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Abstract

Considering orthogonal Stiefel manifolds as constraint manifolds, we give an explicit descrip-
tion of a set of local coordinates that also generate a basis for the tangent space in any point
of the orthogonal Stiefel manifolds. We show how this construction depends on the choice of a
submatrix of full rank. Embedding a gradient vector field on an orthogonal Stiefel manifold in
the ambient space, we give explicit necessary and sufficient conditions for a critical point of a cost
function defined on such manifolds. We explicitly describe the steepest descent algorithm on the
orthogonal Stiefel manifold using the ambient coordinates and not the local coordinates of the
manifold. We point out the dependence of the recurrence sequence that defines the algorithm
on the choice of a full rank submatrix. We illustrate the algorithm in the case of Brockett cost
functions.
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1 Introduction

In Section 2 we construct an atlas for the orthogonal Stiefel manifolds St/ = {U € My, (R) | UTU =
I,} following an idea from [I4]. The local charts that we introduce crucially depend on the choice of a
full rank submatrix of the elements in the orthogonal Stiefel manifolds. More precisely, for U € St,
if I, is the set of row indexes that form a full rank submatrix of the matrix U, then we define the
vector subspace W, = {Q = [w;;] € Skew,,xn(R) [wij = 0 for all i ¢ I, and j ¢ I, }. The local charts
are defined by ¢y : Wi, — St7, oy (Q) := €(Q)U, where C(Q) = (I, + Q)(I,, — Q)~! is the Cayley
transform. These local charts provide us with a basis for the tangent spaces to the orthogonal Stiefel
manifolds.

In Section 3 we present necessary and sufficient conditions for a critical point of a cost function
defined on an orthogonal Stiefel manifold using the embedded vector field method [5], [4], and [6]. We
describe necessary and sufficient conditions for critical points in the case of Procrustes and Penrose
regression cost functions, sums of heterogeneous quadratic forms, and Brockett cost functions. We
also discuss our findings in comparison with existing results in the literature [25], [I1], and [g].

In the last section we give an explicit description of the steepest descent algorithm taking into
account the specificity of the orthogonal Stiefel manifold. On a general Riemannian manifold (S, gg)
the iterative scheme of steepest descent algorithm is given by

r1 = Ra (— Vg, Gla)),

where G : § — R is the cost function that we want to minimize, R : T'S — S is a smooth retraction
and A\; € R is a chosen step length. For the case of orthogonal Stiefel manifolds, we write the vector
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Ve, G(zy) as a vector in the ambient space Ty, M using the embedded gradient vector field 0G/(zy)

(see ] and [6]), i.e., Vg, G(zx) = 0G(xy). The explicit description of the vector dG(Uy) on an
orthogonal Stiefel manifold depends on the chosen basis for Ty, St;, which in turn depends on the
chosen full rank submatrix of U. In order to write the vector —A\;0G(U) as a tangent vector in
Ty, St;; we have to solve the matrix equation —A0G(Uy) = Q Uy, for the unknown skew-symmetric

matrix 2 € Wp (y,). Once we have solved for {2, we construct the next term of the iterative sequence

as Upy1 = (]In + %Qk) (]In — %Qk)fl Uy. Moreover, using an appropriate permutation matrix for each
step of the algorithm we give an explicit elegant solution of the matrix equation —A\;,0G(Uy) = Qi Uy,
which makes the steepest descent algorithm more implementable. We exemplify the form of the
steepest descent algorithm that we have constructed on orthogonal Stiefel manifolds for the case of
two Brockett cost functions.

Another method to construct numerical algorithms in the presence of orthogonal constraints of the
Stiefel manifolds is presented in [I7] and the authors use the so called Alternating Direction Method of
Multipliers (ADMM), see [9] and [26] for a general description. ADMM is a variant of the Augmented
Lagrangian Method of Multipliers introduced in [I6], see also [I5] for a historical presentation of the
method. A deep convergence result for the extension of ADMM to multi-block convex minimization
problems is proved in [10].

2 Local charts on the orthogonal Stiefel manifolds

In this section we will construct a local chart around every point U € St} and a basis for the tangent
space Ty St;,. We will follow the idea presented in [14], where the authors have constructed a local

chart around points closed to []Ip On—p)x p]T € St,. This corresponds to the particular situation when
the full rank submatrix of the point U € St} is formed with the first p rows. For a general U € St} a
modification of the construction presented in [14] is necessary.

Let U € Sty and 1 < iy < ... <ip <n be the indexes of the rows that form a full rank submatrix

U of U. We denote I, = {i1,...,ip}. Let Skew,xn(R) be the n(=1)_dimensional vectorial space of the

2
real skew-symmetric n x n matrices. We introduce the following np — 2(+D) _Jimensional vectorial

2
subspace of Skew,, ., (R):

W]p = Qe SkGWan(R) 0= Z Wij (ei ®ej —€; ®ei) + Z Wij (ei ®ej — € ®el) N

1<j;i,j€lp i€ly; j¢l,

where the vectors ey, ... ,e, form the canonical basis in the Euclidean space R™. The n x n matrix
e; ® e; has 1 on the i-th row and j-th column and 0 on all remaining positions. An equivalent
description of the vectorial subspace Wi, is given by

Wi, = {Q = [wi;] € Skewpxn(R) |wij =0foralli¢ I,andj ¢ I} .
Around the point U € St} chosen above we construct the local chart
v Wi, = Sty pu(Q) == €(Q)U, (2.1)

where C(Q) = (I, + Q)(I,, — Q)~! is the Cayley transform. We notice that ¢ is a smooth map with
vy (0) = U. In order to prove that oy is a local chart it is sufficient to prove that ¢y is locally
injective around 0 € Wy, which in turn is implied by injectivity of the linear map diyy (0). The later
v (0) being linearly independent.

wij
In what follows we use the notation:

0
condition is equivalent with the vectors

Aij=e,Qej—e;®e; e Mnxn(R)a

forany 1 <14,j7<n,i#j.



An easy computation shows that (see [21]H)

0
2P0 (Q) = (Ay (I, + (I, + )L, — Q) Ay (L, — Q) U
(%JU
(]In + H + Q ( Q)il) Az](]ln — Q)il
= ((I, — —) T+ L+ Q)@ — Q) ) Ay, —Q)'U
=2(I,, — Q) 1Aw( -O)"'U.
Consequently, we have
dou
0) =2A,,;U.
0
For proving the linear independence of the vectors (;DU (0), we consider the equation
wij
deu dpu
Z aij—(o) + Z ﬂrs ( ) - @nxp7
i<jiirgel, Owij rel,; s¢l, Owrs
which is equivalent with]
(O)nxp = Z aiinjU + Z ﬁrsArsU
1<j;i,j€lp rely; s¢l,
S IELY D umer®f+ Y uge,®f, [+
i<j;i,5€l, k¢, qel,
be{l,...,p} ae{l,...,p}
+ Z ﬁrsArs Z Ukb €F ® fb + Z Uga ©q ® fa
rely; s¢l, k¢l qel,
be{l,...,p} ae{l,....p}
= Z Q5 (el-@ej — €y ®ez) Z Ukb ek®fb + Z Uga eq®fa +
i<j;i,5€l, keI, qel,
befl,...,p} ae{l,....p}
+ Z ﬁrs (er ® €5 — €5 ® er) Z Ukb €k ® fb + Z Uga €©q ® fa
rely; s¢l, k¢l, qel,
be{l,....p} ae{l,....p}
= Z aijury (Ojne; @ fy — dine; @) + Z Qijlga (0jq€; @ f, — dige; @) +
i<j; i,5€lp, i<j; i€l

k¢lp; be{l,...,p}

qelp; ae{l,...,p}

+ Z Brsukb (5sker ® fb - 67‘kes ® fb) + Z Brsuqa (6sqe7‘ ® fa - 6rqes ® fa)
relp; s¢l, relp; s¢l,
k¢Ip; be{l,...,p} qelp;ae{l,...,p}
= Z Q5 (ujaei ® fa — Uia €y ® fa) + Z ﬁrs (usaer ® fa — Ura€s ® fa) .
1<j;i,j€lp rely; s¢l,
ae{l,...,p} ae{l,...,p}
*We have used the following formula for the derivative of the inverse of a matrix: 0‘3;1 =—A"1 %A’l

TThe vectors fi, ...

(u®vg) - (vo ®w) = dp,ou® w, where vg and v belong to the same vectorial space.

,fp form the canonical basis in the Euclidean space R?. We use the rule for matrix multiplication



Decomposing the above matrix equality on the subspaces Span{e,®f, | s ¢ I,,} and Span{e;®f, |l € I,},
we have

Z a;j (uje€i @y — uine; @ 1f,) + Z Brstseer @y = Opnxp; (2.2)
i<j;i,J€lp relp; s¢l,
ae{l,...,p} ae{l,...,p}
Z Z ﬂrsura €5 ®fa = ©n><p- (23)
s¢l, rel,
ae{l,...,p}
Considering now the matrix [B] € My (,,—p) (R), [B] := Z Br-1(a)sfa ® hg(s), we can

ae{l,...,p}; s¢ I,
rewrite the equality (Z3)) in a condensed matrix form

[ﬁ]TU = @(n—p)xp'

Indeed, we have

BT =| > Browmsho @6 [[ Y trafrn ®F
s¢l, rel,
be{1,...,p} aef{l,...,p}
= Z ﬁr*l(b)suTa(Sb‘r(r)hU(s) ®f,
relp; s¢l,
a,be{1,...,p}
= Z Brsurahcr(s) ® fa
rely; s¢l,
ae{l,...,p}
= Z Zﬁrsura ho’(s)®fa
5¢Ip rel,
aef{l,...,p}
=0(n—p)xp:

Since the matrix U is invertible, we obtain that [3] = Opx (n—p)> Which implies that 3,s = 0, for all
rel,andall s¢ I,.
Substituting these last equalities in ([2.2)), it simplifies to

©n><p = Z (2% (ujaei @ fa — Uia €y @ fa) . (24)
1<j;i,j€lp
ae{l,...,p}
We introduce now the matrix [a] € Mpxp(R), [a] := ¥ oy (B @) — £ () @Fr(iy). We
i<j;i,j€lp

fWe relabel the set {1,...,n}\I, using the unique strictly increasing function o : {1,..,n}\I, — {1,...,n — p}.
Analogously, we relabel the set I, using the unique strictly increasing function 7 : I, — {1,...,p}. The vectors
hi,...,hy,_, form the canonical basis of R"~P.



have the following computations:

[a]U = Z oij (£ @ - (j) — £r(j) ® £ (1)) Z Ukafr (i) ® fo

i<j;i,j€Ip gcelp )
ae{l,....,p
= Z ijtga (85f- 1) @ fo — Oinfr(j) ®1a)
1<j;i,j€lp

kelp;ae{l,...,p}
= Z Qi (ujafr(i) ® o — uiafr () ® fa) .

i<jsijel,
ae{l,...,p}

By selecting from the matrix equality ([24) the rows with indexes in I,, we obtain that [@]U = Opxp,
and since the matrix U is invertible it follows that [a] = Q,x, and therefore a;; = 0 for all i,j € I,
with i < j.

deu
&uij

Thus, we have proved the linear independence of the vectors (0), that also form a basis for

the tangent space Ty St),.

Proposition 2.1. Let U € Sty and 1 < i1 < ... <'ip < n be the indezes of the rows that form a full
rank submatriz U of U. Then the vectors:

Fi/j/(U) = Ai/j/U, i/,j/ € Ip, i/ < j/,
Fi//j//(U) = Ai//j//U, i// € Ip, j// ¢ Ip,

form a basis for the tangent space TySt),.

As a consequence, we have the following description for the tangent space to an orthogonal Stiefel
manifold.

Theorem 2.2. Let U € St;}. Then

Ty Sty = {QU| Q = [wi;] € Skew,xn(R), where w;; = 0 for all i ¢ I, and j ¢ I,} .

3 Critical points of smooth functions defined on orthogonal
Stiefel manifolds

In this section, we give necessary and sufficient conditions for critical points of a smooth cost function
defined on orthogonal Stiefel manifolds using the embedded vector field method introduced and used
in [5], [, and [6]. We apply these results to well-known cost functions as Procrustes and Penrose
regression cost functions, sums of heterogeneous quadratic forms, and Brockett cost functions. We
also discuss our results in comparison with previous results existing in the literature.

For a matrix U € M,,x,»(R), we denote by uy, ..., u, € R" the vectors formed with the columns of
the matrix U and consequently, U has the form U = [uy, ..., u,]. If U € St = {U € My, xp(R) | UTU =
I,}, then the vectors uy,...,u, € R™ are orthonormal. We identify M, x,(R) with R™ using the
isomorphism vec : M, — R defined by vec(U) 2" u := (u7, ..., ul).

The constraint functions Fyq, Fp. : R™ — R that describe the Stiefel manifold as a preimage of a
regular value are given by:

1
Foa(u) = 5l[wall?, 1<a<p, (3.1)

Fpe(u) = (up,u.), 1<b<c<p. (3.2)

o



p(p+1)
2

More precisely, we have F : R"” — R S Fi=(..,Foa,yeovy Foey. .. ),

1

n —1 n
StpﬁF (...,5,...,0,...)CRP.

Consider a smooth cost function G : Sty — R. In what follows we will address the problem of

finding the critical points of the cost function G defined on the Stiefel manifold. In order to solve this
problem, we consider a smooth extension G : R"” — R of the cost function G'= G|, and we use the
P
embedded gradient vector field method presented in [5], [4], and [6]. The embedded gradient vector
field is defined on the open set formed with the regular leaves of the constraint function and it has
the formula:
0G(u) = VG(u) = > 0aa(u)VFu(u) = > o3c(0)VFie(u),
1<a<p 1<b<ce<p

where 044, 0pc are the Lagrange multiplieg functions.

Using the property (0G), stn = VgStgG proved in [5] and [4], we have the following necessary and

ind
sufficient conditions for a critical point of the cost function G.
Theorem 3.1. An element U € Sty is a critical point of the cost function G if and only if 0G(u) = 0.

In the case of orthogonal constraints the Lagrange multiplier functions, see [5], are given by the
formulas:

Fanla) = (VG0 VFua ) = (£ )0, )

du,
33)
a1e(w) = (V6. Vhis(u) = 3 ({5 wnmn ) + (S0 (oue) ) N

: oG oG
Note that in general <8uc (u), ub> # <8—ub(u)’ uc>.

If U is a critical point of (N?, then o44(1), op.(u) become the classical Lagrange multipliers. The
embedded gradient vector field is a more explicit form of the equivalent projected gradient vector
field described in [23]. The solutions of the equation dG(u) = 0 are critical points for the function
G restricted to regular leaves of the constraint functions. Consequently, using again the identification
vec(U) = u, a matrix U € M,,»,(R) is a critical point for the cost function G = G|Stg if and only if

0G(u) = 0 and UTU = 1,,, or equivalently,

VG(u) — 1<Z< Oaa(W)VF,,(u) — 1<b2 3 obe(W)VEpe(u) =0 5.4)

UTU =1,.
Next, we give necessary and sufficient conditions for a critical point.

Theorem 3.2. A matriz U € M,,»,(R) is a critical point for the cost function G = G|, if and
yd

only if the following conditions are simultaneously satisfied:

./ 0G 0G

(Z) <auc(u)7ub> - <a—ub(u)7uc>u for all 1<b<0<p;
., 0G
(ii) 7 (u) € Span{uy, ..., u,}, foralll <a<p;

(iii) UTU = 1,,,

where u = vec(U).



Proof. First, we will prove that the conditions (i), (i¢) and (ii7) of the Theorem are necessary. By
straightforward computations, the hypothesis 0G(u) = 0 is equivalent with the following system of

equations:
P

wug— Y, oaa(w)ug =0, Yae{l,.,p—1}
d=a+1 (35)

ﬁua

ud—

)= 2
8up i

where the Lagrange multiplier functions o,4 are given by (3). From the above equalities it follows
(i3). From (7i) and the hypothesis that U € St} we have:

et = 33 (St ) s (3.6)

ou, o

Substituting (3.0)) into (B.5) and using the linear independence of the vectors uy, ..., u, formed with
the columns of the matrix U, we obtain (7).
For sufficiency, we solve the set of equations (7) and (¢¢). This implies that

0u Z Adua:

Among these solutions, we choose the ones that belong to St}}, and consequently for those solutions

we obtain oc
)\d = <aua (u),ud> .

p
8ua Z:: <8ua > -

we obtain the desired equality 0G(u) = 0. O

Using (i) and the fact that

If the condition (7i7) of the above theorem is satisfied, then the condition (i7) can be replaced with

(I, — UUT)SG (u) =0, foralll<a<np, (3.7)

Ug

where the matrix I,, — UU7 is associated to the orthogonal projection in R™ onto the subspace normal
to Span{uy, ..., u,}. The necessity of conditions (7) and (i¢) have been previously discovered in [11] in
the context of orthogonal Procrustes problem and Penrose regression problem. We will present the
details later in the paper. N

The above Theorem shows that, in order to find the critical points of the cost function G = G, st

it is necessary and sufficient to solve the system of equations (i) and (i7) and among them choose the
ones that belong to the orthogonal Stiefel manifold Stj.

The necessary and sufficient conditions of the above theorem are natural for orthogonal Stiefel
manifolds in the sense that orthogonal Stiefel manifolds are in-between the sphere (p = 1) and the
orthogonal group (p = n). In the case when p = 1, we obtain that the necessary and sufficient

conditions of Theorem reduce to the radial condition O_(H) = Au, A € R for a critical point of a
u

function restricted to a sphere. When p = n, we are in the case of orthogonal group SO(n) and the
necessary and sufficient conditions of Theorem reduce to the symmetric condition ().

In order to formulate the necessary and sufficient conditions of Theorem in a matrix form, we
need to write the embedded vector field G in a matrix form. For the following considerations we
make the notations

VG(U) := vec (VG (1)) € Myxp(R),



OG(U) = vec 1 (0G(u)) € Myxp(R).
We introduce the symmetric matrix
E(U) = [ove(u)] € Myxp(R),

where we define oo (u) := ope(u) for 1 < b < ¢ < p. For the particular case of orthogonal Stiefel
manifold, by a straightforward computation using (3.3), we have

2(U) == (VGU)TU +UTVG(U)) . (3.8)

N~

Computing vec™ (VF,,(u)) and vec™ (V Fp.(u)), the matrix form of the embedded gradient vector
field is given by

0GWU)=VGU)-UX(U). (3.9)

From the geometrical point of view, the vector VG(U) € M,,x,(R) does not in general belong to the

tangent space Ty Sty;. The vector —UX(U) is a correcting term so that the vector 0G(U) € Ty St for

every U € St7. This has been proved in [5]. The matrix form of the system of equations (3.4)) is given

by
{VG(U) ~UX(U) =0 (310)

UTU =1,.
The conditions of Theorem can be written in matrix form in the following way.

Theorem 3.3. A matriz U € M, «p(R) is a critical point for the cost function G = G|gn if and only
P
if the following conditions are simultaneously satisfied:

(i) U'VG(U) = VG(U)TU;
(ii) VG(U) = UUTVG(U); (3.11)
(iii) UTU =1,.

Using the classical Lagrange multiplier approach for constraint optimization problems, in [25] the
equations that have to be solved in order to find the critical points of the cost function G = G|,,, are
P

{VG(U) —UVGU)TU = Opxyp (3.12)

UTU =1,

which is an equivalent matrix form for the system of equations (BI1]) in the case of orthogonal Stiefel
manifold. Note that the vector field VG(U) — UVG(U)'U # 0G(U) when U € ST} is not a
critical point of G.
Also, in the same paper [25] the following equivalent necessary and sufficient conditions for critical
points have been obtained:
T T _
{VG(U)U UVG(U)T = Opxn (313)

UTU =1,

We give a short proof of the equivalence between the equations (312 and B13]). Multiplying B.I3) to
the right with the matrix U and using the Stiefel condition UTU = I,, we obtain (312). Now assume
that @I2) holds, i.e. VG(U) = UVGU)TU = U (UTVGU)UT)U = UUTVG(U). Multiplying to
the right with U7 we obtain VG(U)UT = U (UTVG(U)UT) = UVG(U)", which is exactly the first
equation of ([BI3).

Consequently, necessary and sufficient conditions of Theorem are equivalent with necessary
and sufficient conditions [BI3) obtained in [25]. The difference between the two sets of necessary
and sufficient conditions is that in Theorem B.3] the equations imply natural relations involving the



columns of the matrix U, i.e. components of the orthonormal vectors uy, ..., u,, while (BI3)) involves
equations containing the lines of the matrix U.
Using the particularity of the Stiefel constraints, in [22] are given other equivalent conditions with

those from BIT)).

Critical points for orthonormal Procrustes cost function. We consider the following opti-
mization problem:
Minimize || AU — B||?
Utu =1, ’

where A € M,,xn(R), B € Myxp(R), U € M;xp(R), and || - || is the Frobenius norm. The cost

function associated to this optimization problem is given by G : St — R and its natural extension
G:R"” - R,

(3.14)

Glu) = %HAU _B|? - %tr(UTATAU) —(UTATB) + %tr(BTB).

In the following, we will give the specifics of the necessary and sufficient conditions of Theorem B.3]in
the case of Procrustes cost function. By a straightforward computation we have that

VG(U) = ATAU — A" B.

Consequently, the condition (4) is equivalent with the symmetry of the matrix UT AT AU — BT AU. As
the matrix UT AT AU is symmetric, we obtain that condition (i) of Theorem [3.3]is equivalent with the
symmetry of the matrix BT AU. This condition has been previously obtained in [I1]. The condition
(ii) of the Theorem B3 is equivalent with (I, — UUT)(AT AU — AT B) = 0, condition also previously
obtained in [II]. The following result shows that the necessary conditions presented in [I1] for the
Procrustes cost function are also sufficient conditions.

Theorem 3.4. A matriz U € St} is a critical point for the Procrustes cost function if and only if:

(i) the matriz BT AU is symmetric;
(i) (L, — UUT)(ATAU — ATB) = 0.

A different approach for studying critical points of Procrustes problem using normal and secular
equations has been undertaken in [I3].

Critical points for Penrose regression cost function. The Penrose regression problem is the
following optimization problem:
Minimize ||AUC — B||?
Utu =1, ’

where A € My xn(R), B € Mpxg(R), C € Mpyq(R), U € My xp(R), and || - || is the Frobenius norm.

The cost function associated to this optimization problem is given by G : St — R and its natural
extension G : R"? — R,

(3.15)

G(u) = %HAUC - B|* = %tr(CTUTATAUC) —tr(CTUTATB) + %tr(BTB).
By a straightforward computation, we have that
VG(U) = AT(AUC — B)CT.
The necessary and sufficient conditions of Theorem for critical points become in this case:

Theorem 3.5. A matriz U € St} is a critical point for the Penrose regression cost function if and
only if:

(i) the matriz C(AUC — B)T AU is symmetric;



(ii) (I, — UUT)AT(AUC — B)CT = 0.

These conditions have been previously found in [I1] as necessary conditions for critical points of
the Penrose regression cost function.

Critical points for sums of heterogeneous quadratic forms. Consider the following opti-
mization problem on orthogonal Stiefel manifold St}, extensively studied in [3] and [22]:

P
o T A w
Minimize 21 u; A, , (3.16)

UTU =1,

where A; are n x n symmetric matrices and u; are the column vectors of the the matrix U € St}). By
a straightforward computation, we have that

VG(U) = [Alul, ceey Apup] .

The necessary and sufficient conditions of Theorem [B.3] for critical points become in this case:

P
Theorem 3.6. A matriz U € St} is a critical point for the cost function ), ul A, if and only if:
i=1

(i) UTA(U) = A(U)TU;
(ii) A(U) =UUTAU),
where we have made the notation A(U) = [Aiu, ..., Apup].

The above necessary and sufficient conditions are the same conditions discovered in [§] (eq. (3.3)
and (3.4) from the proof of the Theorem 3.1).

P
A particular case of the cost function Y] ul A;u; is when A; = j; A, where 0 < 3 < ... < tp and
i=1
A is a n x n symmetric matrix. Thus, we obtain the Brockett cost function

GB = i ,uluzTAul

i=1
For this cost function the conditions (¢) and (i) of Theorem [3.2] become:
(1) ([Lb - UC)ugAuc = Oa Vb,C € {17 "'7p}7 b # G
(ii) peAu, € Span{uy,...,u,}, Va € {1,...,p}.

Depending on the parameters py, ..., tt, the above two conditions can be further explained.

L. If the parameters py, ..., 1, are pairwise distinct and strictly positive, then U € St} is a critical
point of the Brockett cost function if and only if every column vector of the matrix U is an eigenvector
of the matrix A.

II. For the case when among the strictly positive parameters ji, ..., 11, we have multiplicity, the
set of critical points becomes larger. More precisely, we have

O <pr == ps <flog41 = . = flg 45, <+ < Hsi+..4sq—14+1 = -+ = Hsi4...+sg5

where s1 > 1,...,54 = 1 and $1 + ... + s = p. We denote by J1 = {1,...,s1}, ..,Jg = {s1 +s2 + ... +
Sg—1+1,...,p}. By an elementary computation, the matrix U Sty is a critical point of the Brockett
cost function if and only if Span{uy | k € J;} is an invariant subspace of A for all [ € {1, ..., ¢}.

We illustrate the above results on a simple case of a Brockett cost function defined on St3. Assume
that the matrix A is in diagonal form with distinct entries. If 0 < p1 < o, then we are in the case I
and U = [uy, ug] is a critical point for the Brockett cost function if and only if u; = +e; and uy = +e;
with ¢,7 € {1,2,3} and i # 5. If 0 < p1 = po, then we are in the case IT and U = [uy, uz] is a critical
point for the Brockett cost function if and only if the set {u;,us} is an orthonormal frame of any
coordinate plane Span{e;, e;} with i # j.
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4 Steepest descent algorithm

Let (S, g4) be a smooth Riemannian manifold and G : S — R be a smooth cost function. The iterative
scheme of steepest descent is given by

Trs1 = Ray (— Vg, Glan), (4.1)

where R : T'S — S is a smooth retraction, notion introduced in [24] (see also [2]), and A\t € R is a
scalar called step length. For the case when the manifold S is the preimage of a regular value of a
set of constraint functions we have that Vg_G(2x) = dG(2), where G is an extension to the ambient

space M of the cost function é, 0G is the embedded gradient vector field introduced in [5], and gg is
the induced Riemannian metric on S by the ambient space M. The vector 0G(xy) is written in the
coordinates of the ambient space M, but it belongs to the tangent space Ty, S viewed as a subspace
of T, M.

If the manifold S is locally diffeomorphic with a manifold NV via a local diffeomorphism f and we
know a retraction RY for the manifold N, then

RE=foRNo(Df)!

is a retraction for the manifold S. A particular case of the above construction is when we replace the
local diffeomorphism with local charts. For the case of an orthogonal Stiefel manifold we will use the
local charts ¢y defined by (2]). More precisely, the retraction induced by a local chart ¢y is given
by

R (QU) = C <%Q) U, (4.2)

where 2 € Wy .

Steepest descent algorithm on orthogonal Stiefel manifolds:

1. For an x p matrix U construct the vector u := vec(U) = (uf, ..., ug) e R"P.

2. Consider a smooth prolongation G : R™ — R of the cost function G: Sty — R.
3. Compute VG(u) and construct the n x p matrix VG(U) = vec (VG (u)).

4. Compute the Lagrange multiplier functions

o) = (Fewua ) anelu) = 5 ((£5 ) + (52 (e )).

5. Construct the symmetric p x p matrix S(U) = [opc(u)].

6. Compute the n x p matrix 0G(U) = VG(U) — UL(U).
7. Input Up € Stj) and k = 0.

8. repeat
e Compute the n x p matrix 0G(Uy).

e Determine a set I,(Uy) containing the indexes of the rows that form a full rank submatrix
of Uk

e Construct a generic n x n skew-symmetric matrix Qy = [w;;] in

Wi,y = {Q = [wij] € Skewpxn(R) [wij = 0 for all i ¢ I,(Uy), j ¢ 1,(Uk) } -

11



e Choose a length step A\ € R and solve the matrix equation of np — % variables w;;

—/\kaG(Uk) = O UL.
e Using the solution 2 of the above equation, compute

1 1. \""
Uiy = (Hn + §Qk) (]In - §Qk) Uy.

~

until Uy, sufficiently minimizes G.

The matrix equation
— M 0G(Uy) = QiU (4.3)

has a unique solution since —A\;,0G(Uy) € Ty, St and this tangent vector is uniquely written as
—/\kéG(Uk) = wi/j/Ai/j/ Uk + wi//j//Ai//j// Uk, see PI‘OpOSitiOnm

Next we will describe a method for finding the explicit solution of the equation (£3). Once we have
computed Uy, we choose a set of indexes I,(Uy) = {i1, ..., i} that give a full rank submatrix of Uy, (the
set of indexes I,(Uy) is not in general unique). We consider a permutation vy : {1,...,n} — {1,...,n}
such that vk (i1) = 1,...,4(ip) = p and we introduce the permutation matrix

e -1
v, (1)
P = : € Mpxn(R). (4.4)
eulzl(n)

We make the following notations

ﬁk = PVIZI Uk and é\é(Uk) = PV;ZI 8G(Uk)
The matrix [}k € St;’ and it has the form
~ Uy
U.=| =
k [ Uk :| )

where Uy € M,x,(R) is an invertible matrix. According to Theorem 2] we have that the tangent
vectors in Tﬁk St; are of the form Q, U}, where

~ Qk 51€
Op=| "2
g [ -Qr 0

The equation f/\ké\é(Uk) = ﬁkﬁk has the equivalent form

w[ Som |-

D

where we have denoted
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By a straightforward computation, the above system has the solution

Qk — Ak (8_G(Uk)+(7,€_T8:G(Uk)Tﬁk) Uk_l
S:)k /\kU,;T&:G(Uk)T.
Next, we will prove that the skew-symmetric matrix
Q= PL Q- P
v, e
is the unique solution of equation ([@3]). Indeed,

.U, = (Pgilﬁkpyq) PT,lijk = PT,lﬁkﬁk
k k Vi Vi
- PL, <f)\k0NG(Uk)) — MNP P, - 0G(UL)
— \OG(U),

where we have used the property that the permutation matrices are invertible and their inverse is
equal with the transpose matrix.
According to ([£2), we obtain after k iterations

U =1, + 1Q I, — 1Q 71U
k+1 — n 2 k n 2 k k
1 or & 1 or & - T 73
=1L, + =P _ QP I, — =P QP P U
2 Y Yk 2 Vi Yk Vi

1~ 1~ \ '~
=P L+ =0 ) (L. — %) Uk
Vi 2 2
The following is an alternative box that describes the steepest descent algorithm on
orthogonal Stiefel manifolds:

1. For a n x p matrix U construct the vector u := vec(U) = (ulT, ceey ug) € R"P,

2. Consider a smooth prolongation G : R™” — R of the cost function G Sty — R.
3. Compute VG(u) and construct the n x p matrix VG(U) = vec (VG (u)).

4. Compute the Lagrange multiplier functions

o) = (S} o) = 5 (S ) + (S0 ) )

5. Construct the symmetric p x p matrix S(U) = [op.(u)].

6. Compute the n x p matrix 0G(U) = VG(U) — UL(U).
7. Input Up € St and k = 0.
8. repeat

e Compute the n x p matrix 0G(Uy).

e Determine a set I,(Uy) containing the indexes of the rows that form a full rank submatrix
of Ug. Construct the permutation matrix Pygl using formula ([@4]).
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e Compute Up = Pyk—l -Uj, and éé(Uk) = Pyk—l -0G(Uy). Write Uy and éé(Uk) in the block
U oG (U,

matrix form [ [711: ], and respectively [ EEUI;X ]

e Choose a length step A\ € R and compute

{Qk =~ (0G(U) + T OGO ) T !

Qk = )\kﬁk_Ta:G(Uk)T.

e Form the matrix ﬁk = l Q:k L

e Compute
1~ 1~ \ "o
U1 =P (L, + = ) (L, — = U,
Vi 2 2

~

until Uy, 1 sufficiently minimizes G.

An intrinsic way to construct an update for the steepest descent algorithm is to use a geodesic-like
update. Using @ R-decomposition, this has been constructed in [12]. A quasi-geodesic update has been
introduced in [20] and [25] for computational efficiency. An interesting retraction and its associated
quasi-geodesic curves have been constructed in [I§] in relation to interpolation problems on Stiefel
manifolds.

An extrinsic method to update the algorithm is using projection-like retraction. For computational
reasons various projection-like retraction updates have been constructed in [I], [19], [7].

Brockett cost function case. For the case I, we consider the following particular cost function
on St}
G(U) = pu] Auy + pgul Aus,

where p1 =1, po = 2, and A = diag(1,2,3,4). The cost function being quadratic it is invariant under
the sign change of the vectors that give the columns of the matrix U, but it is not invariant under the
order of these column vectors. The set of critical points is given by:

e four critical points generated by [ez,e1] (i.e., [e2,e1], [—€2,€1], [e2, —e1], and [—e2, —eq1]) with
the value of the cost function equals 4, which is a global minimum.

e cight critical points generated by [e1, ez2] and [es, e1] with the value of the cost function equals 5.
e four critical points generated by [e4, e1] with the value of the cost function equals 6.
e cight critical points generated by [e1, es] and [es, e2] with the value of the cost function equals 7.
e cight critical points generated by [e2, es] and [e4, e2] with the value of the cost function equals 8.
e four critical points generated by [e1, e4] with the value of the cost function equals 9.
e cight critical points generated by [e2, e4] and [e4, e3] with the value of the cost function equals 10.

e four critical points generated by [es, e4] with the value of the cost function equals 11, which is a
global maximum.

For the case I, we have run the algorithm for some initial points and we show the convergence of
the sequence of iterations toward the corresponding critical points.
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:Ucr
Uo Usoo (critical point) G(Uer)
_ 5 1
0o ¥
V2 0 1.0000000
-5 0 —1.0000000 0 Les. el A
0 V2 0 —7.8365183 - 10~ 17" 2l
o —6.1260222 - 107166 0
V2
L 2 J
V33 —0.00021656 —0.99999998
-5 3 —1.0000000 0.00021656
0 0 0 0 [—627—61] 4
—1.8444858 - 10~ 1% 3.6515800 - 10~ 14
V2B
L 2 3
[ V3 V2]
3 2
0 0 —1.4227613 - 10713 —1.0000000
0 0 [—es, —e1] 5
V3 W2 —1.0000000 1.4227614 - 107" S
3 2 —1.7746315 - 10~*  —1.9382582 - 10~
R
Y i

For the case II, when p; = g2 = 1 and the same matrix A, we obtain continuous families of critical points.
Starting from the initial point

— 1 —
5 0
1 V2
Uy — 2 2
T
2
1 V2
L 73 9
the algorithm goes after 300 iterations to
0.97862435 0.20565599 0.9786243  0.2056559
Usog — 0.20565598711 —0.97862437711 _ | 02056559 —0.9786243
8.8491189 - 10 —4.4716231 - 10 0 0 '
9.2851360 - 10712 —4.6922465 - 102 0 0

which is a rotation of the frame {e1, ez} with an angle 6 ~ 0.207 radians and the value of the cost function
equals 3, which is a global minimum.

Acknowledgment. This work was supported by a grant of Ministery of Research and Innovation, CNCS -
UEFISCDI, project number PN-ITI-P4-ID-PCE-2016-0165, within PNCDI III.

15



References

[1]
2]

3]
[4]
[5]
(6]
[7]
8]

[9]

(16]

(17]

(18]

(19]
20]

(21]

P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matriz Manifolds, Princeton
University Press, 2008.

R.L. Adler, J.-P. Dedieu, J.Y. Margulies, M. Martens, M. Shub, Newtons method on Rieman-
nian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., Vol. 22 (2002), pp.
359-390.

J. Balogh, T. Csendes, T. Rapcsak, Some Global Optimization Problems on Stiefel Manifolds, Journal
of Global Optimization, Vol. 30, Issue 1 (2004), pp. 91-101.

P. Birtea, D. Comanescu, Geometric dissipation for dynamical systems, Comm. Math. Phys., Vol.
316, Issue 2 (2012), pp. 375-394.

P. Birtea, D. Comanescu, Hessian Operators on Constraint Manifolds, J. Nonlinear Science, Vol. 25,
Issue 6 (2015), pp. 1285-1305.

P. Birtea, D. Comanescu, Newton Algorithm on Constraint Manifolds and the 5-FElectron Thomson
Problem, J. Optim. Theor. Appl., Vol. 173, Issue 2 (2017), pp. 563-583.

Bo Jiang, Yu-Hong Dai, A framework of constraint preserving update schemes for optimization on
Stiefel manifold, Math. Program., Ser. A, Vol. 153, Issue 2 (2015), pp. 535-575.

M. Bolla, G. Michaletzky, G. Tusnady, M. Ziermann, Ezxtrema of Sums of Heterogeneous Quadratic
Forms, Linear Algebra and its Applications, Vol. 269, Issues 1-3 (1998), pp. 331-365.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learn-
ing, Vol. 3, Issue 1 (2010), pp. 1-122.

Caihua Chen, Bingsheng He, Yinyu Ye, Xiaoming Yuan, The direct extension of ADMM for
multi-block conver minimization problems is not necessarily convergent, Math. Program., Ser. A, Vol.
155, Issues 1-2 (2016), pp. 57-79.

M.T. Chu, N.T. Trendafilov, The orthogonally constrained regression revisited, J. Comput. and Graph-
ical Statistics, Vol. 10, Issue 4 (2001), pp. 746-771.

A. Edelman, T. A. Arias, S. T. Smith, The geometry of algorithms with orthogonality constraints,
SIAM J. Matrix Anal. Appl., Vol. 20, Issue 2 (1998), pp. 303-353.

L. Eldén, H. Park, A Procrustes problem on the Stiefel manifold, Numer. Math., Vol. 82 (1999), pp.
599-619.

C. Fraikin, K. Hiiper, P. Van Dooren, Optimization over the Stiefel manifold, Proc. in Appl. Math.
Mech., Vol. 7, Issue 1 (2007).

R. Glowinski, On alternating direction methods of multipliers: a historical perspective. In: W. Fitzgib-
bon, Y.A. Kuznetsov, P. Neittaanmaki, O. Pironneau (eds.), Modeling, Simulation and Optimization
for Science and Technology, Computational Methods in Applied Sciences, Vol. 34, pp. 59-82, Springer,
Dordrecht (2014).

R. Glowinski, A. Marrocco, Sur l’approzimation par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problémes de Dirichlet non linéaires, Rev. Francaise Automat. Inf.
Rech. Opérationnelle, Vol. 9, Issue 2 (1975), pp. 41-76.

T. Kanamori, A. Takeda, Non-convexr Optimization on Stiefel Manifold and Applications to Machine
Learning, Neural Information Processing - 19th International Conference, ICONIP 2012, Doha, Qatar,
Proceedings, Part I, pp. 109-116, 2012.

K.A. Krakowski, L. Machado, F.S. Leite, J. Batista, A modified Casteljau algorithm to solve
interpolation problems on Stiefel manifolds, Journal of Computational and Applied Mathematics, Vol.
311 (2017), pp. 84-99.

J.H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Trans. Signal Process., Vol.
50 (2002), pp. 635-650.

Y. Nishimori, S. Akaho, Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold,
Neurocomputing, Vol. 67 (2005), pp. 106-135.

K.B. Petersen, M.S. Pedersen, The Matriz Cookbook, 2012.

16



[22] T. Rapcsdk, On minimization on Stiefel manifolds, European Journal of Operational Research, Vol. 143
(2002), pp. 365-376.

[23] J.B. Rosen, The Gradient Projection Method for Nonlinear Programming. Part II. Nonlinear Con-
straints, Journal of the Society for Industrial and Applied Mathematics, Vol. 9, Issue 4 (1961), pp.
514-532.

[24] M. Shub, Some remarks on dynamical systems and numerical analysis. In: Dynamical Systems and
Partial Differential Equations (Caracas, 1984), pp. 69-91. Univ. Simon Bolivar, Caracas (1986).

[25] Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program.,
Ser. A, Vol. 142, Issue 1 (2013), pp. 397-434.

[26] Y. Zhang, Recent advances in alternating direction methods: Theory and practice. In: IPAM Workshop:
Numerical Methods for Continuous Optimization. UCLA, Los Angeles (2010).

17



	1 Introduction
	2 Local charts on the orthogonal Stiefel manifolds
	3 Critical points of smooth functions defined on orthogonal Stiefel manifolds
	4 Steepest descent algorithm

