x; 0u): Then, we have p(x) 2 R (by de�nition of I"1(x)), and
there exists (x�; y�u) 2 (@"2Fu)(x; 0u); Fu(x; 0u) 2 R, F �u (x�; y�u) 2 R, and

p(x) + p�(x�)� hx�; xi � p(x) + q(x�)� hx�; xi
� Fu(x; 0u) + "1 + q(x

�)� hx�; xi
� Fu(x; 0u) + F

�
u (x

�; y�u)� hx�; xi+ "1
� "2 + "1 = ";

where the �rst inequality comes from p� � q, the second one from the de�nition
of I"1(x); the third one from the de�nition of q, and the last one from (x�; y�u) 2
(@"2Fu)(x; 0u): Thus, we conclude that x� 2 @"p(x).

Proposition 3.3 Assume that q is convex, dom p 6= ;, and

p = sup
u2U

F ��u (�; 0u): (3.6)

Then for each " > 0 and each x 2 X one has

D"(x) = @"p(x):

Proof. By (3.1) and (3.6) we have p = q�, and so p� = q��. Since q is convex and
dom q� = dom p 6= ; we get p� = q. Now,

@"p(x) =
h
q � h�; xi+ p(x) � "

i
=
h
q � h�; xi+ p(x) � "

i
: (3.7)

Let us observe that

inf
X�

n
q � h�; xi+ p(x)

o
= �q�(x) + p(x) = 0:

Since the function q�h�; xi+ p(x) is convex and " > infX�

n
q�h�; xi+ p(x)

o
; we thus

have (see [10, Lemma 1.1])h
q � h�; xi+ p(x) � "

i
=
h
q � h�; xi+ p(x) � "

i
=
h
q � h�; xi+ p(x) < "

i
: (3.8)
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It now follows from (3.7) and (3.8) that

@"p(x) =
h
q � h�; xi+ p(x) < "

i
: (3.9)

By de�nition of q and Lemma 3.2 we have

[q � h�; xi+ p(x) < "] � D"(x)

and, by (3.9), @"p(x) � D"(x). We conclude the proof by applying Lemma 3.3.

Remark 3.1 It is worth noticing that the condition (3.6) holds under some mild con-
dition such as convexity in some concrete cases. For instance, let f; g : X ! R,
k : Z ! R be proper functions and, for each u 2 U , Hu : domHu � X ! Z be a map
with ; 6= domHu � X. Let Yu = Z; for each u 2 U; and consider the perturbation
function, for each (u; x; z) 2 U �X � Z,

Fu(x; z) :=

�
f(x) + g(x) + k (Hu(x) + z) ; if x 2 domHu;
+1; else;

where

(k �Hu)(x) :=
�
k(Hu(x)); if x 2 domHu;
+1; if x 2 X n (domHu);

which means that we consider the robust optimization problem

inf
x2X

sup
u2U
[f(x) + g(x) + k (Hu(x))]: (3.10)

Under the condition that f + g + �Hu is a proper convex lsc function, for all (u; �) 2
U � dom k�; and k��(Hu(x)) = k(Hu(x)); for all u 2 U and for all x 2

T
u2U domHu,

then (3.6) holds (see the proof of [5, Theorem 4.2]), i.e.,

p := sup
u2U

Fu(x; 0Z) = sup
u2U

F ��u (x; 0Z):

A special case of (3.10) is the general robust problem with cone constraints

inf
x2X

ff(x) : Hu(x) 2 �S; u 2 U; x 2 Cg ;

where S is a convex cone in Y and C is a closed convex subset in X. In this case g
and k are the indicator functions of C and �S; respectively.

The next result provides another characterization of stable robust duality that does
not require any convexity assumption.

Theorem 3.1 (Stable robust duality II) Assume that dom p 6= ;. The next state-
ments are equivalent:

(i) Stable robust duality holds, i.e., p� = q,

(ii) There exists � > 0 such that @"p(x) � D�"(x) for all " > 0 and all x 2 X:
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Proof. [(i) =) (ii)] Let " > 0 and x 2 X. By Theorem 2.1 we have

@"p(x) = C"(x) =
\
�>0

D"+�(x) � D2"(x);

and (ii) holds with � = 2.

[(ii) =) (i)] Take x� 2 X�. The implication is trivial if p�(x�) = +1. Since
dom p 6= ; it remains to study the case when p�(x�) 2 R. Let " > 0 and pick x 2
(M "p)(x�) = " � argmin(p � x�); which is non-empty. We have x� 2 @"p(x) and, by
(ii), there exists � > 0 such that x� 2 D�"(x). By Lemma 3.2 there exist u 2 U and
y�u 2 Y �u such that

F �u (x
�; y�u)� hx�; xi+ p(x) � �":

Hence,

q(x�)� p�(x�) � q(x�)� hx�; xi+ p(x) � F �u (x�; y�u)� hx�; xi+ p(x) � �":

Letting "! 0+ we get q(x�)� p�(x�) � 0 and, by (1.1), q(x�) = p�(x�).
In the case when q is convex we have:

Theorem 3.2 (Stable robust duality under convexity) Assume that q is convex,
dom p 6= ;, and (3.6) holds. The next statements are equivalent:
(i) Stable robust duality holds, i.e., p� = q,

(ii)
T
�>0

D"+�(x) = D"(x) for all " > 0 and all x 2 X.

Proof. [(i) =) (ii)] follows from Theorem 2.1, Proposition 3.3, and (2.4).

[(ii) =) (i)] Let ("; x) 2 R+ � X: According to Theorem 2.1 one has to check that
@"p(x) = C"(x). Assume �rst that p(x) = +1: Then, @"p(x) = ; and, by Lemma 3.3
and (2.4), C"(x) = ;. Assume now that p(x) 2 R. Then, by (ii); Proposition 3.3 and
(2.4), one has C"(x) = D"(x) = @"p(x):

We now provide a convex closedness criterion for stable robust duality:

Corollary 3.2 Assume that q is convex, dom p 6= ;, (3.6) holds, and

D"(x) is w� � closed; 8" > 0;8x 2 X: (3.11)

Then p� = q.

Proof. By Proposition 3.3 and (3.11), we have @"p(x) = D"(x) for each " > 0 and each
x 2 X. It then follows from Theorem 3.1 (with � = 1) that p� = q.

In fact, the closedness criterion (3.11) can also be used to characterize stable strong
robust duality. This is the purpose of the next theorem.
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Theorem 3.3 (Stable robust duality via closedness and convexity) Assume that
dom p 6= ; and consider the next statements:
(i) Stable strong robust duality holds,

(ii) D"(x) is w�-closed for all " � 0 and all x 2 X,
(iii) D"(x) is w�-closed for all " > 0 and all x 2 X.
One has (i) =) (ii) =) (iii).

If q is convex, (3.6) holds, and p is not a¢ ne on dom p, then the three statements
are equivalent.

Proof. [(i) =) (ii)] follows from Theorem 2.2 and the fact that @"p(x) is w�-closed.

[(ii) =) (iii)] is trivial.

[(iii) =) (i)] Let x� 2 X�. If p�(x�) = +1; then q(x�) = +1 and (i) holds
obviously as q(x�) = +1 = F �u (x

�; y�u) for all (u; y
�
u) 2 �. Since dom p 6= ;, we have

p�(x�) 6= �1; and it only remains to be analyzed the case p�(x�) 2 R. Since p is not
a¢ ne on dom p there exists x 2 dom p such that " := p�(x�)+p(x)�hx�; xi > 0. Then,
x� 2 @"p(x) and, by Proposition 3.3, x� 2 D"(x) = D"(x). By Lemma 3.2, there exist
u 2 U , y�u 2 Y �u such that

q(x�) � F �u (x�; y�u) � hx�; xi � p(x) + " = p�(x�) � q(x�);

and (i) holds.

4 Back to deterministic conjugate duality

Consider F : X � Y ! R1, p = F (�; 0Y ), and q = inf
y�2Y �

F �(�; y�). This is a determin-
istic problem, i.e., Fu = F: We assume that dom p 6= ;.
Since episq = projX��RepisF

� and episF
� is convex, the function q is convex, too.

By Proposition 3.1 we have:

Corollary 4.1 Assume that p�� = F ��(�; 0Y ). Then p� = q if and only if q is w�-lsc.

Since, in our current setting,

D"(x) = projX�(@"F )(x; 0Y )

(see (2.3)), Theorem 2.1, (2.4) and Theorem 3.1 give us:

Corollary 4.2 The next statements are equivalent:
(i) p� = q,

(ii) @"p(x) =
T
�>0

projX�
�
@"+�F

�
(x; 0Y ) for all ("; x) 2 R+ �X,

(iii) There exists � > 0 such that

@"p(x) � projX�
�
@�"F

�
(x; 0Y );8" > 0;8x 2 X:

10



By Proposition 3.3 we get:

Corollary 4.3 Assume that p = F ��(�; 0Y ). Then for each " > 0 and each x 2 X we
have:

@"p(x) = projX�(@"F )(x; 0Y ):

From Theorem 3.2 we can state:

Corollary 4.4 Assume that p = F ��(�; 0Y ). The next statements are equivalent:
(i) p� = q,

(ii)
T
�>0

projX�
�
@"+�F

�
(x; 0Y ) = projX�@"F (x; 0Y ) for all " > 0 and all x 2 X.

By Corollary 3.2 we have:

Corollary 4.5 Assume that p = F ��(�; 0Y ) and projX�
�
@"F

�
(x; 0Y ) is w�-closed for

all " > 0 and all x 2 X. Then p� = q.

From Theorem 3.3 we derive a new characterization of stable strong duality:

Corollary 4.6 Consider the next statements:
(i) Stable strong robust duality holds, i.e.,

inf
x2X

n
F (x; 0Y )� hx�; xi

o
= � min

y�2Y �
F �(x�; y�); 8x� 2 X�;

(ii) projX�

�
@"F

�
(x; 0Y ) is w�-closed for all " � 0 and all x 2 X,

(iii) projX�

�
@"F

�
(x; 0Y ) is w�-closed for all " > 0 and all x 2 X.

Then one has (i) =) (ii) =) (iii). Moreover, if p = F ��(�; 0Y ) and p is not a¢ ne on
dom p then (i)() (ii)() (iii).

We now consider the conjugate duality for the sum of functions and compare our
results with those of [1], limiting ourselves to the case of two functions.

Let f; g 2 RX1 be two proper functions such that dom f \ dom g 6= ;. The classical
Fenchel duality for the sum f + g is obtained by considering the perturbation F :
X � Y ! R1 given by

F (x; y) = f(x+ y) + g(x):

Here,Y = X: We thus have p = F (�; 0Y ) = f + g.
Since f and g are proper, the conjugates f �, g� do not take value �1, and we have:

�1 < F �(x�; y�) = f �(y�) + g�(x� � y�) � +1; 8(x�; y�) 2 X� � Y �: (4.1)

The function q coincides with the in�mal convolution f ��g� of the conjugate functions
f � and g�:

q(x�) = inf
y�2X�

n
f �(y�) + g�(x� � y�)

o
; 8x� 2 X�:

11



Lemma 4.1 For each ("; x) 2 R+ �X one has

projX�(@"F )(x; 0X) =
[

"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
:

Proof. We have x� 2 projX�@"F (x; 0X) if and only if there exists y� 2 X� such that

F �(x�; y�) + F (x; 0X)� hx�; xi � ";

or, equivalently (see (4.1)), �1 + �2 � "; where

�1 := f
�(y�) + f(x)� hy�; xi; �2 := g�(x� � y�) + g(x)� hx� � y�; xi:

Since �1 and �2 belong to R+, this is equivalent to the existence of "1 and "2 in R+
such that "1 + "2 = ", �1 � "1, �2 � "2, which means that y� 2 @"1f(x), x� � y� 2
@"2g(x). Therefore, x� 2 projX�@"F (x; 0X) if and only if there exists y� 2 X� such that
x� = y� + x� � y� 2 @"1f(x) + @"2g(x).
Assuming that

dom f � 6= ; and dom g� 6= ;; (4.2)

that means f and g have continuous a¢ ne minorants, the biconjugates f �� and g�� do
not take the value �1, and we have

F ��(x; y) = f ��(x+ y) + g��(x); 8(x; y) 2 X �X: (4.3)

So the condition p�� = F ��(�; 0X) (used in Corollary 4.1) and the condition p =
F ��(�; 0X) (used in Corollaries 4.3-4.6) write respectively

(f + g)�� = f �� + g��; (4.4)

f + g = f �� + g��: (4.5)

It is clear that (4.5) =) (4.4).

Condition 4.4 is used in [4, Proposition 3.5] and, for convex functions, in [9, Theorem
13]. Note that if f and g are real-valued then (4.5) amounts to saying that f = f �� and
g = g��. If f and g are just proper functions then (4.5) may hold even if f 6= f �� or
g 6= g��. For instance, if f and g are proper convex functions, and lsc on dom �f\dom �g,
which is the hypothesis made in [1, Theorem 3.2], it can be shown that (4.2) and (4.5)
hold. The next result completes [1, Theorem 3.2].

Theorem 4.1 Let f; g 2 RX1 be two proper functions such that dom f \ dom g 6= ;.
The next statements are equivalent:

(i) (f + g)� = f ��g�,
(ii) @"(f + g)(x) =

T
�>0

S
"1+"2=�+"
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
for all ("; x) 2 R+ �X;

12



(iii) There exists � > 0 such that

@"(f + g)(x) �
[

"1+"2=�"
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
; 8" > 0;8x 2 X:

If (4.2) holds and (f + g)�� = f �� + g�� we can add:

(iv) f ��g� is w�-lsc.

If (4.2) holds and f + g = f �� + g�� we can add:

(v) For each " > 0 and each x 2 X one has\
�>0

[
"1+"2=�+"
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
=

[
"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
:

(vi) There exists � > 0 such that[
"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
�

[
"1+"2=�"
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
;8" > 0;8x 2 X:

(vii) There exists � > 0 such that

@"f(x) + @"g(x) � @�"f(x) + @�"g(x);8" > 0;8x 2 X:

Proof. [(i), (ii), (iii)] by Corollary 4.2 and Lemma 4.1.

[(i), (iv)] by Corollary 4.1.

[(i), (v)] by Corollary 4.4 and Lemma 4.1.

[(i), (vi)] by Corollaries 4.2-4.3 and Lemma 4.1.

[(vi)) (vii)] Let " > 0 and x 2 dom f \ dom g. Then

@"f(x) + @"g(x) �
[

"1+"2=2"
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
;

and, by (vi); there exists �0 > 0 such that

@"f(x) + @"g(x) �
[

"1+"2=2�
0"

"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
� @2�0"f(x) + @2�0"g(x);

and (vii) holds with � = 2�0.

[(vii)) (vi)] Let " > 0; x 2 dom f \ dom g. We obviously have[
"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
� @"f(x) + @"g(x);

13



and, by (vii); there exists �0 > 0 such that[
"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
� @"f(x) + @"g(x) � @�

0"f(x) + @�
0"g(x)

�
[

"1+"2=2�
0"

"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
;

and (vi) holds with � = 2�0.

The following closedness criteria are immediate consequences of Theorem 4.1 (see
statements (vi), (vii) with � = 1).

Proposition 4.1 Let f; g 2 RX1 be two proper functions such that dom f \dom g 6= ;,
(4.2) holds, f + g = f �� + g��, and either[

"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
is w� � closed; 8" > 0;8x 2 X;

or the Bertsekas constraint quali�cation holds, i.e.,

@"f(x) + @"g(x) is w� � closed; 8" > 0;8x 2 X:

Then (f + g)� = f ��g�.

From Corollary 4.6 and Lemma 4.1 we derive a new characterization for the stable
strong duality for the sum of functions.

Proposition 4.2 Let f; g 2 RX1 be two proper functions such that dom f \dom g 6= ;.
Consider the next statements:

(i) (f + g)�(x�) = min
y�2X�

n
f �(y�) + g�(x� � y�)

o
for all x� 2 X�,

(ii)
S

"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
is w� � closed for all " � 0 and all x 2 X,

(iii)
S

"1+"2="
"1>0;"2>0

h
@"1f(x) + @"2g(x)

i
is w� � closed for all " > 0 and all x 2 X,

Then one has (i) =) (ii) =) (iii).

If, additionally, (4.2) holds, f+g = f ��+g��, and f+g is not a¢ ne on dom f\dom g,
then (i)() (ii)() (iii).
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