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GENERALIZED CUT AND METRIC POLYTOPES OF GRAPHS

AND SIMPLICIAL COMPLEXES

MICHEL DEZA AND MATHIEU DUTOUR SIKIRIĆ

Abstract. Given a graph G one can define the cut polytope CUTP(G) and
the metric polytope METP(G) of this graph and those polytopes encode

in a nice way the metric on the graph. According to Seymour’s theorem,
CUTP(G) = METP(G) if and only if K5 is not a minor of G.

We consider possibly extensions of this framework:
(1) We compute the CUTP(G) and METP(G) for many graphs.
(2) We define the oriented cut polytope WOMCUTP(G) and oriented mul-

ticut polytope OMCUTP(G) as well as their oriented metric version
QMETP(G) and WQMETP(G).

(3) We define an n-dimensional generalization of metric on simplicial com-
plexes.

1. Introduction

The cut polytope [23] is a natural polytope arising in the study of the maximum
cut problem [10]. The cut polytope on the complete graph Kn has seen much
study (see [23]) but the cut polytope on a graph was much less studied [20, 4, 2].
Moreover, generalizations of the cut polytope on graphs seems not to have been
considered.

Given a graph G = (V,E), for a vertex subset S ⊆ V = {1, . . . , n}, the cut
semimetric δS(G) is a vector (actually, a symmetric {0, 1}-matrix) defined as

(1) δS(x, y) =

{

1 if (xy) ∈ E and |S ∩ {x, y}| = 1,
0 otherwise.

A cut polytope CUTP(G), respectively cut cone CUT(G), are defined as the convex
hull of all such semimetrics, respectively positive span of all non-zero ones among
them. The dimension of CUTP(G) and CUT(G) is equal to the number of edges
of G.

The metric cone MET(Kn) is the set of all semimetrics on n points, i.e., the
functions d : {1, . . . , n}2 → R≥0 (actually, symmetric matrices over R≥0 having
only zeroes on the diagonal), which satisfy all 3

(

n
3

)

triangle inequalities d(i, j) +

d(i, k) − d(j, k) ≥ 0. The bounding of MET(Kn) by
(

n
3

)

perimeter inequalities
d(i, j) + d(i, k) + d(j, k) ≤ 2 produces the metric polytope METP(Kn).

For a graph G = (V,E) of the order |V | = n, let MET(G) and METP(G) denote
the projections of MET(Kn) and METP(Kn), respectively, on the subspace R

|E|

indexed by the edge set of G. Clearly, CUT(G) and CUTP(G) are projections of,
respectively, CUT(Kn) and CUTP(Kn) on R

E . It holds

CUT(G) ⊆ MET(G) and CUTP(G) ⊆ METP(G).

Key words and phrases. max-cut problem, cut polytope, metrics, graphs, cycles, quasi-metrics,
hemimetrics.
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In Section 2 we consider the structure of those polytopes and give the description
of the facets for many graphs (see Tables 1 and 2). The data file of the groups and
orbits of facets of considered polytopes is available from [24].

The construction of cuts and metrics can be generalized to metrics which are not
necessarily symmetric are considered in Section 3 (see also [19, 16]). The triangle
inequality becomes d(i, j) ≤ d(i, k) + d(k, j) and the perimeter inequality becomes
d(i, j) + d(j, k) + d(k, i) ≤ 2 for 1 ≤ i, j, k ≤ n. We also need the inequalities
0 ≤ d(i, j) ≤ 1. The quasi metric polytope QMETP(Kn) is defined by the above
inequalities and the quasi metric cone QMET(Kn) is defined by the inequalities
passing by zero. The quasi metric cone QMET(G) and polytope QMETP(G) are
defined as projection of above two cone and polytopes. In Theorem 3 we give an
inequality description of those projections.

Given an ordered partition (S1, . . . , Sr) of {1, . . . , n} we defined an oriented
multicut as:

δ′(S1, . . . , Sr)x,y =

{

1 if x ∈ Si, y ∈ Sj and i < j,
0 otherwise.

The convex cone of the oriented multicut is the oriented multicut cone OMCUT(Kn).
The convex polytope can also be defined but there are vertices besides the oriented
multicuts. A smaller dimensional cone WQMET(G) and polytope WQMETP(G)
can be defined by adding the cycle equality

d(i, j) + d(j, k) + d(k, i) = d(j, i) + d(k, j) + d(i, k)

to the cone QMET(G) and polytope QMETP(G). A multicut satisfies the cycle
equality if and only if r = 2. We note the corresponding cone WOMCUT(G) and
WOMCUTP(G). In Section 3 we consider those cones and polytopes and their
facet description.

The notion of metrics can be generalized to more than 2 points and we obtain
the hemimetrics. Those were considered in [15, 14, 17, 21]. Only the notion of
cones makes sense in that context. The definition of the above papers extends the
triangle inequality in a direct way: It becomes a simplex inequality with the area
of one side being bounded by the sums of area of the other sides. In [12] we argued
that this definition was actually inadequate since it prevented right definition of
hemimetric for simplicial complex. In Section 4 we give full details on what we
argue is the right definition of hemimetric cone.

There is much more to be done in the fields of metric cones on graphs and sim-
plicial complexes. Besides further studies of the existing cones and the ones defined
in this paper, two other cases could be interesting. One is to extend the notion of
hypermetrics cone HYP(Kn) to graphs; several approaches were considered in [18],
for example projecting only on the relevant coordinates, but no general results were
proved.

Another generalization that could be considered is the diversities considered in
[7, 8]. Diversity cone DIVn is the set of all diversities on n points, i.e., the functions
f : {A : A ⊆ {1, . . . , n}} → R≥0 satisfying f(A) = 0 if |A| ≤ 1 and

f(A ∪B) + f(B ∪ C) ≥ f(A ∪ C) if B 6= ∅.

The induced diversity metric d(i, j) is f({i, j}).
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Cut diversity cone CDIVn is the positive span of all cut diversities δ(A), where
A ⊆ {1, . . . , n}, which are defined, for any S ⊆ {1, . . . , n}, by

δS(A) =

{

1 if A ∩ S 6= ∅ and A \ S 6= ∅,
0 otherwise.

CDIVn is the set of all diversities from DIVn, which are isometrically embed-
dable into an l1-diversity, i.e., one, defined on R

m with m ≤
(

n

⌊n
2 ⌋
)

by

fm1(A) =

m
∑

i=1

max
a,b∈A

{|ai − bi|}.

These two cones are extensions of the MET(Kn) and CUT(Kn) on a complete
hypergraphs and it would be nice to have a nice definition on any hypergraph.

2. Structure of cut polytopes of graphs

The cut metric δS defined at Equation (1) satisfies the relation δ{1,...,n}−S = δS .
The cut polytope CUTP(Kn) is defined as the convex hull of the metrics δS and
thus has 2n−1 vertices.

For a given subset S of {1, . . . , n} we can define the switching operation FS by

FS(d)(i, j) =

{

1− d(i, j) if |S ∩ {i, j}| = 1,
d(i, j) otherwise.

The operation on cuts is FS(δT ) = δS∆T with ∆ denoting the symmetric difference
(see [23] for more details). For a graph G we define CUTP(G) to be the projection
of CUTP(Kn) on the coordinates corresponding to the edges of the graph G. If G
is connected then CUTP(G) has exactly 2n−1 vertices. Then δS can be seen also as
the adjacency matrix of a cut (into S and S) subgraph of G. The cut cone CUT(G)
is defined by taking the convex cone generated by the metrics δS but it is generally
not used in that section.

In fact, CUT(Kn) is the set of all n-vertex semimetrics, which embed isometri-
cally into some metric space l1, and rational-valued elements of CUT(Kn) corre-
spond exactly to the n-vertex semimetrics, which embed isometrically, up to a scale
λ ∈ N, into the path metric of some m-cube Km

2 . It shows importance of this cone
in Analysis and Combinatorics. The enumeration of orbits of facets of CUT(Kn)
and CUTP(Kn) for n ≤ 7 was done in [31, 3, 28] for n = 5, 6, 7 respectively, and
in [9], completed by [20], for n = 8.

2.1. Automorphism group of cut polytopes. The symmetry group Aut(G)
of a graph G = (V,E) induces symmetry of CUTP(G). For any U ⊂ {1, . . . , n},
the map δS 7→ δU∆S also defines a symmetry of CUTP(G). Together, those form
the restricted symmetry group ARes(CUTP(G)) of order 2|V |−1|Aut(G)|. The full
symmetry group Aut(CUTP(G)) may be larger. In Tables 1, 2, such cases are
marked by ∗. Denote 21−|V ||Aut(CUTP(G))| by A(G).

For example, |Aut(CUTP(Kn))| is 2n−1n! if n 6= 4 and 6× 234! if n = 4 ([13]).

Remark 1. (i) If G = (V,E) is Prismm (m 6= 4), APrismm (m > 3), Möbius
ladder M2m and Pyr2(Cm) (m > 3), then Aut(G) = 4m.

(ii) If G is a complete multipartite graph with t1 parts of size a1, . . . , tr parts of
size ar, with a1 < a2 < · · · < ar and all ti ≥ 1, then |Aut(G)| =

∏r
i=1 ti!(ai!)

ti .
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(iii) Among the cases considered here, all occurrences of A(G) > |Aut(G)| are:
A(G) = m!2m−1|Aut(G)| for G = K2,m>2,K1,1,m>1 and A(G) = 6|Aut(G)|, i.e.,
2m! = 48, 6m! for G = K2,2 and K1,1,1,1, respectively.

(iv) If G = Pm (m ≥ 3 edges), then |Aut(G) = 2, while A(G) = m! = (|V | − 1)!.
If G = Cm (m > 3), then |Aut(G)| = 2m, while A(G) = 2m! for m = 4 and

A(G) = m! = |V |! for m ≥ 5.

2.2. Edge faces, s-cycle faces and metric polytope.

Definition 1. Let G = (V,E) be a graph.
(i) Given an edge e ∈ E, the edge inequality (or 2-cycle inequality) is

x(e) ≥ 0.

(ii) Given a s-cycle c = (v1, . . . , vs), s ≥ 3, of G, the s-cycle inequality is:

x(c, (v1, vs)) =

s−1
∑

i=1

x(vi, vi+1)− x(v1, vs) ≥ 0.

The edge inequalities and s-cycle inequalities are valid on CUTP(G), since they
are, clearly, valid on each cut: a cut intersects a cycle in the set of even cardinality.
So, they define faces, but not necessarily facets. In fact, it holds

Theorem 1. (i) The inequality x(e) is facet defining in CUTP(G) (also, in CUT(G))
if and only if e is not contained into a 3-cycle of G.

(ii) An s-cycle inequality is facet defining in CUTP(G) (also, in CUT(G)) if and
only corresponding s-cycle is chordless.

(iii) METP(G) is defined by all edge and s-cycle inequalities, while MET(G) is
defined by all s-cycle inequalities.

In fact, (i) and (ii) above were proved in [6], (iii) was proved in [5]; see also
Section 27.3 in [23].

The following Theorem, proved in [30] for cones and in [4] for polytopes, clarifies
when the metric and cut polytope coincides:

Theorem 2. CUT(G) = MET(G) or, equivalently, CUTP(G) = METP(G) if and
only if G does not have any K5-minor.

As a corollary of Theorem 2, we have that the facets of CUTP(G) (also, in
CUT(G)) are determined by edge inequalities and s-cycle inequalities if and only
if G does not have any K5-minor.

3-cycle inequality is usual triangle inequality; in fact, it is unique, among edge
and all s-cycle inequalities to define a facet in a CUTP(Kn).

The girth and circumference of a graph, having cycles, are the length of the
shortest and longest cycle, respectively. In a graph G, a chordless cycle is any
cycle, which is induced subgraph; so, any triangle, any shortest cycle and any
cycle, bounding a face in some embedding of G, are chordless. Let c′s and cs denote
the number of all and of all chordless s-cycles in G, respectively.

There are 2|E| edge faces, which decompose into orbits, one for each orbit of
edges of G under Aut(G). There are 2s−1c′s s-cycle faces, which decompose into
orbits, one for each orbit of s-cycles of G under Aut(G).

The incidence of edge faces is 2|V |−2 and the size of each orbit is twice the size
of corresponding orbit of edges. The incidence of s-cycle faces is 2|V |−ss and the
size of each orbit is 2s−1 times the size of corresponding orbit of s-cycles in G.
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Table 1. The number of facets of CUTP(G) of some K5-minor-
free graphs G; ∗ shows A(G)=21−|V ||Aut(CUTP(G))| > |Aut(G)|

G = (V,E) |V |, |E| A(G) Number of facets Orbit’s s

Möbius ladder M8 8, 2 16 184(4) 2, 2, 4, 5
M6 = K3,3 6, 9 2(3!)2 90(2) 2, 4

K1,1,1,m,m > 1 m+3, 3m+3 3!m! 4 + 12m(2) 3, 3
K1,2,m,m > 1 m+3, 3m+2 |Aut(K1,2,m)| 8m+ 8

(

m
2

)

(2) 3, 4
K3,m,m ≥ 3 m+3, 3m |Aut(K3,m)| 6m+ 24

(

m
2

)

(2) 2, 4
K2,m,m > 2 m+ 2, 2m 2m−1m!|Aut(K2,m)| ∗ 4m2(1) 2 with 4

K2,2 4, 4 6|Aut(K2,2)| ∗ 16(1) 2 with 4
K1,1,m,m > 1 m+2, 2m+1 2m−1m!|Aut(K1,1,m)| ∗ 4m(1) 3

Km+1-Km=K1,m,m>1 m+1,m m! 2m(1) 2
APrism6 12, 24 24 2, 032(5) 3, 6, 7, 7, 8
APrism5 10, 20 20 552(4) 3, 5, 6, 7
APrism4 8, 16 16 176(3) 3, 4, 5
Prism7 14, 21 28 7, 394(6) 2, 2, 4, 7, 9, 9
Prism6 12, 18 24 2, 452(6) 2, 2, 4, 6, 8, 8
Prism5 10, 15 20 742(5) 2, 2, 4, 5, 7
Prism3 6, 9 12 38(3) 2, 3, 4

Tr. Tetrahedron 12, 18 24 540(4) 2, 3, 6, 8
Cuboctahedron 12, 24 48 1, 360(5) 3, 4, 6, 6, 8
Dodecahedron 20, 30 120 23, 804(5) 2, 5, 9, 10, 10
Icosahedron 12, 30 120 1, 552(4) 3, 5, 6, 6
Cube K2

2 8, 12 48 200(3) 2, 4, 6
Octahedron K2,2,2 6, 12 48 56(2) 3, 4
Tetrahedron K4 4, 6 6|Aut(K4)| ∗ 12(1) 3

By Wagner’s theorem [32], a finite graph is planar if and only if it has no minors
K5 and K3,3. For embeddability on the projective plane P

2, there are exactly 103
forbidden topological minors and exactly 35 forbidden minors (see [1, 27]). For
embeddability on the torus T

2, 16629 forbidden minors are known (see [26]) but
the list is not necessarily complete. Closely related Kuratowski’s theorem [29] states
that a finite graph is planar if and only if it does not contain a subgraph that is a
subdivision of K5 or of K3,3.

2.3. Skeletons of Platonic and semiregular polyhedra. Let G be embedded
in some oriented surface; so, it is a map (V,E, F ), where F is the set of faces of
G. Let ~p = (. . . , pi, . . . ) denote the p-vector of the map, enumerating the number
pi > 0 of faces of all sizes i, existing in G.

Call face-bounding any s-cycle of G, bounding a face in map G. Call an s-cycle
of G i-face-containing, edge-containing or point-containing, if all its interior points
form just i-gonal face, edge or point, respectively. Call equator any cycle C, the
interior of which (plus C) is isomorphic to the exterior (plus C).

The chordless 4, 6, 5, 9-cycles of Octahedron, Cube, Icosahedron and Dodecahe-
dron, respectively, are exactly their vertex-containing 4, 6, 5, 9-cycles.
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Table 2. The number of facets of CUTP(G) for some graphs G
with K5-minor

G = (V,E) |V |, |E| A(G) Number of facets (orbits) Orbit’s s

Heawood graph 14, 21 336 5, 361, 194(9) 2, 6, 8
Petersen graph 10, 15 120 3, 614(4) 2, 5, 6

Möbius ladder M10 10, 15 20 1, 414(5) 2, 2, 4, 6
Möbius ladder M12 12, 18 24 26, 452(6) 2, 2, 4, 7, 9
Möbius ladder M14 14, 21 28 369, 506(9) 2, 2, 4, 8, 10

K5,5 10, 25 2(5!)2 16, 482, 678, 610(1, 282) 2, 4
K4,7 11, 28 4!7! 271, 596, 584(15) 2, 4
K4,6 10, 24 4!6! 23, 179, 008(12) 2, 4
K4,5 9, 20 4!5! 983, 560(8) 2, 4
K4,4 8, 16 2(4!)2 27, 968(4) 2, 4
K3,3,3 9, 27 (3!)4 624, 406, 788(2, 015) 3, 4
K1,4,4 9, 24 2(4!)2 36, 391, 264(175) 3, 4
K1,3,5 9, 23 3!5! 71, 340(7) 3, 4
K1,3,4 8, 19 3!4! 12, 480(6) 3, 4
K1,3,3 7, 15 2(3!)2 684(3) 3, 4
K1,1,3,3 8, 21 4(3!)2 432, 552(50) 3, 3, 4
K1,2,2,2 7, 14 3!(2!)3 5, 864(9) 3, 3, 4
K1,1,2,2 6, 13 4(2!)2 184(4) 3, 3, 4

K1,1,2,m,m > 2 m+4, 4m+5 4m! 8+20m+8
(

m
2

)

(16m− 15)(7) 3, 3, 3, 4
K1,1,1,1,m,m > 1 m+4, 4m+6 4!m! 8(8m2 − 3m+ 2)(4) 3, 3

K1,1,1,1,1,3=K8 −K3 8.25 360 2, 685, 152(82) 3, 3
K1,1,1,1,1,2=K7 −K2 7, 20 240 31, 400(17) 3, 3

K7 − C3 7, 18 144 520(4) 3, 3
K7 − C4 7, 17 48 108(4) 3, 3, 3

K7 − C5=Pyr2(C5) 7, 16 20 780(6) 3, 3, 5
K7 − C6=Pyr(Prism3) 7, 15 12 452(5) 3, 3, 3, 4

K7 − C7 7, 14 14 148(3) 3, 4
Pyr(Prism4) 9, 20 48 10, 464(6) 3, 4, 6
Pyr(Prism5) 11, 25 20 208, 133(22) 3, 3, 4, 5, 7
Pyr(APrism4) 9, 24 16 389, 104(17) 3, 3, 3, 4, 5

Pyr2(C6) 8, 19 24 3, 432(7) 3, 3, 6
Pyr2(C7) 9, 22 28 14, 740(11) 3, 3, 7

Tr.Octahedron on P
2 12, 18 48 62, 140(7) 2, 2, 4, 6, 6

For Octahedron and Cube, they are exactly all 3 and 4 equators, respectively,
which are, apropos, the central circuits and zigzags (see [22]), respectively.

All c6 chordless 6-cycles of Icosahedron are exactly their 30 edge-containing ones
and 10 face-containing ones, which are exactly the 10 equators and the weak zigzags
([22]). All c10 chordless 10-cycles of Dodecahedron are 30 edge-containing ones and
6 face-containing ones, which are exactly all 6 equators and the zigzags.

Proposition 1. If G is the skeleton of a Platonic solid, then all possible facets of
CUTP(G) are: edge facets and s-cycle facets, coming from all face-bounding cycles
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and from all (if they exist and not listed before) vertex-, edge-, face-containing
cycles.

For instance:
(i) If G = K4 (Tetrahedron), then CUTP(G) has unique orbit of 22p3 = 16

(simplicial) 3-cycle facets (from all |F | = p3 = 4 face-bounding cycles of G).
(ii) If G = K2,2,2 (Octahedron), then CUTP(G) has 56 facets in 2 orbits, namely:
orbit of 22p3 3-cycle facets (from all |F | = p3 = 8 face-bounding cycles, orbit of

23c4 4-cycle facets (from all c4 = |V |
2 = 3 vertex-containing 4-cycles).

(iii) If G = K3
2 (Cube), then CUTP(G) has 200 facets in 3 orbits, namely:

orbit of 2|E| = 24 edge facets, orbit of 23p4 4-cycle facets (from all |F | = p4 = 6
face-bounding cycles),

orbit of 25c6 = 128 6-cycle facets (from all c6 = 4 vertex-containing 6-cycles).
(iv) If G is Icosahedron, then CUTP(G) has 1, 552 facets in 4 orbits, namely:
orbit of 22p3 = 80 3-cycle facets (from all |F | = p3 = 20 face-bounding cycles),
orbit of 24c5 = 192 5-cycle facets (from all c5 = 12 vertex-containing 5-cycles),
orbit of 25|E| = 960 6-cycle facets (from |E| = 30 edge-containing 6-cycles),

orbit of 320 6-cycle facets (from |F |
2 = 10 face-containing 6-cycles).

(v) If G is Dodecahedron, then CUTP(G) has 23, 804 facets in 5 orbits, namely:
orbit of 2|E| = 60 edge facets, orbit of 24p5 = 192 5-cycle facets (from all

|F | = p5 = 12 face-bounding cycles), orbit of 28c9 = 5, 120 9-cycle facets (from all
c9 = 20 vertex-containing 9-cycles), orbit of 29|E| = 15, 360 10-cycle facets (from

30 edge-containing 10-cycles), orbit of 29 × 6 = 3, 072 10-cycle facets (from |F |
2 = 6

face-containing 10-cycles).

In a Truncated Tetrahedron, call ring-edges those bounding a triangle, and rung-
edges all 6 other ones.

Proposition 2. (i) If G is Truncated Tetrahedron, then CUTP(G) has 540 facets:

(1) orbit of 2× 6 edge facets (from all 6 rung-edges),
(2) orbit of 23p3 3-cycle facets (from all p3 = 4 3-face-bounding cycles),
(3) orbit of 25p6 6-cycle facets (from all p6 = 4 6-face-bounding cycles),
(4) orbit of 27×3 8-cycle facets (from 1

2

(

4
2

)

rung-edge-containing 8-cycles, which
are also the equators).

(ii) If G is Cuboctahedron, then CUTP(G) has 1, 360 facets, namely:

(1) orbit of 22p3 3-cycle facets (from all p3 = 8 3-face-bounding cycles),
(2) orbit of 23p4 4-cycle facets (from all p4 = 6 4-face-bounding cycles),
(3) orbit of 25|V | 6-cycle facets (from all 12 vertex-containing 6-cycles),
(4) orbit of 25 × 4 = 128 6-cycle facets (from all p3

2 3-face-containing 6-cycles,
which are also equators and the central circuits),

(5) orbit of 27p4 = 768 8-cycle facets (from all 6 4-face-containing 8-cycles,
which are also zigzags).

Given a Prismm (m 6= 4) or an APrismm (m 6= 3), we call rung-edges the edges
connecting two m-gons, and ring-edges other 2m edges.

Let P be an ordered partition X1∪· · ·∪X2t = {1, . . . ,m} into ordered sets Xi of
|Xi| ≥ 3 consecutive integers. Call P -cycle of Prismm the chordless (m+2t)-cycle
obtained by taking the path X1 on the, say, 1-st m-gon, then rung edge (in the
same direction, then path X2 on the 2-nd m-gon, etc. till returning to the path
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X1. Any vertex of Prismm can be taken as the 1-st element of X1, in order to
fix a P -cycle. So, a P -cycle defines an orbit of 2m+2t−12m (m + 2t)-cycle facets
of CUTP(Prismm), except the case (|X1|, . . . , |Xm|) = (|X2|, . . . , |X2t|, |X1|) when
the orbit is twice smaller.

A P -cycle of APrismm is defined similarly, but we ask only |Xi| ≥ 2 and rung
edges, needed to change m-gon, should be selected, in the cases |Xi| = 2, 3 so that
they not lead to a ring edge,i.e., a chord on P . Clearly, P -cycles are are all possible
chordless t-cycles with t 6= 4,m for Prismm and with t 6= 2,m for APrismm.

Proposition 3. (i) If G is Prismm (m ≥ 5), then all facets of CUTP(G)) are:

(1) orbit of 2m edge facets (from all m rung-edges)
(2) orbit of 4m edge facets (from all 2m ring-edges);
(3) orbit of 23p4 = 8m 4-cycle facets (from all m 4-face-bounding 4-cycles);
(4) orbit of 2m−1pm of m-cycle facets (from both m-face-bounding m-cycles);
(5) orbits of cycle facets for all possible P -cycles.

(ii) If G is APrismm(m ≥ 4), then all facets of CUTP(G)) are:

(1) orbit of 22p3 = 8m 3-cycle facets (from all 2m 3-face-bounding 3-cycles);
(2) orbit of 2m−1pm of m-cycle facets (from both m-face-bounding m-cycles);
(3) orbits of cycle facets for all possible P -cycles.

2.4. Möbius ladders and Petersen graph. All Möbius laddersM2m are toroidal.
Möbius ladder M6 = K3,3, Petersen graph and Heawood graph are both, toroidal
and 1-planar.

Given the Möbius ladder M2m, call ring-edges 2m those belonging to the 2m-
cycle C1,...,2m, and rung-edges all other ones, i.e., (i, i+m) for i = 1, . . . ,m.

For any odd t dividing m, denote by C(m, t) the (m+ t)-cycle of M2m, having,
up to a cyclic shift, the form

1, . . . , 1 +
m

t
, 1 +

m

t
+m, . . . , 1 +

2m

t
+m, 1 +

2m

t
+ 2m, . . . , 1 +

3m

t
+ 2m, . . . ,

i.e., t consecutive sequences of 2m
t

− 1 ring-edges, followed by a rung-edge. Such
C(m, 1) exists for any m ≥ 3; for t > 1, their existence requires divisibility of m by
t. Clearly, the number of (m+ t)-cycles C(m, t) is 2m

t
.

Conjecture 1. If G = M2m (m ≥ 4), then among facets of CUTP(G) there are:
two orbits of 4m and 2m edge facets (from all 2m ring- and m rung-edges),
orbit of 23c4 = 8m 4-cycles facets (from all m 4-cycles),
orbit of 2m2m (m+ 1)-cycle facets (from all 2m (m+ 1)-cycles C(m, 1)),
for any odd divisor t > 1 of m, orbit of 2m+t m

t
(m + t)-cycle facets (from all

(m+ t)-cycles C(m, t)).

There are no other orbits for m = 3, 4 and for m = 3 first two orbits unite into
one of 18 edge facets, while all other orbits unite into one of 23c4 = 72 4-cycle
facets. CUTP(M10) has only one more orbit: the orbit of 210 facets of incidence 15
(i.e., simplicial facets), defined by a cyclic shift of

10
∑

i=1

1

2
(3 − (−1)i)xi,i+1 +

m
∑

i=0

xi,i+m − 2(x5,10 + 2x1,2 + x3,8).

CUTP(M12) also has only one more orbit: 2126 similar facets of incidence 20.
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Petersen graph has three circuit double covers: by six 5-gons (actually, zigzags),
by five cycles of lengths 9, 6, 5, 5, 5 and by 5 cycles of lengths 8, 6, 6, 5, 5. It can be
embedded in projective plane, in torus and in Klein bottle with corresponding sets
of six, five and five faces.

Petersen graph have only 5−, 6−, 8− and 9-cycles; it has c5 = 12 and c6 = 10.
Heawood graph, i.e., (3, 6)-cage, have the girth 6 and c6 = 28, c8 = |E| = 21.

Proposition 4. CUTP(Petersen graph) has 3, 614 facets in 4 orbits:

(1) orbit of 2|E| = 30 edge facets,
(2) orbit of 24c5 = 192 5-cycle facets,
(3) orbit of 25c6 = 320 5-cycle facets,
(4) orbit of 2103 simplexes, represented by

(C12345 − 2x15)− (C1′4′2′5′3′ − x1′4′ − x2′5′) + 2
∑

1≤i≤5

xii′ ,

where Petersen graph is seen as C12345 + C1′4′2′5′3′ +
∑

1≤i≤5 xii′ .

Remark 2. Three of all 9 orbits of facets of CUTP(Heawood graph), are:

(1) 2|E| = 42 edge facets,
(2) 25c6 = 896 6-cycle facets and
(3) 27c8 = 2, 688 8-cycle facets.

2.5. Complete-like graphs. Kn is toroidal only for n = 5, 6, 7, while it is 1-
planar only for n = 5, 6. Among complete multipartite graphs G, the planar ones
are: K2,m; K1,1,m; K1,2,2; K1,1,1,1 = K4 and their subgraphs. The 1-planar G are,
besides above: K6; K1,1,1,6; K1,1,2,3; K2,2,2,2; K1,1,1,2,2 and their subgraphs ([11])

Given sets A1, . . . , At with t ≥ 2 and 1 ≤ |A1| ≤ · · · ≤ |At|, let G be complete
multipartite graph Ka1,...,at

with ai = |Ai| for 1 ≤ i ≤ t.
All possible chordless cycles in G are c3 =

∑

1≤i<j<k≤t aiajak. triangles and

c4 =
∑

1≤i≤t

(

ai

2

)(

aj

2

)

quadrangles. Hence, c3 > 0 if and only if t > 2 and c4 > 0 if

and only if (a1, t) 6= (1, 2). So, among edge and s-cycle facets of CUTP(G), only
three such orbits are possible: 2|E| edge facets if t = 2, 4c3 3-cycle facets if ≥ 3
and 8c4 4-cycle facets if (a1, t) 6= (1, 2).

All cases, when there are no other facets, i.e., when G has no K5-minor, are
given in Table 1; note that the facets are simplexes for G = K2,2 and K1,1,1,1. In
particular, G = Km+i − Km,m > 1, has no K5-minor only for i = 1, 2, 3. The
facets of CUTP(G) are the orbit of 2m edge facets for i = 1, the orbit of 2m 3-cycle
facets for i = 2 and two orbits (of sizes 12m and 4) of 3-cycle facets for i = 3.

Some of remaining cases presented in Table 2. ForG = Km+4−Km = K1,1,1,1,m>1

andK1,1,2,m>2, the number of orbits stays constant for anym: 4 and 7, respectively.
Given sequence b1, . . . , bn of integers, which sum to 1, let us call

hyp(b) =
∑

1≤i,j≤n

xijbibj ≤ 0

(when it is applicable) hypermetric inequality. Note that hyp(1, 1,−1, 0, . . . , 0) is
usual triangle inequality. Denote hyp(b) with all non-zero bi being bx = by = 1 =
−bz by Tr(x, y; z) and hyp(b) with all non-zero bi being bx = by = bz = 1 = −bu =
−bv by Pent(x, y, z;u, v).

If G = K1,1,2,m with m ≥ 3, then CUTP(G) has 8+20m+8
(

m
2

)

(16m−15) facets

in 7 orbits: 3 orbits of 8, 4m, 16m 3-cycle facets, one orbit of 8
(

m
2

)

4-cycle facets and
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3 orbits of 64
(

m
2

)

, 64
(

m
2

)

, 384
(

m
3

)

{0,±1}-valued non-s-cycle facets, having 4 values
−1 and 11, 11, 12 values of 1. The partition is {1}, {2}, {3, 4}, {5, . . . ,m+ 4}.

CUTP(K1,1,2,2) has 184 facets in 4 orbits: 2 orbits of 8+8, 32 3-cycle facets, one
orbit of 8 4-cycle facets and one orbits of 27 facets, represented by

hyp(1, 1, 1,−1, −1, 0) + hyp(0, 0, 1, 1, 0,−0,−1) ≤ 0.

The graph G = Km+t −Km = K1,...,1,m has a K5-minor only if t ≥ 4. If m ≥ 3,

then CUTP(G) has 2 orbits of 4m
(

t
2

)

and 4
(

t
3

)

3-cycle facets and, for t < 4 only,
no other facets. The partition is {1}, . . . , {t}, {t+ 1, . . . , t+m}.

If G = Km+4 −Km, then CUTP(G) has 8(8m2 − 3m+ 2) facets in 4 orbits: 2
orbits of 24m, 16 3-cycle facets and 2 orbits of sizes 16m, 128

(

m
2

)

, represented by
hyp(1, 1,−1,−1, 1, 0, . . . , 0) ≤ 0, i.e., Pent(1, 2, 5; 3, 4) and

hyp(1, 1,−1, 0, 1,−1, 0, . . . , 0) + hyp(0, 0, 0,−1, 1, 1, 0, . . . , 0) ≤ 0.

If G = Km+5 − Km, then among many orbits of facets of CUTP(G), there
are 2 orbits of 40, 40m 3-cycle facets and 3 orbits of 16, 80m, 20m(m− 1) facets,
represented, respectively, by

(1) hyp(1, 1, 1,−1,−1, 0, . . . , 0) ≤ 0,
(2) hyp(1, 1,−1,−1, 0, 1, 0, . . . , 0) ≤ 0
(3) and hyp(1,−1,−1, 0, 0, 1, 1, 0, . . . , 0) + hyp(0, 0, 0, 1, 0, 1− 1, 0, . . . , 0) ≤ 0.

Among 12 remaining orbits for K7 −K2, two (of sizes 2730, 2760) are {0,±1}-
valued; they are represented, respectively, by

(1) hyp(1, 1,−1,−1, 1, 1,−1)+ (x34 + x47 − x2,7 + x12 − x13) ≤ 0 and
(2) (x13 + x34 + x45 + x15) + (x23 + x36 + x67 + x27)− (x14 + x47 − x57 + x25 +

x26 + x16).

Let G = Pyr2(Cm). Clearly, it is K4,K5 if m = 2, 3, respectively. For m ≥ 4,
it hold A(G) = 4m and all chordless cycles 3m triangles and unique m-cycle. Any
of 3m + 1 edges belongs to a triangle. So, among orbits of facets of CUTP(G),
there are two (of size 8m and 4m) orbits of 3-cycle facets and orbit of 2m−1 m-cycle
facets. All other facets for m ≤ 7 are {0,±1}-valued.

For Pyr2(C1...m) with m = 4, unique remaining orbit consists of 27 facets,
represented by Pent(3, 5, 5; 1, 2) + Tr(1, 2; 4). Among remaining orbits for m = 5
and 7, there is an orbit of 2m+1 facets represented by

(1) Pyr2(C12345)−2((x45+x67)+(x16+x17+x36+x37)) ≤ 0 and, respectively,
by

(2) Pyr2(C12345)− 2((x12 + x19) + (x29 + x38 + x49 + x58x69 + x78)) ≤ 0.

For m = 5, two remaining orbits (each of size 265) are represented by

(1) C12345 − 2x15 + x67 + ((x17 − x16)− (x37 − x36) + (x47 − x46)) ≤ 0 and
(2) C12345−2x15+x67+((x17−x16)−(x47−x46)+(x57−x56)) ≤ 0, respectively.

For m = 6, one of 4 remaining orbits (of size 276) is represented by
C123456 − 2x12 + x78 + ((x17 − x18) + (x57 − x58)− (x67 − x68)) ≤ 0.

Note that K7 − C5 = Pyr2(C5). Now, G = K7 − C1234 = K{7},{6},{5},{1,3},{2,4}

has c3 = 19; CUTP(G) has four orbits of facets: three (of sizes 48, 24, 4) of 3-cycle
facets and one orbit of size 32, represented by Pent(4, 5, 6; 2, 7). Each ofK5-minors,
K{2,4,5,6,7} and K{1,3,5,6,7} provides 16 of above 32 facets.
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G = K7 − C7 has c3 = c4 = 7; CUTP(G) has three orbits of facets: one (of size
28) of 3-cycle facets, one (of size 56) of 4-cycle facets and one of size 64, represented
by (K7 − C1234567)− 2(x15 + Path27364).

3. Quasi-metric polytopes over graphs

We first define the inequalities satisfied by quasi-metrics on n-points.

Definition 2. Given a fixed n ≥ 3 we define:
(i) The oriented triangle inequality for all 1 ≤ i, j, k ≤ n

d(i, j) ≤ d(i, k) + d(k, j)

(ii) The non-negativity inequality for all 1 ≤ i, j ≤ n is

d(i, j) ≥ 0

(iii) A bounded oriented metric is a metric satisfying for all 1 ≤ i, j, k ≤ n the
inequalities

d(j, i) + d(i, k) + d(k, j) ≤ 2 and d(i, j) ≤ 1.

Using this we can define the cone of quasimetrics QMET(Kn) (see [19, 16] for
more details) to be the cone of oriented metrics satisfying the inequalities (i), (ii)
of 2. We define the polytope QMETP(Kn) to be the set of metrics satisfying the
inequalities of 2.

Given a subset S ⊂ {1, . . . , n} we define the oriented switching:

FS(d)(i, j) =

{

1− d(j, i) if |S ∩ {i, j}| = 1,
d(i, j) otherwise.

The symmetric group Sym(n) acts on QMET(Kn) and define a group of size n!.
The oriented switchings determine and Sym(n) act on QMETP(Kn) and determine
a group of size 2n−1n!.

The cone MET(Kn) and polytope METP(Kn) are embedded into QMET(Kn)
and QMETP(Kn) but we have another interesting subset:

Definition 3. Given n ≥ 3 and an oriented metric d ∈ QMET(Kn), d is called
weightable if it satisfies the following equivalent definitions:

(i) An oriented metric is called weightable if there exist a function wi such that
for all 1 ≤ i, j ≤ n

d(i, j) + wi = d(j, i) + wj

(ii) For all 1 ≤ i, j, k ≤ n we have

d(i, j) + d(j, k) + d(k, i) = d(j, i) + d(k, j) + d(i, k)

We thus define the cone WQMET(Kn) and polytope WQMETP(Kn) to be the
set of weightable quasimetrics of the cone QMET(Kn) and polytope QMETP(Kn).
Clearly, the oriented switching preserves WQMETP(Kn).

With all those definitions we can now define the corresponding objects on graphs:

Definition 4. Let G be an undirected graph; we define E(G) the set of edges and
Dir(E(G)) to be the set of directed edges of G:

(i) We define the cones QMET(G) and WQMET(G) to be the projections of the
cones QMET(Kn) and WQMET(Kn) on R

Dir(E(G)).
(ii) We define the polytopes QMETP(G) and WQMETP(G) to be the projections

of the polytopes QMETP(Kn) and WQMETP(Kn) on R
Dir(E(G)).
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We can now give a description by inequalities of QMET(G):

Theorem 3. For a given graph G the polyhedral cone QMET(G) is defined as the
set of functions R

Dir(E) such that
(i) For any directed edge e = (i, j) of G the inequality 0 ≤ d(i, j).
(ii) For any oriented cycle e = (v1, v2, . . . , vm) of G

(2) d(v1, vm) ≤ d(v1, v2) + d(v2, v3) + · · ·+ d(vm−1, vm)

The same results holds for WQMET(G) by adding the extra condition that there
exist a function w such that d(i, j)− d(j, i) = wi − wj .

Proof. Our proof is adapted from the proof of [23, Theorem 27.3.3]. It is clear that
the cycle inequalities (i) and (ii) are valid for d ∈ QMET(Kn) and that edges of G
do not occur in their expression. Therefore, the inequalities are also valid for the
projection.

The proof of sufficiency is done by induction and is more complicated. Suppose
that the result is proved for G + e, i.e. G to which an edge e = (i, j) has been
added. Suppose we have an element x of RDir(E(G)) satisfying all oriented cycle
inequalities.

We need to find an antecedent of x, i.e. a function y ∈ R
Dir(E(G)+e). That is we

need to find y(i, j) and y(j, i).
We write Pi,j to be the set of directed paths from i to j in G. Assume first that

Pi,j 6= ∅. We write
ui,j = min

u∈Pi,j

x(u)

since x is non-negative, we have ui,j ≥ 0. We then write

li,j = max
v∈Pi,j ,f∈v

x(r(f)) − x(v − f)

with r(f) the reversal of the directed edge f . If Pi,j = ∅, i.e. if the edge e is
connecting two connected components of G then we set li,j = ui,j = 0.

We have li,j ≤ ui,j since otherwise we could take a path u realizing the minimum
ui,j, a path v and directed edge f realizing the maximum li,j put it together and
get a counterexample to the oriented cycle inequality (ii).

So, we can find a value yi,j such that

li,j ≤ yi,j ≤ ui,j

and since ui,j ≥ 0 we can choose yi,j ≥ 0. The same holds for yj,i. Therefore we

found an antecedent of x in R
Dir(E(G)+e) and this proves the result for QMET(G)

and so the stated theorem.
For WQMET(G) we have to adjust the induction construction. If Pi,j = ∅ then

we can adjust the values of the weights w such that wi = wj . This is possible since
the weights are determined up to a constant term.

On the other hand if Pi,j is not empty then the weight is already given and we
should get in the end yi,j − yj,i = wi − wj . Actually this is not a problem since it
can be easily be shown that ui,j − uj,i = wi − wj and li,j − lj,i = wi − wj and so
the inductive construction works. �

Now we turn to the construction for the polytope case.

Theorem 4. For a given graph G the polytope QMETP(G) is defined as the set of
functions R

Dir(E) such that
(i) For any directed edge e = (i, j) of G the inequality 0 ≤ d(i, j) ≤ 1 holds
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(ii) For any oriented cycle C = (v1, v2, . . . , vm) of G and subset F of odd size

(3)
∑

f=(v,v′)∈F

d(v′, v)−
∑

f=(v,v′)∈C−F

d(v, v′) ≤ |F | − 1

The same results holds for WQMETP(G) with the extra condition that there
exist a function w such that d(i, j)− d(j, i) = wi − wj .

Proof. The proof follows by remarking that the inequalities (i) and (ii) are the
oriented switchings of the non-negative inequality and oriented cycle inequality 2.
Thus the proof follow from Theorem 3 and the same proof strategy as [23, Theorem
27.3.3]. �

The oriented multicut cones defined in the introduction are very complicated.
In particular the oriented multicuts are not stable under oriented switchings. How-
ever, we have WOMCUTP(Kn) = WQMETP(Kn) for n ≤ 4. Based on that and
analogy with Theorem 2 a natural conjecture would be that WOMCUTP(G) =
WQMETP(G) if G has no K5 minor. But it seems that for some other graphs with
no K5 minor we have WOMCUTP(G) 6= WQMETP(G).

4. hemi-metric polytopes over simplicial complexes

We can also generate metrics to a measure of distance of more than 2 objects.
Our approach differs from [15, 14, 17, 21] and has the advantage of allowing to
define it on complexes.

We consider by Setn,m the set of subsets of m+ 1 points of {1, . . . , n}.

Definition 5. Let us fix m ≥ 1 and n:
(i) A m-dimensional complex is formed by a subset of Setn,m.
(ii) A closed manifold of dimension m is formed by a subset S of Setn,m such that

for each subset S of m points of {1, . . . , n} the number of simplices of S containing
S is even.

For the case m = 1 the closed manifold of above definition corresponds to the
closed cycles. We now proceed to defining the corresponding cycle inequalities:

Definition 6. Let us fix m ≥ 1 and n. Given a m-dimensional complex K on
{1, . . . , n}, the hemimetric cone HMET(K) is formed by the functions d on K
satisfying

(i) the non-negative inequalities

d(∆) ≥ 0

for all ∆ ∈ K.
(ii) For all closed manifolds (∆1, . . . ,∆r) formed by simplices ∆i ∈ K the in-

equalities

d(∆i) ≤
∑

1≤j≤r,i6=j

d(∆j)

for all 1 ≤ i ≤ r.

For m = 1 the definition corresponds to the one of MET(G).

Theorem 5. Let us fix m ≥ 1 and n. Let us take K a m-dimensional complex on
n points. The cone HMET(K) is the projection of HMET(Setn,m) on the simplices
included in K.
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Proof. Our proof is adapted from the proof for metric of [23, Theorem 27.3.3]. The
inequalities for HMET(K) are clearly valid on HMET (Setn,m) which proves one
inclusion.

We want to prove it by induction the other inclusion. Suppose that we have
a metric d ∈ HMET(K) and a simplex ∆ /∈ K. We want to find a metric d′ on
HMET(K+∆). That is we need to find a value of d(∆) that extends the inequality.
For a subset S ⊂ Setn,m we define

d(S) =
∑

∆′∈S

d(∆′).

Let us consider the

WK,∆ = {U ⊂ K : U ∪ {∆} is a closed manifold} .

We now define the upper bound

uK,∆ = min
U∈WK,∆

d(U).

We have uK,∆ ≥ 0 since d ∈ HMET(K) implies d(∆′) ≥ 0.
The lower bound is formed by

lK,∆ = max
P∈WK,∆,F∈P

d(F ) − d(P − F ).

Suppose that lK,∆ > uK,∆. We have uK,∆ realized by U0 and lK,∆ is realized by
L0 and a face F0 ∈ L0. The union L0∪U0 is not necessarily a closed manifold since
L0 ∪ U0 may share simplices. If that is so we remove them and consider instead
W0 = L0 ∪ U0 − L0 ∩ U0.

The inequality lK,∆ > uK,∆ implies then

d(F0) > d(L0 − F0) + d(U0) = d(W0 − F0) + 2d(L0 ∩ U0) ≥ d(W0 − F0)

which violates the fact that d ∈ HMET(K). Thus we can find a value α with

lK,∆ ≤ α ≤ uK,∆ and α ≥ 0.

Thus we can find a value for d(∆) that is compatible with an extension. �

The inequality set defining HMET(K) is highly redundant but is still finite so,
the cone HMET(K) is actually polyhedral.

On the other hand, using the inequalities obtained from the simplex does not
work. Consider for example the complex Set6,2. The Octahedron has 6 vertices
and 8 faces and is a closed manifold. Thus it determines an inequality of the form

x000 ≤ x100 + x010 + x001 + x110 + x101 + x011 + x111

which is not implied by the inequality on the simplices. The proof can be done
by linear programming using our software polyhedral ([25]). This proves that our
construction is different from the one of [15, 14, 21] and it would be interesting to
redo the computations of those works.

5. Acknowledgments

Second author gratefully acknowledges support from the Alexander von Hum-
boldt foundation.



GENERALIZED CUT AND METRIC POLYTOPES OF GRAPHS AND SIMPLICIAL COMPLEXES15

References

[1] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory 5 (1981),
no. 3, 243–246, URL: http://dx.doi.org/10.1002/jgt.3190050305, doi:10.1002/jgt.3190050305.

[2] D. Avis, P. Hayden, and M. M. Wilde, Leggett-Garg inequalities and the geome-

try of the cut polytope, Phys. Rev. A (3) 82 (2010), no. 3, 030102, 4, URL:
http://dx.doi.org/10.1103/PhysRevA.82.030102, doi:10.1103/PhysRevA.82.030102.

[3] D. Avis and Mutt, All the facets of the six-point Hamming cone, European J. Com-
bin. 10 (1989), no. 4, 309–312, URL: http://dx.doi.org/10.1016/S0195-6698(89)80002-2,
doi:10.1016/S0195-6698(89)80002-2.

[4] F. Barahona, The max-cut problem on graphs not contractible to Ks, Oper. Res.
Lett. 2 (1983), no. 3, 107–111, URL: http://dx.doi.org/10.1016/0167-6377(83)90016-0,
doi:10.1016/0167-6377(83)90016-0.

[5] F. Barahona, On cuts and matchings in planar graphs, Math. Programming 60 (1993), no. 1,
Ser. A, 53–68, URL: http://dx.doi.org/10.1007/BF01580600, doi:10.1007/BF01580600.

[6] F. Barahona and A. R. Mahjoub, On the cut polytope, Math. Programming 36 (1986), no. 2,
157–173, URL: http://dx.doi.org/10.1007/BF02592023 , doi:10.1007/BF02592023.

[7] D. Bryant and P. F. Tupper, Hyperconvexity and tight-span theory for diversities, Adv.
Math. 231 (2012), no. 6, 3172–3198, URL: http://dx.doi.org/10.1016/j.aim.2012.08.008,
doi:10.1016/j.aim.2012.08.008.

[8] D. Bryant and P. F. Tupper, Diversities and the geometry of hypergraphs, Discrete Math.
Theor. Comput. Sci. 16 (2014), no. 2, 1–20.

[9] T. Christof and G. Reinelt, Decomposition and parallelization techniques for enumerating the

facets of combinatorial polytopes, Internat. J. Comput. Geom. Appl. 11 (2001), no. 4, 423–
437, URL: http://dx.doi.org/10.1142/S0218195901000560 , doi:10.1142/S0218195901000560.

[10] P. Crescenzi and V. Kann, Approximation on the web: a compendium of NP optimiza-

tion problems, Randomization and approximation techniques in computer science (Bologna,
1997), Lecture Notes in Comput. Sci., vol. 1269, Springer, Berlin, 1997, pp. 111–118, URL:

http://dx.doi.org/10.1007/3-540-63248-4 10, doi:10.1007/3-540-63248-4 10.
[11] J. Czap and D. Hudák, 1-planarity of complete multipartite graphs, Discrete Appl.

Math. 160 (2012), no. 4-5, 505–512, URL: http://dx.doi.org/10.1016/j.dam.2011.11.014,
doi:10.1016/j.dam.2011.11.014.

[12] E. Deza, M. Deza, and M. Dutour Sikirić, Generalizations of finite metrics and
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