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Abstract

Considering orthogonal Stiefel manifolds as constraint manifolds, we give an explicit descrip-
tion of a set of local coordinates that also generate a basis for the tangent space in any point
of the orthogonal Stiefel manifolds. We show how this construction depends on the choice of a
submatrix of full rank. Embedding a gradient vector field on an orthogonal Stiefel manifold in
the ambient space, we give explicit necessary and sufficient conditions for a critical point of a cost
function defined on such manifolds. We explicitly describe the steepest descent algorithm on the
orthogonal Stiefel manifold using the ambient coordinates and not the local coordinates of the
manifold. We point out the dependence of the recurrence sequence that defines the algorithm
on the choice of a full rank submatrix. We illustrate the algorithm in the case of Brockett cost
functions.
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Keywords: Steepest descent algorithm, Optimization, Constraint manifold, Orthogonal Stiefel

manifold, Brockett cost function.

1 Introduction

In Section 2 we construct an atlas for the orthogonal Stiefel manifolds Stnp “ tU P MnˆppRq |UTU “
Ipu following an idea from [14]. The local charts that we introduce crucially depend on the choice of a
full rank submatrix of the elements in the orthogonal Stiefel manifolds. More precisely, for U P Stnp ,
if Ip is the set of row indexes that form a full rank submatrix of the matrix U , then we define the
vector subspace WIp “ tΩ “ rωijs P SkewnˆnpRq |ωij “ 0 for all i R Ip and j R Ip u. The local charts
are defined by ϕU : WIp Ñ Stnp , ϕU pΩq :“ CpΩqU , where CpΩq “ pIn ` ΩqpIn ´ Ωq´1 is the Cayley
transform. These local charts provide us with a basis for the tangent spaces to the orthogonal Stiefel
manifolds.

In Section 3 we present necessary and sufficient conditions for a critical point of a cost function
defined on an orthogonal Stiefel manifold using the embedded vector field method [5], [4], and [6]. We
describe necessary and sufficient conditions for critical points in the case of Procrustes and Penrose
regression cost functions, sums of heterogeneous quadratic forms, and Brockett cost functions. We
also discuss our findings in comparison with existing results in the literature [25], [11], and [8].

In the last section we give an explicit description of the steepest descent algorithm taking into
account the specificity of the orthogonal Stiefel manifold. On a general Riemannian manifold pS,gSq
the iterative scheme of steepest descent algorithm is given by

xk`1 “ Rxk
p´λk∇g

S

rGpxkqq,

where rG : S Ñ R is the cost function that we want to minimize, R : TS Ñ S is a smooth retraction
and λk P R is a chosen step length. For the case of orthogonal Stiefel manifolds, we write the vector
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∇g
S

rGpxkq as a vector in the ambient space Txk
M using the embedded gradient vector field BGpxkq

(see [4] and [6]), i.e., ∇g
S

rGpxkq “ BGpxkq. The explicit description of the vector BGpUkq on an
orthogonal Stiefel manifold depends on the chosen basis for TUk

Stnp , which in turn depends on the
chosen full rank submatrix of Uk. In order to write the vector ´λkBGpUkq as a tangent vector in
TUk

Stnp we have to solve the matrix equation ´λkBGpUkq “ ΩkUk for the unknown skew-symmetric
matrix Ωk P WIppUkq. Once we have solved for Ωk, we construct the next term of the iterative sequence

as Uk`1 “
`
In ` 1

2
Ωk

˘ `
In ´ 1

2
Ωk

˘´1
Uk. Moreover, using an appropriate permutation matrix for each

step of the algorithm we give an explicit elegant solution of the matrix equation ´λkBGpUkq “ ΩkUk,
which makes the steepest descent algorithm more implementable. We exemplify the form of the
steepest descent algorithm that we have constructed on orthogonal Stiefel manifolds for the case of
two Brockett cost functions.

Another method to construct numerical algorithms in the presence of orthogonal constraints of the
Stiefel manifolds is presented in [17] and the authors use the so called Alternating Direction Method of
Multipliers (ADMM), see [9] and [26] for a general description. ADMM is a variant of the Augmented
Lagrangian Method of Multipliers introduced in [16], see also [15] for a historical presentation of the
method. A deep convergence result for the extension of ADMM to multi-block convex minimization
problems is proved in [10].

2 Local charts on the orthogonal Stiefel manifolds

In this section we will construct a local chart around every point U P Stnp and a basis for the tangent
space TUSt

n
p . We will follow the idea presented in [14], where the authors have constructed a local

chart around points closed to
“
Ip Opn´pqˆp

‰T
P Stnp . This corresponds to the particular situation when

the full rank submatrix of the point U P Stnp is formed with the first p rows. For a general U P Stnp a
modification of the construction presented in [14] is necessary.

Let U P Stnp and 1 ď i1 ă ... ă ip ď n be the indexes of the rows that form a full rank submatrix

Ū of U . We denote Ip “ ti1, ..., ipu. Let SkewnˆnpRq be the npn´1q
2

-dimensional vectorial space of the

real skew-symmetric n ˆ n matrices. We introduce the following np ´ ppp`1q
2

-dimensional vectorial
subspace of SkewnˆnpRq:

WIp :“

$
&
%Ω P SkewnˆnpRq

ˇ̌
ˇ̌
ˇ̌Ω “

ÿ

iăj; i,jPIp

ωij pei b ej ´ ej b eiq `
ÿ

iPIp; jRIp

ωij pei b ej ´ ej b eiq

,
.
- ,

where the vectors e1, ... ,en form the canonical basis in the Euclidean space R
n. The n ˆ n matrix

ei b ej has 1 on the i-th row and j-th column and 0 on all remaining positions. An equivalent
description of the vectorial subspace WIp is given by

WIp “ tΩ “ rωijs P SkewnˆnpRq |ωij “ 0 for all i R Ip and j R Ip u .

Around the point U P Stnp chosen above we construct the local chart

ϕU : WIp Ñ Stnp , ϕU pΩq :“ CpΩqU, (2.1)

where CpΩq “ pIn ` ΩqpIn ´ Ωq´1 is the Cayley transform. We notice that ϕU is a smooth map with
ϕU p0q “ U . In order to prove that ϕU is a local chart it is sufficient to prove that ϕU is locally
injective around 0 P WIp , which in turn is implied by injectivity of the linear map dϕU p0q. The later

condition is equivalent with the vectors
BϕU

Bωij

p0q being linearly independent.

In what follows we use the notation:

Λij :“ ei b ej ´ ej b ei P MnˆnpRq,

for any 1 ď i, j ď n, i ‰ j.
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An easy computation shows that (see [21]∗)

BϕU

Bωij

pΩq “
`
ΛijpIn ´ Ωq´1 ` pIn ` ΩqpIn ´ Ωq´1ΛijpIn ´ Ωq´1

˘
U

“
`
In ` pIn ` ΩqpIn ´ Ωq´1

˘
ΛijpIn ´ Ωq´1U

“
`
pIn ´ ΩqpIn ´ Ωq´1 ` pIn ` ΩqpIn ´ Ωq´1

˘
ΛijpIn ´ Ωq´1U

“2pIn ´ Ωq´1ΛijpIn ´ Ωq´1U.

Consequently, we have
BϕU

Bωij

p0q “ 2ΛijU.

For proving the linear independence of the vectors
BϕU

Bωij

p0q, we consider the equation

ÿ

iăj; i,jPIp

αij

BϕU

Bωij

p0q `
ÿ

rPIp; sRIp

βrs

BϕU

Bωrs

p0q “ Onˆp,

which is equivalent with†

Onˆp “
ÿ

iăj; i,jPIp

αijΛijU `
ÿ

rPIp; sRIp

βrsΛrsU

“
ÿ

iăj; i,jPIp

αijΛij

¨
˚̊
˝

ÿ

kRIp
bPt1,...,pu

ukb ek b fb `
ÿ

qPIp
aPt1,...,pu

uqa eq b fa

˛
‹‹‚`

`
ÿ

rPIp; sRIp

βrsΛrs

¨
˚̊
˝

ÿ

kRIp
bPt1,...,pu

ukb ek b fb `
ÿ

qPIp
aPt1,...,pu

uqa eq b fa

˛
‹‹‚

“
ÿ

iăj; i,jPIp

αij pei b ej ´ ej b eiq

¨
˚̊
˝

ÿ

kRIp
bPt1,...,pu

ukb ek b fb `
ÿ

qPIp
aPt1,...,pu

uqa eq b fa

˛
‹‹‚`

`
ÿ

rPIp; sRIp

βrs per b es ´ es b erq

¨
˚̊
˝

ÿ

kRIp
bPt1,...,pu

ukb ek b fb `
ÿ

qPIp
aPt1,...,pu

uqa eq b fa

˛
‹‹‚

“
ÿ

iăj; i,jPIp
kRIp; bPt1,...,pu

αijukb pδjkei b fb ´ δikej b fbq `
ÿ

iăj; i,jPIp
qPIp; aPt1,...,pu

αijuqa pδjqei b fa ´ δiqej b faq `

`
ÿ

rPIp; sRIp
kRIp; bPt1,...,pu

βrsukb pδsker b fb ´ δrkes b fbq `
ÿ

rPIp; sRIp
qPIp; aPt1,...,pu

βrsuqa pδsqer b fa ´ δrqes b faq

“
ÿ

iăj; i,jPIp
aPt1,...,pu

αij pujaei b fa ´ uiaej b faq `
ÿ

rPIp; sRIp
aPt1,...,pu

βrs pusaer b fa ´ uraes b faq .

∗We have used the following formula for the derivative of the inverse of a matrix: BA´1

Bx
“ ´A´1 BA

Bx
A´1

†The vectors f1, ... ,fp form the canonical basis in the Euclidean space Rp. We use the rule for matrix multiplication

pu b v‘q ¨ pvd b wq “ δ‘,du b w, where v‘ and vd belong to the same vectorial space.
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Decomposing the above matrix equality on the subspaces Spantesbfa | s R Ipu and Spantelbfa | l P Ipu,
we have

ÿ

iăj; i,jPIp
aPt1,...,pu

αij pujaei b fa ´ uiaej b faq `
ÿ

rPIp; sRIp
aPt1,...,pu

βrsusaer b fa “ Onˆp ; (2.2)

ÿ

sRIp
aPt1,...,pu

¨
˝ ÿ

rPIp

βrsura

˛
‚es b fa “ Onˆp. (2.3)

Considering now the matrix rβs P Mpˆpn´pqpRq, rβs :“
ÿ

aPt1,...,pu; sRIp

βτ´1paqsfa b hσpsq
‡, we can

rewrite the equality (2.3) in a condensed matrix form

rβsT Ū “ Opn´pqˆp.

Indeed, we have

rβsT Ū “

¨
˚̊
˝

ÿ

sRIp
bPt1,...,pu

βτ´1pbqshσpsq b fb

˛
‹‹‚

¨
˚̊
˝

ÿ

rPIp
aPt1,...,pu

ura fτprq b fa

˛
‹‹‚

“
ÿ

rPIp; sRIp
a,bPt1,...,pu

βτ´1pbqsuraδbτprqhσpsq b fa

“
ÿ

rPIp; sRIp
aPt1,...,pu

βrsurahσpsq b fa

“
ÿ

sRIp
aPt1,...,pu

¨
˝ ÿ

rPIp

βrsura

˛
‚hσpsq b fa

“Opn´pqˆp.

Since the matrix Ū is invertible, we obtain that rβs “ Opˆpn´pq, which implies that βrs “ 0, for all
r P Ip and all s R Ip.

Substituting these last equalities in (2.2), it simplifies to

Onˆp “
ÿ

iăj; i,jPIp
aPt1,...,pu

αij pujaei b fa ´ uiaej b faq . (2.4)

We introduce now the matrix rαs P MpˆppRq, rαs :“
ř

iăj; i,jPIp

αij

`
fτpiq b fτpjq ´ fτpjq b fτpiq

˘
. We

‡We relabel the set t1, ..., nuzIp using the unique strictly increasing function σ : t1, ..., nuzIp Ñ t1, ..., n ´ pu.
Analogously, we relabel the set Ip using the unique strictly increasing function τ : Ip Ñ t1, ..., pu. The vectors

h1, ...,hn´p form the canonical basis of Rn´p.
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have the following computations:

rαsŪ “
ÿ

iăj; i,jPIp

αij

`
fτpiq b fτpjq ´ fτpjq b fτpiq

˘
¨
˚̊
˝

ÿ

kPIp
aPt1,...,pu

ukafτpkq b fa

˛
‹‹‚

“
ÿ

iăj; i,jPIp
kPIp; aPt1,...,pu

αijuka

`
δjkfτpiq b fa ´ δikfτpjq b fa

˘

“
ÿ

iăj; i,jPIp
aPt1,...,pu

αij

`
ujafτpiq b fa ´ uiafτpjq b fa

˘
.

By selecting from the matrix equality (2.4) the rows with indexes in Ip, we obtain that rαsŪ “ Opˆp,
and since the matrix Ū is invertible it follows that rαs “ Opˆp and therefore αij “ 0 for all i, j P Ip
with i ă j.

Thus, we have proved the linear independence of the vectors
BϕU

Bωij

p0q, that also form a basis for

the tangent space TUSt
n
p .

Proposition 2.1. Let U P Stnp and 1 ď i1 ă ... ă ip ď n be the indexes of the rows that form a full

rank submatrix Ū of U . Then the vectors:

Γi1j1 pUq :“ Λi1j1U, i1, j1 P Ip, i1 ă j1,

Γi2j2 pUq :“ Λi2j2U, i2 P Ip, j
2 R Ip,

form a basis for the tangent space TUSt
n
p .

As a consequence, we have the following description for the tangent space to an orthogonal Stiefel
manifold.

Theorem 2.2. Let U P Stnp . Then

TUSt
n
p “ tΩU | Ω “ rωijs P SkewnˆnpRq,where ωij “ 0 for all i R Ip and j R Ipu .

3 Critical points of smooth functions defined on orthogonal

Stiefel manifolds

In this section, we give necessary and sufficient conditions for critical points of a smooth cost function
defined on orthogonal Stiefel manifolds using the embedded vector field method introduced and used
in [5], [4], and [6]. We apply these results to well-known cost functions as Procrustes and Penrose
regression cost functions, sums of heterogeneous quadratic forms, and Brockett cost functions. We
also discuss our results in comparison with previous results existing in the literature.

For a matrix U P MnˆppRq, we denote by u1, ...,up P Rn the vectors formed with the columns of
the matrix U and consequently, U has the form U “ ru1, ...,ups. If U P Stnp “ tU P MnˆppRq |UTU “
Ipu, then the vectors u1, ...,up P Rn are orthonormal. We identify MnˆppRq with Rnp using the

isomorphism vec : Mnˆp Ñ Rnp defined by vecpUq
not
“ u :“ puT

1 , ...,u
T
p q.

The constraint functions Faa, Fbc : R
np Ñ R that describe the Stiefel manifold as a preimage of a

regular value are given by:

Faapuq “
1

2
||ua||2, 1 ď a ď p, (3.1)

Fbcpuq “ 〈ub,uc〉 , 1 ď b ă c ď p. (3.2)

5



More precisely, we have F : Rnp Ñ R
ppp`1q

2 , F :“ p. . . , Faa, . . . , Fbc, . . . q,

Stnp » F´1

ˆ
. . . ,

1

2
, . . . , 0, . . .

˙
Ă R

np.

Consider a smooth cost function rG : Stnp Ñ R. In what follows we will address the problem of

finding the critical points of the cost function rG defined on the Stiefel manifold. In order to solve this
problem, we consider a smooth extension G : Rnp Ñ R of the cost function rG “ G|Stnp

and we use the

embedded gradient vector field method presented in [5], [4], and [6]. The embedded gradient vector
field is defined on the open set formed with the regular leaves of the constraint function and it has
the formula:

BGpuq “ ∇Gpuq ´
ÿ

1ďaďp

σaapuq∇Faapuq ´
ÿ

1ďbăcďp

σbcpuq∇Fbcpuq,

where σaa, σbc are the Lagrange multiplier functions.
Using the property pBGq|Stnp

“ ∇
g
Stnp

ind

rG proved in [5] and [4], we have the following necessary and

sufficient conditions for a critical point of the cost function rG.

Theorem 3.1. An element U P Stnp is a critical point of the cost function rG if and only if BGpuq “ 0.

In the case of orthogonal constraints the Lagrange multiplier functions, see [5], are given by the
formulas:

σaapuq “ 〈∇Gpuq,∇Faapuq〉 “

〈

BG

Bua

puq,ua

〉

;

σbcpuq “ 〈∇Gpuq,∇Fbcpuq〉 “
1

2

ˆ〈

BG

Buc

puq,ub

〉

`

〈

BG

Bub

puq,uc

〉˙
.

(3.3)

Note that in general

〈

BG

Buc

puq,ub

〉

‰

〈

BG

Bub

puq,uc

〉

.

If U is a critical point of rG, then σaapuq, σbcpuq become the classical Lagrange multipliers. The
embedded gradient vector field is a more explicit form of the equivalent projected gradient vector
field described in [23]. The solutions of the equation BGpuq “ 0 are critical points for the function
G restricted to regular leaves of the constraint functions. Consequently, using again the identification
vecpUq “ u, a matrix U P MnˆppRq is a critical point for the cost function rG “ G|Stnp

if and only if

BGpuq “ 0 and UTU “ Ip, or equivalently,

$
&
%
∇Gpuq ´

ř
1ďaďp

σaapuq∇Faapuq ´
ř

1ďbăcďp

σbcpuq∇Fbcpuq “ 0

UTU “ Ip.
(3.4)

Next, we give necessary and sufficient conditions for a critical point.

Theorem 3.2. A matrix U P MnˆppRq is a critical point for the cost function rG “ G|Stnp
if and

only if the following conditions are simultaneously satisfied:

(i)

〈

BG

Buc

puq,ub

〉

“

〈

BG

Bub

puq,uc

〉

, for all 1 ď b ă c ď p;

(ii)
BG

Bua

puq P Spantu1, ...,upu, for all 1 ď a ď p;

(iii) UTU “ Ip,

where u “ vecpUq.
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Proof. First, we will prove that the conditions piq, piiq and piiiq of the Theorem are necessary. By
straightforward computations, the hypothesis BGpuq “ 0 is equivalent with the following system of
equations: $

’’’&
’’’%

BG

Bua

puq ´
aÿ

d“1

σdapuqud ´
pÿ

d“a`1

σadpuqud “ 0, @a P t1, ..., p ´ 1u

BG

Bup

puq ´
pÿ

d“1

σdppuqud “ 0,

(3.5)

where the Lagrange multiplier functions σad are given by (3.3). From the above equalities it follows
piiq. From piiq and the hypothesis that U P Stnp we have:

BG

Bua

puq “
pÿ

d“1

〈

BG

Bua

puq,ud

〉

ud. (3.6)

Substituting (3.6) into (3.5) and using the linear independence of the vectors u1, ...,up formed with
the columns of the matrix U , we obtain piq.

For sufficiency, we solve the set of equations piq and piiq. This implies that

BG

Bua

puq “
pÿ

d“1

λdud.

Among these solutions, we choose the ones that belong to Stnp , and consequently for those solutions
we obtain

λd “

〈

BG

Bua

puq,ud

〉

.

Using piq and the fact that

BG

Bua

puq “
pÿ

d“1

〈

BG

Bua

puq,ud

〉

ud.

we obtain the desired equality BGpuq “ 0.

If the condition piiiq of the above theorem is satisfied, then the condition piiq can be replaced with

pIn ´ UUT q
BG

Bua

puq “ 0, for all 1 ď a ď p, (3.7)

where the matrix In ´UUT is associated to the orthogonal projection in R
n onto the subspace normal

to Spantu1, ...,upu. The necessity of conditions piq and piiq have been previously discovered in [11] in
the context of orthogonal Procrustes problem and Penrose regression problem. We will present the
details later in the paper.

The above Theorem shows that, in order to find the critical points of the cost function rG “ G|Stnp

it is necessary and sufficient to solve the system of equations piq and piiq and among them choose the
ones that belong to the orthogonal Stiefel manifold Stnp .

The necessary and sufficient conditions of the above theorem are natural for orthogonal Stiefel
manifolds in the sense that orthogonal Stiefel manifolds are in-between the sphere (p “ 1) and the
orthogonal group (p “ n). In the case when p “ 1, we obtain that the necessary and sufficient

conditions of Theorem 3.2 reduce to the radial condition
BG

Bu
puq “ λu, λ P R for a critical point of a

function restricted to a sphere. When p “ n, we are in the case of orthogonal group SOpnq and the
necessary and sufficient conditions of Theorem 3.2 reduce to the symmetric condition piq.

In order to formulate the necessary and sufficient conditions of Theorem 3.2 in a matrix form, we
need to write the embedded vector field BG in a matrix form. For the following considerations we
make the notations

∇GpUq :“ vec´1p∇Gpuqq P MnˆppRq,

7



BGpUq :“ vec´1pBGpuqq P MnˆppRq.

We introduce the symmetric matrix

ΣpUq :“ rσbcpuqs P MpˆppRq,

where we define σcbpuq :“ σbcpuq for 1 ď b ă c ď p. For the particular case of orthogonal Stiefel
manifold, by a straightforward computation using (3.3), we have

ΣpUq “
1

2

`
∇GpUqTU ` UT∇GpUq

˘
. (3.8)

Computing vec´1 p∇Faapuqq and vec´1p∇Fbcpuqq, the matrix form of the embedded gradient vector
field is given by

BGpUq “ ∇GpUq ´ UΣpUq. (3.9)

From the geometrical point of view, the vector ∇GpUq P MnˆppRq does not in general belong to the
tangent space TUSt

n
p . The vector ´UΣpUq is a correcting term so that the vector BGpUq P TUSt

n
p for

every U P Stnp . This has been proved in [5]. The matrix form of the system of equations (3.4) is given
by #

∇GpUq ´ UΣpUq “ 0

UTU “ Ip.
(3.10)

The conditions of Theorem 3.2 can be written in matrix form in the following way.

Theorem 3.3. A matrix U P MnˆppRq is a critical point for the cost function rG “ G|Stnp
if and only

if the following conditions are simultaneously satisfied:

piq UT∇GpUq “ ∇GpUqTU ;

piiq ∇GpUq “ UUT∇GpUq;

piiiq UTU “ Ip.

(3.11)

Using the classical Lagrange multiplier approach for constraint optimization problems, in [25] the

equations that have to be solved in order to find the critical points of the cost function rG “ G|Stnp
are

#
∇GpUq ´ U∇GpUqTU “ Onˆp

UTU “ Ip,
(3.12)

which is an equivalent matrix form for the system of equations (3.11) in the case of orthogonal Stiefel
manifold. Note that the vector field ∇GpUq ´ U∇GpUqTU ‰ BGpUq when U P ST n

p is not a

critical point of G.

Also, in the same paper [25] the following equivalent necessary and sufficient conditions for critical
points have been obtained: #

∇GpUqUT ´ U∇GpUqT “ Onˆn

UTU “ Ip.
(3.13)

We give a short proof of the equivalence between the equations (3.12) and (3.13). Multiplying (3.13) to
the right with the matrix U and using the Stiefel condition UTU “ Ip, we obtain (3.12). Now assume
that (3.12) holds, i.e. ∇GpUq “ U∇GpUqTU “ U

`
UT∇GpUqUT

˘
U “ UUT∇GpUq. Multiplying to

the right with UT we obtain ∇GpUqUT “ U
`
UT∇GpUqUT

˘
“ U∇GpUqT , which is exactly the first

equation of (3.13).
Consequently, necessary and sufficient conditions of Theorem 3.3 are equivalent with necessary

and sufficient conditions (3.13) obtained in [25]. The difference between the two sets of necessary
and sufficient conditions is that in Theorem 3.3 the equations imply natural relations involving the

8



columns of the matrix U , i.e. components of the orthonormal vectors u1, ...,up, while (3.13) involves
equations containing the lines of the matrix U .

Using the particularity of the Stiefel constraints, in [22] are given other equivalent conditions with
those from (3.11).

Critical points for orthonormal Procrustes cost function. We consider the following opti-
mization problem:

Minimize ||AU ´ B||2

UTU “ Ip
, (3.14)

where A P MmˆnpRq, B P MmˆppRq, U P MnˆppRq, and || ¨ || is the Frobenius norm. The cost

function associated to this optimization problem is given by rG : Stnp Ñ R and its natural extension
G : Rnp Ñ R,

Gpuq “
1

2
||AU ´ B||2 “

1

2
trpUTATAUq ´ trpUTATBq `

1

2
trpBTBq.

In the following, we will give the specifics of the necessary and sufficient conditions of Theorem 3.3 in
the case of Procrustes cost function. By a straightforward computation we have that

∇GpUq “ ATAU ´ ATB.

Consequently, the condition piq is equivalent with the symmetry of the matrix UTATAU ´BTAU . As
the matrix UTATAU is symmetric, we obtain that condition piq of Theorem 3.3 is equivalent with the
symmetry of the matrix BTAU . This condition has been previously obtained in [11]. The condition
piiq of the Theorem 3.3 is equivalent with pIn ´ UUT qpATAU ´ ATBq “ 0, condition also previously
obtained in [11]. The following result shows that the necessary conditions presented in [11] for the
Procrustes cost function are also sufficient conditions.

Theorem 3.4. A matrix U P Stnp is a critical point for the Procrustes cost function if and only if:

(i) the matrix BTAU is symmetric;

(ii) pIn ´ UUT qpATAU ´ ATBq “ 0.

A different approach for studying critical points of Procrustes problem using normal and secular
equations has been undertaken in [13].

Critical points for Penrose regression cost function. The Penrose regression problem is the
following optimization problem:

Minimize ||AUC ´ B||2

UTU “ Ip
, (3.15)

where A P MmˆnpRq, B P MmˆqpRq, C P MpˆqpRq, U P MnˆppRq, and || ¨ || is the Frobenius norm.

The cost function associated to this optimization problem is given by rG : Stnp Ñ R and its natural
extension G : Rnp Ñ R,

Gpuq “
1

2
||AUC ´ B||2 “

1

2
trpCTUTATAUCq ´ trpCTUTATBq `

1

2
trpBTBq.

By a straightforward computation, we have that

∇GpUq “ AT pAUC ´ BqCT .

The necessary and sufficient conditions of Theorem 3.3 for critical points become in this case:

Theorem 3.5. A matrix U P Stnp is a critical point for the Penrose regression cost function if and
only if:

(i) the matrix CpAUC ´ BqTAU is symmetric;
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(ii) pIn ´ UUT qAT pAUC ´ BqCT “ 0.

These conditions have been previously found in [11] as necessary conditions for critical points of
the Penrose regression cost function.

Critical points for sums of heterogeneous quadratic forms. Consider the following opti-
mization problem on orthogonal Stiefel manifold Stnp , extensively studied in [3] and [22]:

Minimize
př

i“1

uT
i Aiui

UTU “ Ip

, (3.16)

where Ai are n ˆ n symmetric matrices and ui are the column vectors of the the matrix U P Stnp . By
a straightforward computation, we have that

∇GpUq “ rA1u1, ..., Apups .

The necessary and sufficient conditions of Theorem 3.3 for critical points become in this case:

Theorem 3.6. A matrix U P Stnp is a critical point for the cost function
př

i“1

uT
i Aiui if and only if:

(i) UTApUq “ ApUqTU ;

(ii) ApUq “ UUTApUq,

where we have made the notation ApUq “ rA1u1, ..., Apups.

The above necessary and sufficient conditions are the same conditions discovered in [8] (eq. (3.3)
and (3.4) from the proof of the Theorem 3.1).

A particular case of the cost function
př

i“1

uT
i Aiui is when Ai “ µiA, where 0 ď µ1 ď ... ď µp and

A is a n ˆ n symmetric matrix. Thus, we obtain the Brockett cost function

GB “
pÿ

i“1

µiu
T
i Aui.

For this cost function the conditions piq and piiq of Theorem 3.2 become:

(i) pµb ´ µcquT
b Auc “ 0, @b, c P t1, ..., pu, b ‰ c;

(ii) µaAua P Spantu1, ...,upu, @a P t1, ..., pu.

Depending on the parameters µ1, ..., µp the above two conditions can be further explained.
I. If the parameters µ1, ..., µp are pairwise distinct and strictly positive, then U P Stnp is a critical

point of the Brockett cost function if and only if every column vector of the matrix U is an eigenvector
of the matrix A.

II. For the case when among the strictly positive parameters µ1, ..., µp we have multiplicity, the
set of critical points becomes larger. More precisely, we have

0 ă µ1 “ ... “ µs1 ă µs1`1 “ ... “ µs1`s2 ă ¨ ¨ ¨ ă µs1`...`sq´1`1 “ ... “ µs1`...`sq ,

where s1 ě 1, ..., sq ě 1 and s1 ` ... ` sq “ p. We denote by J1 “ t1, ..., s1u, ...,Jq “ ts1 ` s2 ` ... `
sq´1 ` 1, ..., pu. By an elementary computation, the matrix U P Stnp is a critical point of the Brockett
cost function if and only if Spantuk | k P Jlu is an invariant subspace of A for all l P t1, ..., qu.

We illustrate the above results on a simple case of a Brockett cost function defined on St32. Assume
that the matrix A is in diagonal form with distinct entries. If 0 ă µ1 ă µ2, then we are in the case I
and U “ ru1,u2s is a critical point for the Brockett cost function if and only if u1 “ ˘ei and u2 “ ˘ej
with i, j P t1, 2, 3u and i ‰ j. If 0 ă µ1 “ µ2, then we are in the case II and U “ ru1,u2s is a critical
point for the Brockett cost function if and only if the set tu1,u2u is an orthonormal frame of any
coordinate plane Spantei, eju with i ‰ j.
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4 Steepest descent algorithm

Let pS,g
S

q be a smooth Riemannian manifold and rG : S Ñ R be a smooth cost function. The iterative
scheme of steepest descent is given by

xk`1 “ Rxk
p´λk∇g

S

rGpxkqq, (4.1)

where R : TS Ñ S is a smooth retraction, notion introduced in [24] (see also [2]), and λk P R is a
scalar called step length. For the case when the manifold S is the preimage of a regular value of a
set of constraint functions we have that ∇g

S

rGpxkq “ BGpxkq, where G is an extension to the ambient

space M of the cost function rG, BG is the embedded gradient vector field introduced in [5], and gS is
the induced Riemannian metric on S by the ambient space M . The vector BGpxkq is written in the
coordinates of the ambient space M , but it belongs to the tangent space Txk

S viewed as a subspace
of Txk

M .
If the manifold S is locally diffeomorphic with a manifold N via a local diffeomorphism f and we

know a retraction RN for the manifold N , then

R
f “ f ˝ R

N ˝ pDfq´1

is a retraction for the manifold S. A particular case of the above construction is when we replace the
local diffeomorphism with local charts. For the case of an orthogonal Stiefel manifold we will use the
local charts ϕU defined by (2.1). More precisely, the retraction induced by a local chart ϕU is given
by

R
ϕ

U pΩUq “ C

ˆ
1

2
Ω

˙
U, (4.2)

where Ω P WIp .

Steepest descent algorithm on orthogonal Stiefel manifolds:

1. For a n ˆ p matrix U construct the vector u :“ vecpUq “
`
uT
1 , ...,u

T
p

˘
P R

np.

2. Consider a smooth prolongation G : Rnp Ñ R of the cost function rG : Stnp Ñ R.

3. Compute ∇Gpuq and construct the n ˆ p matrix ∇GpUq “ vec´1p∇Gpuqq.

4. Compute the Lagrange multiplier functions

σaapuq “

〈

BG

Bua

puq,ua

〉

, σbcpuq “
1

2

ˆ〈

BG

Buc

puq,ub

〉

`

〈

BG

Bub

puq,uc

〉˙
.

5. Construct the symmetric p ˆ p matrix ΣpUq “ rσbcpuqs.

6. Compute the n ˆ p matrix BGpUq “ ∇GpUq ´ UΣpUq.

7. Input U0 P Stnp and k “ 0.

8. repeat

‚ Compute the n ˆ p matrix BGpUkq.

‚ Determine a set IppUkq containing the indexes of the rows that form a full rank submatrix
of Uk.

‚ Construct a generic n ˆ n skew-symmetric matrix Ωk “ rωijs in

WIppUkq “ tΩ “ rωijs P SkewnˆnpRq |ωij “ 0 for all i R IppUkq, j R IppUkqu .
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‚ Choose a length step λk P R and solve the matrix equation of np ´ ppp`1q
2

variables ωij

´λkBGpUkq “ ΩkUk.

‚ Using the solution Ωk of the above equation, compute

Uk`1 “

ˆ
In `

1

2
Ωk

˙ ˆ
In ´

1

2
Ωk

˙´1

Uk.

until Uk`1 sufficiently minimizes rG.

The matrix equation
´ λkBGpUkq “ ΩkUk (4.3)

has a unique solution since ´λkBGpUkq P TUk
Stnp and this tangent vector is uniquely written as

´λkBGpUkq “ ωi1j1Λi1j1Uk ` ωi2j2Λi2j2Uk, see Proposition 2.1.

Next we will describe a method for finding the explicit solution of the equation (4.3). Once we have
computed Uk, we choose a set of indexes IppUkq “ ti1, ..., ipu that give a full rank submatrix of Uk (the
set of indexes IppUkq is not in general unique). We consider a permutation νk : t1, ..., nu Ñ t1, ..., nu
such that νkpi1q “ 1, ..., νkpipq “ p and we introduce the permutation matrix

Pν
´1

k
“

»
——–

eν´1

k
p1q

...
e
ν

´1

k
pnq

fi
ffiffifl P MnˆnpRq. (4.4)

We make the following notations

rUk :“ P
ν

´1

k

¨ Uk and ĂBGpUkq :“ P
ν

´1

k

¨ BGpUkq.

The matrix rUk P Stnp and it has the form

rUk “

„ sUk
ssUk


,

where Ūk P MpˆppRq is an invertible matrix. According to Theorem 2.2, we have that the tangent

vectors in T rUk
Stnp are of the form rΩk

rUk, where

rΩk “

«
sΩk

ssΩk

´ssΩT
k O

ff
.

The equation ´λk
ĂBGpUkq “ rΩk

rUk has the equivalent form

´λk

„ ĎBGpUkq
ĚĚBGpUkq


“

«
sΩk

ssΩk

´ssΩT
k O

ff „ sUk

ssUk


,

where we have denoted

ĂBGpUkq :“

„ ĎBGpUkq
ĚĚBGpUkq


.
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By a straightforward computation, the above system has the solution

#sΩk “ ´λk

´
ĎBGpUkq ` sU´T

k
ĚĚBGpUkqT ssUk

¯
sU´1
k

ssΩk “ λk
sU´T
k

ĚĚBGpUkqT .
(4.5)

Next, we will prove that the skew-symmetric matrix

Ωk :“ PT

ν
´1

k

¨ rΩk ¨ Pν
´1

k

is the unique solution of equation (4.3). Indeed,

ΩkUk “
´
PT

ν
´1

k

rΩkPν
´1

k

¯
PT

ν
´1

k

rUk “ PT

ν
´1

k

rΩk
rUk

“ PT

ν
´1

k

´
´λk

ĂBGpUkq
¯

“ ´λkP
T

ν
´1

k

P
ν

´1

k

¨ BGpUkq

“ ´λkBGpUkq,

where we have used the property that the permutation matrices are invertible and their inverse is
equal with the transpose matrix.

According to (4.2), we obtain after k iterations

Uk`1 “

ˆ
In `

1

2
Ωk

˙ ˆ
In ´

1

2
Ωk

˙´1

Uk

“

ˆ
In `

1

2
PT

ν
´1

k

rΩkPν
´1

k

˙ ˆ
In ´

1

2
PT

ν
´1

k

rΩkPν
´1

k

˙´1

PT

ν
´1

k

rUk

“ PT

ν
´1

k

ˆ
In `

1

2
rΩk

˙ ˆ
In ´

1

2
rΩk

˙´1

rUk.

The following is an alternative box that describes the steepest descent algorithm on

orthogonal Stiefel manifolds:

1. For a n ˆ p matrix U construct the vector u :“ vecpUq “
`
uT
1 , ...,u

T
p

˘
P Rnp.

2. Consider a smooth prolongation G : Rnp Ñ R of the cost function rG : Stnp Ñ R.

3. Compute ∇Gpuq and construct the n ˆ p matrix ∇GpUq “ vec´1p∇Gpuqq.

4. Compute the Lagrange multiplier functions

σaapuq “

〈

BG

Bua

puq,ua

〉

, σbcpuq “
1

2

ˆ〈

BG

Buc

puq,ub

〉

`

〈

BG

Bub

puq,uc

〉˙
.

5. Construct the symmetric p ˆ p matrix ΣpUq “ rσbcpuqs.

6. Compute the n ˆ p matrix BGpUq “ ∇GpUq ´ UΣpUq.

7. Input U0 P Stnp and k “ 0.

8. repeat

‚ Compute the n ˆ p matrix BGpUkq.

‚ Determine a set IppUkq containing the indexes of the rows that form a full rank submatrix
of Uk. Construct the permutation matrix Pν

´1

k
using formula (4.4).
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‚ Compute rUk “ P
ν

´1

k

¨Uk and ĂBGpUkq “ P
ν

´1

k

¨ BGpUkq. Write rUk and ĂBGpUkq in the block

matrix form

„ sUk

ssUk


, and respectively

„ ĎBGpUkq
ĚĚBGpUkq


.

‚ Choose a length step λk P R and compute

#sΩk “ ´λk

´
ĎBGpUkq ` sU´T

k
ĚĚBGpUkqT ssUk

¯
sU´1
k

ssΩk “ λk
sU´T
k

ĚĚBGpUkqT .

‚ Form the matrix rΩk “

«
sΩk

ssΩk

´ssΩT
k O

ff
.

‚ Compute

Uk`1 “ PT

ν
´1

k

ˆ
In `

1

2
rΩk

˙ ˆ
In ´

1

2
rΩk

˙´1

rUk

until Uk`1 sufficiently minimizes rG.

An intrinsic way to construct an update for the steepest descent algorithm is to use a geodesic-like
update. Using QR-decomposition, this has been constructed in [12]. A quasi-geodesic update has been
introduced in [20] and [25] for computational efficiency. An interesting retraction and its associated
quasi-geodesic curves have been constructed in [18] in relation to interpolation problems on Stiefel
manifolds.

An extrinsic method to update the algorithm is using projection-like retraction. For computational
reasons various projection-like retraction updates have been constructed in [1], [19], [7].

Brockett cost function case. For the case I, we consider the following particular cost function
on St42

GpUq “ µ1u
T
1 Au1 ` µ2u

T
2 Au2,

where µ1 “ 1, µ2 “ 2, and A “ diag p1, 2, 3, 4q. The cost function being quadratic it is invariant under
the sign change of the vectors that give the columns of the matrix U , but it is not invariant under the
order of these column vectors. The set of critical points is given by:

• four critical points generated by re2, e1s (i.e., re2, e1s, r´e2, e1s, re2,´e1s, and r´e2,´e1s) with
the value of the cost function equals 4, which is a global minimum.

• eight critical points generated by re1, e2s and re3, e1s with the value of the cost function equals 5.

• four critical points generated by re4, e1s with the value of the cost function equals 6.

• eight critical points generated by re1, e3s and re3, e2s with the value of the cost function equals 7.

• eight critical points generated by re2, e3s and re4, e2s with the value of the cost function equals 8.

• four critical points generated by re1, e4s with the value of the cost function equals 9.

• eight critical points generated by re2, e4s and re4, e3s with the value of the cost function equals 10.

• four critical points generated by re3, e4s with the value of the cost function equals 11, which is a
global maximum.

For the case I, we have run the algorithm for some initial points and we show the convergence of
the sequence of iterations toward the corresponding critical points.
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U0 U300

» Ucr

(critical point)
GpUcrq

»
————————–

0

?
2

2

´
?
2

2
0

0 ´
?
2

2

´
?
2

2
0

fi
ffiffiffiffiffiffiffiffifl

»
——–

0 1.0000000
´1.0000000 0

0 ´7.8365183 ¨ 10´171

´6.1260222 ¨ 10´166 0

fi
ffiffifl r´e2, e1s 4

»
—————————–

0

?
3

3

´
?
2

2

?
3

3
0 0

´
?
2

2
´

?
3

3

fi
ffiffiffiffiffiffiffiffiffifl

»
——–

´0.00021656 ´0.99999998
´1.0000000 0.00021656

0 0
´1.8444858 ¨ 10´10 3.6515800 ¨ 10´14

fi
ffiffifl r´e2,´e1s 4

»
——————————–

?
3

3
´

?
2

2

0 0

´
?
3

3
´

?
2

2?
3

3
0

fi
ffiffiffiffiffiffiffiffiffiffifl

»
——–

´1.4227613 ¨ 10´13 ´1.0000000
0 0

´1.0000000 1.4227614 ¨ 10´13

´1.7746315 ¨ 10´14 ´1.9382582 ¨ 10´14

fi
ffiffifl r´e3,´e1s 5

For the case II, when µ1 “ µ2 “ 1 and the same matrix A, we obtain continuous families of critical points.
Starting from the initial point

U0 “

»
——————————–

1

2
0

1

2
´

?
2

2

´1

2
0

´1

2
´

?
2

2

fi
ffiffiffiffiffiffiffiffiffiffifl

the algorithm goes after 300 iterations to

U300 “

»
——–

0.97862435 0.20565599
0.20565598 ´0.97862437

8.8491189 ¨ 10´11 ´4.4716231 ¨ 10´11

9.2851360 ¨ 10´12 ´4.6922465 ¨ 10´12

fi
ffiffifl »

»
——–

0.9786243 0.2056559
0.2056559 ´0.9786243

0 0
0 0

fi
ffiffifl ,

which is a rotation of the frame te1, e2u with an angle θ » 0.207 radians and the value of the cost function
equals 3, which is a global minimum.
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