
ar
X

iv
:1

80
7.

05
98

2v
1

 [
m

at
h.

O
C

]
 1

6
Ju

l 2
01

8

Enhanced Basic Procedures for the Projection and

Rescaling Algorithm

David Huckleberry Gutman

Abstract

Using an efficient algorithmic implementation of Caratheodory’s theorem, we
propose three enhanced versions of the Projection and Rescaling algorithm’s basic
procedures each of which improves upon the order of complexity of its analogue
in [Mathematical Programming Series A, 166 (2017), pp. 87-111].

1 Introduction

Peña and Soheili [5] propose a two-step projection and rescaling algorithm, which ex-
tends an algorithm by Chubanov [3], to solve the conic feasibility problem

Find x ∈ L ∩ R
n
++ (1)

where L subspace of Rn [3, 5]. Assuming the projection matrix, PL, for L is available
we can rewrite (1) as

Find x such that PLx > 0. (2)

The projection and rescaling algorithm consists of two subprocedures:

1. Basic Procedure (Projection): This procedure uses PL to find a point in L ∩ R
n
+

provided this cone contains a deeply interior point. This is implemented via one
of three schemes based on the Von Neumann/Perceptron algorithm.

2. Rescaling : Using the final iterate from the basic procedure, this step rescales
L∩R

n
+ such that its interior points - provided L∩R

n
+ 6= ∅ - become “deeper” in

the interior of Rn
+.

In this paper, we propose enhancements of each of the Von Neumann/Perceptron
basic procedures. Our enhancements iteratively apply a technique used to prove
Caratheodory’s theorem. These enhanced procedures improve the complexity of the
basic procedure from O(n4m) to O(n2m3) operations when L has dimension m: a
significant improvement when m << n.

Fundamentally, the basic procedure of Peña and Soheili adapts the Von Neumann
and Perceptron procedures to iteratively reduce ‖PLx‖2 on the standard n dimensional

1

http://arxiv.org/abs/1807.05982v1

simplex ∆n−1 := {x ∈ R
n : ‖x‖1 = 1, x ≥ 0} until either PLx > 0 or ‖PLx‖2 ≤

1
3
√
n
‖x‖∞. Thus, the basic procedure intends to approximately solve the subproblem

min
x∈∆n−1

‖PLx‖
2
2. (3)

The convergence proofs in [5] depends on the observation that ‖x‖∞ ≥ 1
n
for all x ∈

∆n−1. As such, the reasoning in [5] yields a faster rate provided we restrict the iterates
of the Von Neumann/Perceptron schemes to proper faces of ∆n−1. If Q ∈ R

n×m is an
orthonormal basis for L then PL = QQT and we may rephrase (3) as

min
x∈∆n−1

‖QTx‖22 = min
z∈conv(QT)

‖z‖22 (4)

where conv(QT) denotes the convex hull of QT ’s columns. By Caratheodory’s theorem,
any point in conv(QT) can be written as convex combination of at most m+1 columns
of QT . Our proposed enhancements apply this observation to ensure that each of the
iterates is a convex combinations of no more than m+ 1 columns of QT .

Our enhanced basic procedures iteratively reduce the objective (4) using a Von
Neumann/Perceptron scheme which applies a modified version of the Incremental Rep-
resentation Reduction (IRR) procedure of [1] at each iteration. When provided a point
z ∈ conv(QT), the IRR outputs a new affinely independent, convex representation of
the point z provided it already contains a sufficiently large set of affinely independent
vectors in its support. Whereas the IRR operates in O(m3) time, our version operates
in O(m2) time by allowing for vectors in the representation of x that have zero support.

This paper is organized as follows. Section 2 describes the mIRR, and proves im-
portant properties of it including its O(m2) complexity. Section 3 describes the limited
support Von Neumann and Perceptron algorithms. Section 4 elaborates possible ex-
tensions.

2 Modified Incremental Representation Reduction

The heart of our improved basic procedure is a modified version of the Incremental
Representation Reduction Procedure of [1]. This subprocedure iteratively applies the
main technique used in standard proofs of Caratheodory’s theorem [4]. To simplify

notation, given a matrix A ∈ R
m×n we define Ã as the augmented matrix

[

1 . . . 1
A

]

.

If B = [B(1), ..., B(k)] ⊆ {1, ..., n} is an ordered set of indices and x ∈ R
n we let

AB = [AB(1)...AB(k)] ∈ R
m×k where AB(i) denotes the B(i)-th column of A and xB =

(xB(i)...xB(k)) ∈ R
k and xB(i) denotes the B(i)-th entry of x. Given a full column

rank matrix M ∈ R
k×l, we let M † denote its unique pseudoinverse, (MTM)−1MT .

This notation strongly mimics the notation used in [2] to present the revised Simplex
method. The resemblance is entirely intentional; our method strongly resembles the
revised Simplex method.

2

Theorem 1. Suppose B ⊆ {1, ..., n} is an ordered set of indices such that AB consists
of affinely independent columns and Ã†

B is known. If z = Ax = ABxB + Ajxj for
some x ∈ ∆n−1 and j ∈ {1, ..., n}\B then we can find x+ ∈ ∆n−1, an ordered set of
indices B+ ⊆ B′ :=

[

B j
]

, and Ã†
B+ such that z = Ax = AB+x+

B+ and AB+ consists
of affinely independent columns in O(m2) operations.

Proof. There are two cases we must tackle:

1. Ãj 6= ÃBÃ
†
BÃj : Aj is affinely independent of the columns of AB, i.e. the matrix

[

AB Aj

]

has affinely independent columns.

2. Ãj = ÃBÃ
†
BÃj : Aj is affinely dependent on the columns of AB, i.e. the matrix

[

AB Aj

]

has affinely independent columns.

Determining the equality of Ãj and ÃBÃ
†
BÃj requires vector-matrix multiplication, an

O(m2) operation.

Case 1 (Ãj 6= ÃBÃ
†
BÃj): In this case, let B+ = B′ and x+ = x. We claim that ÃB+ is

given by the formula

Ã†
B+ =

[

Ã†
B

0

]

−

[

Ã†
BÃj

−1

]

ÃT
j (I − ÃBÃ

†
B)

ÃT
j (I − ÃBÃ

†
B)Ãj

. (5)

The quantity ÃT
j (I− ÃBÃ

†
B)Ãj = ‖Ãj− ÃBÃ

†
BÃj‖

2 is non-zero by hypothesis and thus
the expression on the right is well defined. It suffices to verify that right multiplication
of the right hand side of (5) by ÃB+ =

[

ÃB Ãj

]

yields the identity matrix. We
compute

[

Ã†
B

0

]

[

ÃB Ãj

]

=

[

Ã†
BÃB Ã†

BÃj

0 0

]

=

[

Ik×k Ã†
BÃj

0 0

]

(6)

ÃT
j (I − ÃBÃ

†
B)
[

ÃB Ãj

]

= ÃT
j (I − ÃBÃ

†
B)Ãj

[

0 1
]

. (7)

Observe that the right hand side of (7) is non-zero since Ãj 6= ÃBÃ
†
BÃj . Combining

equations (6) and (7) yields
(

[

Ã†
B

0

]

−

[

Ã†
BÃj

−1

]

ÃT
j (I − ÃBÃ

†
B)

ÃT
j (I − ÃBÃ

†
B)Ãj

)

[

ÃB Ãj

]

=

[

Ik×k Ã†
BÃj

0 0

]

−

[

0 Ã†
BÃj

0 −1

]

= I(k+1)×(k+1)

thus verifying our formula for Ã†
B+ . The formula (5) uses matrix addition and vector-

matrix multiplication so it takes at most O(m2) operations.

Case 2 (Ãj = ÃBÃ
†
BÃj): Let u =

[

Ã†
BÃj −1

]

, θ∗ = maxi:ui<0
xB′(i)

ui
, x+

B′ = xB′ + θ∗u,

and x+
(B′)c = 0. We must show that x+ ∈ ∆n−1. By hypothesis, u is the solution to the

system
[

ÃB Ãj

]

u = 0

3

because Ãj = ÃBÃ
†
BÃj . Hence,

∑

i=1 ui = 0 which implies

k+1
∑

i=1

x+
B′(i) =

k+1
∑

i=1

xB′(i) = 1.

Moreover, the definition of θ∗ ensures x+ ≥ 0 completing our proof that x+ ∈ ∆n−1.
Next, we construct B+ and Ã†

B+ . Let i
∗ the smallest index such that

xB′(i∗)

ui
= θ∗ and

ui < 0. By construction, θ∗ ensures x+
B+(i∗) = 0. We now have two subcases: B(i∗) = j

and B(i∗) 6= j. In the first case, let B+ = B and Ã†
B+ = Ã†

B. By hypothesis, AB+ = AB

consists of affinely independent columns. In the second case, let B+(i) = B(i) for i 6= i∗

and B+(i∗) = j. We must show that AB+ consists of affinely independent columns.
Assume for the sake of contradiction that it does not. Then there must exist some
w ∈ R

k+1 such that wi∗ = 0 and

0 = ÃB+w − Ãj = ÃBw − Ãj

but this implies that

ÃB

(

w − Ã†
BÃj

)

= Ãj − Ãj = 0.

By affine independence of the columns of AB we determine that

w − Ã†
BÃj = 0 ⇔ w = Ã†

BÃj

so that the i∗-th entry of Ã†
BÃj , which is precisely ui∗, is zero: a contradiction. Thus,

the columns of AB+ are affinely independent. Finally, we prove that it is possible
to derive AB+ in O(m2) operations in this second case. Form the augmented matrix
[

Ã†
B Ã†

BÃj

]

. Add to each row a multiple of the i∗-th row to make the last column

equal to the unit vector ei∗ . The first |B| columns of the resultant matrix are Ã†
B+ .

This requires no more than O(m2) operations since at most m row operations are
required.

The proof of this theorem immediately yields our core algorithm.

4

Algorithm 1 Modified Incremental Representation Reduction Procedure (mIRR)

1: Input: An ordered set of indices B = [B(1), ..., B(k)] ⊆ {1, ..., n} such that AB is a
matrix with affinely independent columns, Ã†

B, j /∈ B, and y = Ax = ABxB +Ajxj

for some x ∈ ∆n−1 with x[B,j]c = 0.

2: Compute u′ = Ã†
BÃj and u =

[

(u′)T −1
]

. If ÃBu
′ 6= Ãj then the columns of

[

ÃB Ãj

]

are affinely independent. In this case, output x+ = x, B+ = B ∪ {j},
and

Ã†
B+ =

[

Ã†
B

0

]

−

[

Ã†
BÃj

1

]

ÃT
j (I − ÃBÃ

†
B)

ÃT
j (I − ÃBÃ

†
B)Ãj

.

to complete the procedure. Otherwise, proceed to the next step.
3: Let θ∗ = maxi:ui<0

xi

ui
, i∗ be the smallest index that for which θ∗ is achieved, and

x+
[B,j] = x[B,j] + θ∗u, x+

[B,j]c = 0.

If i∗ = j then output x+, B+ = B, and ÃB+ = ÃB to complete the procedure.
Otherwise, proceed to the next step.

4: Let B+ = [B(1), ..., B(i∗ − 1), j, B(i∗), ..., B(k)]. Form the |B| × (|B| + 1) matrix
[

Ã†
B u′]. Add to each row a multiple of the i∗-th row to make the last column

equal to the unit vector ei∗ . The first |B| columns of the resultant matrix are Ã†
B+ .

Output B+, x+ and Ã†
B+ .

The following is an easy corollary of theorem 1.

Corollary 1. The mIRR produces an affinely independent representation, y = Ax =
AB+xB+ with x ∈ ∆n−1 and x(B+)c = 0, of the input point y = Ax and the pseudoinverse

Ã†
B+ in O(m2) operations.

3 Limited Support Basic Procedures

In this section we propose each of our modified basic procedures. Recall that we assume
the availability of an orthonormal basis for L and that Q ∈ R

n×m is the matrix whose
columns are these basis vectors. The convergence results of [5] for the original basic
procedures depend upon the maximum size of the support of the iterates. If it were
possible to ensure that the iterates maintained affinely independent support then the
support would have maximum size m+1. This is the crux of our enhanced procedures
and the mIRR enables us to do this. Our enhanced procedures start with a single
column of the matrix QT . Then, until the stopping condition is reached, they take a
Von-Neumann/Perceptron-like step - which may increase the size of the support by at
most one - followed by an application of mIRR to ensure the support remains affinely
independent. We will let {qi}

n
1 denote the columns of QT and we use P in place of PL.

5

The first two schemes, the Limited Support Von Neumann and Limited Support
Perceptron, are subsumed in the following framework which we call the Limited Support
Scheme (LSS). Each of these procedures is an enhancement of those found in [5] using
mIRR.

Algorithm 2 Limited Support Scheme

x0 = e1, z0 = QTx0 = q1, B0 = {1}, Q̃†
B0

= 1
‖q̃1‖ q̃

T
1 , t = 0

while Pxt > 0 and ‖(Pxt)
+‖ ≥ 1

3
√
n
‖xt‖∞ do

Let j = argmini∈[n] 〈qi, zt〉
x′
t+1 = xt + θt(ej − xt)

zt+1 = QTx′
t+1

if j /∈ Bt then

(xt+1, Bt+1, Q̃
†
Bt+1

) = mIRR(x′
t+1, Bt, j, Q̃

†
Bt
, Qj)

else

xt+1 = x′
t+1, Bt+1 = Bt, Q̃

†
Bt+1

= Q̃†
Bt

end if

t = t+ 1
end while

If θt = 1
t+1

then the resulting procedure is referred to as the Limited Support
Perceptron Scheme (LSP). If θt is determine by an exact line search then the resulting
procedure is referred to as the Limited Support Von Neumann Scheme (LSVN).

Proposition 1. The following hold for algorithms LSP and LSVN:

1. For all t ≥ 0 such that LSP or LSVN have not halted, ‖zt‖
2 ≤ 1

t
.

2. The stopping condition, Pxt > 0 or ‖(Px)+‖ ≤ ‖xt‖∞
3
√
n
, occurs in at most 9(m +

1)2n iterations.

3. LSP and LSVN require O(m4n) arithmetic operations.

Proof. Part 1 of our proposition is known from [5].

2. |{i ∈ {1, ..., n} : xi > 0}| ≤ |Bt| ≤ m + 1 throughout the algorithm since the
columns representing xt are affinely independent. Thus, ‖xt‖∞ ≥ 1

m+1
since xt ∈ ∆m.

This implies that 1
3
√
n
‖x‖∞ ≥ 1

3(m+1)
√
n
. As ‖(Px)+‖ ≤ ‖Px‖, we conclude from 1 that

the one of the two stopping conditions occurs by t = 9(m+ 1)2n.

3. By part 1, LSP and LSVN terminate in at most t = 9(m + 1)2n main iterations.
Each of the operations besides mIRR requires at most nm operations while theorem 1
states mIRR requires O(m2) operations. Since m2 ≤ nm, we conclude each iteration
has computational cost O(nm). Thus, the number of required arithmetic operations
for LSP and LSVN is O(m3n2).

6

3.1 Limited Support Von Neumann with Away Steps Scheme

Here we propose a limited support variation of the Von Neumann with Away Steps
scheme proposed in [5]. This procedure is essentially the same as above except that it
allows for “away” directions.

Algorithm 3 Limited Support Von Neumann with Away Steps Scheme (LSVN)

x0 = e1, z0 = QTx0 = q1, B0 = {1}, Q̃†
B0

= 1
‖q̃1‖ q̃

T
1 , t = 0

while Pxt > 0 and ‖(Pxt)
+‖ ≥ 1

3
√
n
‖xt‖∞ do

Let j = argmini∈[n] 〈qi, zt〉,k = argmaxi∈[n] 〈qi, zt〉
if ‖zt‖

2 − 〈qj, zt〉 > 〈qk, zt〉 − ‖zt‖
2 then

(Regular Step) a := ej − xt; θmax = 1
else

(Away Step) a := xt − ek; θmax =
(xt)j

1−(xt)j

end if

θt = argminθ∈[0,θmax] ‖P (xt + θa)‖2 = min
{

θmax,−
〈xt,Pa〉
‖Pa‖2

}

x′
t+1 = xt + θta

zt+1 = QTx′
t+1

if j /∈ Bt and a regular step is taken then

(zt+1, xt+1, Bt+1, Q̃
†
Bt+1

) = mIRR(zt+1, x
′
t+1, Bt, j, Q̃

†
Bt
, Qj)

else

xt+1 = x′
t+1, Bt+1 = Bt, Q̃

†
Bt+1

= Q̃†
Bt

end if

t = t+ 1
end while

Proposition 2. The following hold for algorithm LSVNA:

1. For all t ≥ 0 such that LSVNA has not halted, ‖zt‖
2 ≤ 1

t
.

2. The stopping condition, Pxt > 0 or ‖(Px)+‖ ≤ ‖xt‖∞
3
√
n
, occurs in at most 9(m +

1)2n iterations.

3. LSVNA requires O(m4n) arithmetic operations.

Proof. The proof of the first part of the proposition is known from [5]. The remaining
parts follows from similar reasoning to that in the proof of proposition 1.

4 Extensions

The original paper [5] extends the problem (1) to the semidefinite cone and the more
general symmetric cone case. It is maybe possible to extend our enhanced algorithms to
these settings. The primary obstacle will be defining the systems of equations necessary
to mIRR.

7

References

[1] Amir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient
for non-strongly convex functions. Mathematical Programming, 164(1):1–27, 2017.

[2] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, vol-
ume 6. Athena Scientific Belmont, MA, 1997.

[3] S. Chubanov. A polynomial projection algorithm for linear feasibility problems.
Mathematical Programming, 153(2):687–713, 2015.

[4] J. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Springer
Science & Business Media, 2012.

[5] Javier Peña and Negar Soheili. Solving conic systems via projection and rescaling.
Mathematical Programming, 166(1):87–111, 2017.

8

	1 Introduction
	2 Modified Incremental Representation Reduction
	3 Limited Support Basic Procedures
	3.1 Limited Support Von Neumann with Away Steps Scheme

	4 Extensions

