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Abstract

We introduce log-log convex programs, which are optimization problems with positive vari-
ables that become convex when the variables, objective functions, and constraint functions are
replaced with their logs, which we refer to as a log-log transformation. This class of problems
generalizes traditional geometric programming and generalized geometric programming, and
it includes interesting problems involving nonnegative matrices. We give examples of log-log
convex functions, some well-known and some less so, and we develop an analog of disciplined
convex programming, which we call disciplined geometric programming. Disciplined geometric
programming is a subclass of log-log convex programming generated by a composition rule and
a set of functions with known curvature under the log-log transformation. Finally, we describe
an implementation of disciplined geometric programming as a reduction in CVXPY 1.0.

1 Introduction

1.1 Geometric and generalized geometric programs

A geometric program (GP) is a nonlinear mathematical optimization problem in which all the
variables are positive and the objective and constraint functions are either monomial functions
or posynomial functions. A monomial is any real-valued function given by x 7→ cxa11 x

a2
2 · · ·xann ,

where x = (x1, x2, . . . , xn) is a vector of positive real variables, the coefficient c is positive, and
the exponents ai are real; a posynomial function is any sum of monomial functions. A GP is an
optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p,
(1)

where the functions fi are posynomials, the functions gi are monomials, and x ∈ Rn
++ is the decision

variable. (R++ denotes the set of positive reals.)
The problem (1) is not convex, but it can be transformed to a convex optimization problem by

a well-known transformation. We can make the change of variables u = log x (meant elementwise)
and take the logarithm of the objective and constraint functions to obtain the equivalent problem

minimize log f0(eu)
subject to log fi(e

u) ≤ 0, i = 1, . . . ,m
log gi(e

u) = 0, i = 1, . . . , p,
(2)

which can be verified to be convex [BV04, §4.5.3]. (The exponential eu is meant elementwise.)
Because GPs are reducible to convex programs, they can be solved efficiently and reliably using any
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Figure 1: Hierarchy of optimization problems.

algorithm for convex optimization, such as interior-point methods [NN94] or first-order methods
[BPC+11]. When all fi are monomials, the problem (2) reduces to a general linear program (LP),
so GP is a generalization of LP.

Since its introduction four decades ago [DPZ67], geometric programming has found applica-
tion in chemical engineering [Cla84], environment quality control [Gre95], digital circuit design
[BKP+05], analog and RF circuit design [HBL01; LGX+04; XPB04], transformer design [Jab05],
communication systems [KB02; Chi05; CTP+07], biotechnology [MSVGA+07; VGAMS+10], epi-
demiology [PZE+14], optimal gas flow [MFB+15], tree-water-network control [PA15], and aircraft
design [HA14; BH18a; SBH18]. This list is far from exhaustive; for many other examples, see §10.3
of [BKV+07].

Evidently monomials and posynomials are closed under various operations. For example, mono-
mials are closed under multiplication, division, and taking powers, while posynomials are closed
under addition, multiplication, and division by monomials. A generalized posynomial is defined as a
function formed from monomials using the operations addition, multiplication, positive power, and
maximum. Generalized posynomials, which include posynomials, are also convex under a logarith-
mic change of variable, after taking the log of the function. It follows that a generalized geometric
program (GGP), i.e., a problem of the form (1), with fi generalized posynomials and gi monomials,
transforms to a convex problem in (2) [BKV+07, §5], and therefore is tractable.

1.2 Log-log convex programs

For a function f : D → R++, with D ⊆ Rn
++, we refer to the function F (u) = log f(eu), with

domain {u | eu ∈ D}, as its log-log transformation. We refer to a function f as log-log convex if F is
convex, log-log concave if F is concave, and log-log affine if F is affine. As in convex analysis, we can
consider the analog of extended-value extensions [BV04, §3.1.2]: we allow a log-log convex function
to take the value +∞, and a log-log concave function to take the value zero, which corresponds to
F taking the value −∞. A function is log-log affine if and only if it is a monomial; posynomials
and generalized posynomials are log-log convex, but there are log-log convex functions that are not
generalized posynomials (examples are given in §2.3 and §2.4).

An optimization problem of the form (1), with fi log-log convex and gi log-log affine, is called
a log-log convex program (LLCP). The set of LLCPs is a strict superset of GGPs. The hierarchy of
LPs, GPs, GGPs, and LLCPs is shown in figure 1.

Log-log convexity is also known as geometric convexity or multiplicative convexity, since it is
equivalent to convexity with respect to the geometric mean (see §2.1). Montel [Mon28] studied the
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class of log-log convex functions many decades ago, in the context of subharmonic functions. More
recently, Niculescu [Nic00] developed a theory of inequalities derived from log-log convexity, parallel
to the theory of convex functions, Förster and Nagy [FN05] studied the log-log convexity of cer-
tain operator polynomials, and Baricz [Bar10] examined the log-log concavity of various univariate
probability distributions. See also [DR06; JM02; ÖYG14] for related work.

Many functions can be well-approximated by log-log convex functions [BKV+07; HKA16; CGP18],
but the lack of a coherent modeling framework for LLCPs has hindered their use in practical appli-
cations. The point of this paper is to close that gap.

1.3 Domain-specific languages for convex optimization

Disciplined convex programming (DCP) describes a subset of convex programs generated by a single
rule and a set of atoms, functions with known curvature (convex, concave, or affine) and monotonic-
ity [GBY06]. DCP is a natural starting point for building a domain-specific language (DSL) for
convex optimization, i.e., a programming language that parses convex optimization problems ex-
pressed in a human-readable form, rewrites them into canonical forms, and supplies the lowered
representations to numerical solvers. By abstracting away solvers, DSLs make optimization acces-
sible to researchers and engineers who are not experts in the details of optimization algorithms.
Most DSLs for convex optimization have DCP as their foundation; examples include CVX [GB14],
CVXPY [DB16; AVD+18], Convex.jl [UMZ+14], and CVXR [FNB17]. For a survey of DSLs for
convex optimization, see [AVD+18, §1]. Some DSLs, like CVX and Yalmip [Löf04], can also parse
GPs and GGPs. There also exist DSLs specifically for GPs, including GPKit [BH18b] and GGPLAB
[MKK+06]. These software packages parse and rewrite GPs and GGPs.

In this paper, we introduce the analog of DCP for log-log convex problems. We refer to our
analog of DCP as disciplined geometric programming (DGP). Like DCP, every disciplined geometric
program is generated by a single rule and a library of atoms. The class of disciplined geometric
problems is a subclass of log-log convex problems (and of course depends on the library of atoms),
and, with a sensible atom library, a strict superset of both geometric programming and generalized
geometric programming. In §2, we characterize log-log convexity and give many examples of log-
log convex functions, some obvious and some less so; when appropriate, we also supply graph
implementations [GB08]. In §3, we present DGP, along with a verification procedure that we
articulate in terms of mathematical expression trees. We close in §4 by describing an implementation
of DGP as a reduction to disciplined convex programs in CVXPY 1.0.

2 Log-log convexity

2.1 Properties

Convexity with respect to the geometric mean. Log-log convex functions obey a variant of
Jensen’s inequality: a function f is log-log convex if and only if for all x, y in the domain of f , and
for each θ ∈ [0, 1],

f(xθ ◦ y1−θ) ≤ f(x)θf(y)1−θ,

where ◦ is the Hadamard (elementwise) product and the powers are meant elementwise.

Scalar log-log convex functions. A scalar function f : D → R++, D ⊆ R++, is log-log convex
if its graph has positive curvature on a log-log plot, as shown in figure 2. If f is additionally
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Figure 2: Two log-log
convex functions and one
log-log concave function.

twice-differentiable, then it is log-log convex if and only if for all x ∈ D,

f ′′(x) +
f ′(x)

x
≥ f ′(x)2

f(x)
. (3)

Epigraph. If the set {u | eu ∈ D} is convex, D ⊆ Rn
++, we say that D is a log-convex set. The

domain of a log-log convex function f is of course a log-convex set. Its epigraph

epif = { (x, t) | f(x) ≤ t }

is also a log-convex set. The converse is true as well: if the epigraph of a function is a log-convex set,
then the function is log-log convex. These facts follow from the similar rules for convex functions
and epigraphs [BV04, §3.1.7].

Relationship to log-convexity. Log-log convex functions are related to log-convex functions,
which are real-valued functions f for which log f is convex [BV04, §3.5]. If f is log-convex and
nondecreasing in each of its arguments, then its log-log transformation F (u) = log f(eu) is log-
log convex, as can be seen via the vector composition rule for convex functions [BV04, §3.2.4].
Similarly, if f is log-concave and nonincreasing in its arguments, then its log-log transformation is
log-log concave. Since every positive concave function is log-concave, it follows that every positive
concave function that is nonincreasing in its arguments is also log-log concave.

In some cases, log-log convexity implies log-convexity. A function f is log-convex if and only if
for all x and y in its domain and for each θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ f(x)θf(y)1−θ.

In light of this fact and the AM-GM inequality, every nonincreasing log-log convex function is also
log-convex, and every nondecreasing log-log concave function is also log-concave.

Partial minimization. If f is log-log convex in the variables x and y, and if D is a log-convex
set, then the function

g(x) = inf
y∈D

f(x, y)

is also log-log convex. A similar result holds for log-log concave functions: if f(x, y) is log-log
concave and D is a log-convex set, then g(x) = supy∈D f(x, y) is log-log concave. These results are
translations of identical results for convex functions [BV04, §3.2.5].
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Integration. If f : [0, a) → [0,∞) is continuous and log-log convex (log-log concave) on (0, a),
then

x 7→
∫ x

0
f(t)dt

is also log-log convex (log-log concave) on (0, a) [Mon28; Nic00]. As an example, if X is a real-valued
random variable with a continuous log-log concave density f defined on [0, a), then the probability
that X lies between 0 and some x ∈ (0, a) is a log-log concave function of x. Several common
distributions, including the Gaussian, Gibrat, and the Student’s t, have log-log concave densities
[Bar10, §5].

2.2 Composition rule

A basic result of convex analysis is that a nondecreasing convex function of a convex function is
convex. (Similarly, a nonincreasing convex function of a concave function is convex.) These results,
along with similar ones for concave functions, are special cases of just one result on the curvature of
function compositions, and it is on this single result that DCP is based [GBY06, §6.4]. An analogous
composition rule holds for log-log convex functions, which we provide in full generality below. Its
proof is an elementary exercise in convex analysis.

Suppose h : D → R++ ∪ {∞}, D ⊆ Rk
++, is log-log convex, nondecreasing in its ith argument

for each i in an index set I ⊆ {1, 2, . . . , k}, and nonincreasing in the arguments indexed by Ic. For
i = 1, 2, . . . , k, let gi : Di ⊆ Rn

++ → R++. Let f :
⋂
Di → R++ ∪ {∞} be given by

f(x) = h(g1(x), g2(x), . . . , gk(x)).

If gi is log-log convex for i ∈ I and log-log concave for i ∈ Ic, then the function f is log-log convex.
A symmetric result holds when h : D → R+, D ⊆ Rk

+, is log-log concave: If gi is log-log concave
for i ∈ I and log-log convex for i ∈ Ic, then f(x) = h(g1(x), . . . , gk(x)) is log-log concave.

2.3 Some simple examples

We have already seen that monomials are log-log affine and that posynomials and generalized
posynomials are log-log convex. In this section we provide several other examples of log-log convex
and log-log concave functions.

Product. The product f(x1, x2) = x1x2 is log-log affine, since F (u) = log(eu1eu2) = u1 + u2

is affine. (This is also clear since f is a monomial.) It follows that the product of log-log affine
functions is log-log affine, and (since the product is monotone increasing) the product of log-log
convex functions is log-log convex, and the product of log-log concave functions is log-log concave.

Ratio. The ratio f(x1, x2) = x1/x2 is log-log affine (since it is a monomial), increasing in its first
argument and decreasing in its second argument. It follows that the ratio of a log-log convex and
a log-log concave function is log-log convex, and that the ratio of log-log concave and a log-log
convex function is log-log concave.

Power. For a ∈ R, the function given by xa is log-log affine in x, since log(eax) = ax. It follows
that a power of a log-log affine function is log-log affine. For a ≥ 0, the power of a log-log convex
function is log-log convex, and the power of a log-log concave function is log-log concave. For a < 0,
the power of a log-log convex function is log-log concave, and the power of a log-log concave function
is log-log convex.
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Sum. The function f(x1, x2) = x1 + x2 is log-log convex since F (u) = log(eu1 + eu2) is convex.
It follows that the sum of log-log convex functions is log-log convex. Log-log concavity is not in
general preserved under addition.

Max and min. The function f(x) = maxi xi is log-log convex, and the function f(x) = mini xi
is log-log concave. Since both are nondecreasing, it follows that the max of log-log convex functions
is log-log convex, and the min of log-log concave functions is log-log concave.

Sum largest. For x ∈ Rn
++, the sum of the r largest elements in x is log-log convex, since it can

be represented as max{xi1 + xi2 + · · · + xir | i1 < i2 < · · · < ir }, which is the max of a finite
number of log-log convex functions.

One-minus. The function f(x) = 1− x with domain (0, 1) is log-log concave, as can be seen by
noting that f is concave and decreasing in x, or by the fact that the second derivative of its log-log
transformation is negative. It is also decreasing in x, so we conclude that if g is log-log convex,
f(g(x)) = 1− g(x) is log-log concave (with domain {x | g(x) < 1 }).

Difference. The function f(x) = x1 − x2, with domain {x > 0 | x1 − x2 > 0}, is log-log concave,
increasing in its first argument and decreasing in its second. It follows that the difference of a log-log
concave function and a log-log convex function (with obvious domain) is log-log concave.

Geometric mean. The geometric mean f(x) = (
∏n
i=1 xi)

1/n is log-log affine, i.e., a monomial.
The geometric mean of log-log convex functions is log-log convex, and likewise for log-log con-
cave functions.

Harmonic mean. The harmonic mean f(x) = n(1/x1 + 1/x2 + · · ·+ 1/xn)−1 is log-log concave,
since it is the reciprocal of a log-log convex function.

`p-norm. The `p-norm ‖x‖p = (|x1|p+ |x2|p+ · · ·+ |xn|p)1/p, p ≥ 1, is log-log convex for x ∈ Rn
++,

since ‖x‖p with the absolute values removed is a posynomial raised to 1/p.

Exponential and logarithm. The function f given by f(x) = ex for x > 0 is log-log convex,
since F (u) = log f(eu) = eu, which is convex. Similarly, the logarithm function restricted to (1,∞)
is log-log concave.

Entropy. The function f(x) = −x log x with domain (0, 1) is log-log concave, as can be seen via
the composition rule.

Functions with positive Taylor expansions. Suppose f : R → R is given by a power series
f(x) = a0 + a1x + a2x

2 + · · · , with ai ≥ 0 and radius of convergence R. We restrict f to the
domain (0, R). Then f is log-log convex. This is readily shown by noting that the partial sums
are posynomials, so f is the pointwise limit of log-log convex functions. As examples, the functions
sinh and cosh restricted to (0,∞), tan, sec, and csc restricted to (0, π/2), arcsin restricted to (0, 1],
and log((1 + x)/(1− x)) restricted to (0, 1) are all log-log convex.
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Complementary CDF of a log-concave density. The complementary cumulative distribution
function (CCDF) of a log-concave density is log-log concave. This follows from the fact that the
CCDF of a log-concave density is log-concave [BV04, §3.5.2] and nonincreasing. As an example, the
CCDF of a Gaussian

x 7→ 1√
2π

∫ ∞
x

e−t
2/2dt

is log-log concave on (0,∞). The densities of many common distributions, including the uniform,
exponential, chi-squared, and beta distributions, are log-concave. For several other examples, see
[BB05, Table 1].

Gamma function. The Gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt

is log-convex and nondecreasing for x ≥ 1 [BV04, §3.5]. Hence, the restriction Γ|[1,∞) is log-log
convex.

2.4 Functions of positive matrices

In the following exposition, all inequalities should be interpreted elementwise. For any two vectors
x, y in Rn, x ≤ y if and only if the entries of y − x are all nonnegative, and for any two matrices
A,B ∈ Rm×n, we write A ≤ B to mean that the entries of B−A are nonnegative. Similarly, x < y
means that the entries of y − x are positive, and likewise for A < B. If A > 0, we will say that A
is a positive matrix.

Let Rm×n
++ denote the set of positive m-by-n matrices. The log-log transformation of a function

f : D ⊆ Rm×n
++ → Rp×q

++ is F (U) = log f(eU ), defined on {U | eU ∈ D }, where the logarithm and
exponential are meant elementwise. We say that f is log-log convex if F is convex with respect to
≤, i.e., if for any U , V in the domain of F , θ ∈ [0, 1]

F (θU + (1− θ)V ) ≤ θF (U) + (1− θ)F (V ).

Equivalently, f is log-log convex if for any X,Y ∈ D, θ ∈ [0, 1],

f(Xθ ◦ Y 1−θ) ≤ f(X)θf(Y )1−θ,

where ◦ denotes the Hadamard product and the powers are meant elementwise. Informally, we say
that f is log-log convex if f(X) has log-log convex entries for each X ∈ D.

Of course, the trace of a positive matrix and the product of positive matrices are both log-log
convex functions. More interesting is the link between log-log convexity and the Perron-Frobenius
theorem, which states, among other things, that every positive square matrix has a positive eigen-
value equal to its spectral radius. We provide a few examples below.

Spectral radius. Let X ∈ Rn×n have positive entries. The Perron-Frobenius theorem states that
X has a positive real eigenvalue λpf equal to its spectral radius, i.e., the magnitude of its largest
eigenvalue. It turns out that λpf is a log-log convex function of X. This can be seen by the fact
that

λpf = min{λ | Xv ≤ λv for some v > 0 },
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where the inequalities are elementwise, which implies that λpf ≤ λ if and only if

n∑
j=1

Xijvj/λvi ≤ 1, i = 1, . . . , n.

The lefthand side of the above inequality is a posynomial in Xij , vi, and λ, hence the epigraph of
λpf is log convex. This result is described in more detail in [BV04, §4.5.4]. For related material, see
[Kin61; Nus86; FN05; WT15].

Eye-minus-inverse. Let D be the set of positive matrices in Rn×n with spectral radius ρ(X) less
than 1. The function f : D → Rn×n given by

f(X) = (I −X)−1

is log-log convex in X, i.e., f(X) has log-log convex entries. The function f is well-defined: for any
square matrix X ∈ D , the power series I + X + X2 + · · · converges to (I −X)−1. One intuitive
way to see that f is log-log convex is to note that every partial sum sn(X) =

∑n
i=0X

i with n ≥ 1
has posynomial entries, and therefore is log-log convex. Because sn → f , we obtain that f is log-log
convex.

We can also prove that the function f is log-log convex by studying its epigraph. Let X > 0
and T be matrices. Then

(I −X)−1 ≤ T (4)

if and only if there exists a matrix Y ≥ 0 such that

I ≤ Y − Y X, Y ≤ T. (5)

The equivalence between (4) and (5) shows that the epigraph of f is log convex: the set of matrices
X, Y , and T satisfying (5) is log convex, and the epigraph of f is the projection of this set onto its
first and third (matrix) coordinates. It is clear that (4) implies (5), for if X and T satisfy (4), then
X, Y = (I − X)−1, and T satisfy (5). For the other direction, assume that the matrices X > 0,
Y ≥ 0, and T satisfy (5). Let λpf = ρ(X) > 0 be the Perron-Frobenius eigenvalue of X and let
v > 0 be a corresponding right eigenvector. Multiplying both sides of (5) by v, we obtain that
v ≤ (1 − λpf)Tv. This necessitates that λpf = ρ(X) < 1, which together with the fact that X > 0
implies that (I −X)−1 exists and is positive. Multiplying both sides of (5) by (I −X)−1 yields (4).

Resolvent. For any square matrix X and any scalar s > 0 such that s is not an eigenvalue of X,
the matrix (sI − X)−1 is called the resolvent of X. The function (X, s) 7→ (sI − X)−1 is log-log
convex in both s and X whenever X has positive entries and ρ(X) < s. This can be seen by writing
(sI −X)−1 as s−1(I −X/s)−1.

3 Disciplined geometric programming

While it is intractable to determine whether an arbitrary mathematical program is log-log convex, it
is easy to check if a composition of atoms (functions with known log-log curvature and monotonicity)
satisfies the composition rule given in §2.2. This fact motivates disciplined geometric programming
(DGP), a methodology for constructing log-log convex programs from a set of atoms. A problem
constructed via disciplined geometric programming is called a disciplined geometric program. If a
problem is a disciplined geometric program, we colloquially say that the problem is DGP.
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Like DCP [GBY06], DGP has two key components: an atom library and a grammar for com-
posing atoms. Every function appearing in a disciplined geometric program must be either an atom
or a grammatical composition of atoms; a composition is grammatical if it satisfies the rule from
§2.2. Concretely, a disciplined geometric program is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ f̃i(x), i = 1, . . . ,m
gi(x) = g̃i(x), i = 1, . . . , p,

(6)

where the functions fi are log-log convex, the functions f̃i are log-log concave, the functions gi
and g̃i are log-log affine, x ∈ Rn

++ is the decision variable, and all the functions are grammatical
compositions of atoms. (A problem where the objective is to maximize a log-log concave function
and the constraints are as in (6) is also a disciplined geometric program.) Clearly, every disciplined
geometric program is an LLCP, but the converse is not true. This is not a limitation in practice
because atom libraries are extensible (i.e., the class of DGP is parameterized by the atom library),
and because invalid compositions of atoms can often be appropriately re-expressed.

DGP offers an easy-to-understand prescription for constructing a large class of log-log convex
problems. If the product, power, sum, and max functions are taken as atoms, then DGP is equivalent
to generalized geometric programming. If other functions from §2.3 and §2.4 are also included, then
the set of disciplined geometric programs becomes a strict superset of the set of GGPs. As we shall
see in §4, DGP is easily supported in a DCP-based DSL for optimization. For these reasons, it
seems sensible to suggest that DGP might replace GPs in the optimization modeling toolbelt.

Verifying whether an optimization problem is DGP involves representing the problem as a col-
lection of mathematical expression trees (one for the objective and one for each constraint), and
recursively verifying each expression tree. For example, the problem

minimize xy

subject to ey/x ≤ log y
(7)

can be represented by the expression trees shown in figure 3; assuming that the variables x and y
are positive, this problem is an LLCP, but it is neither a GP nor a GGP.

An expression tree for an objective is valid if its root is the minimize (maximize) operator and
the subtree rooted at its child is a valid log-log convex (log-log concave) composition of atoms. A
tree rooted at an atom is valid if the subtrees rooted at its children are valid compositions of atoms,
and if the composition of the root with the subtrees of its children is grammatical. Likewise, a
tree for an inequality constraint is valid if the left subtree is a valid log-log convex composition of
atoms, and the right subtree is a valid log-log concave composition of atoms. A tree for an equality
constraint is valid if both subtrees are log-log affine compositions of atoms. The recursion bottoms
out at the leaves of each tree, which are variables or constants. Leaves are log-log affine provided
that they are positive.

4 Implementation

We have implemented DGP in CVXPY 1.0, a Python-embedded, object-oriented DSL for convex
optimization [AVD+18]. Our implementation, which is available at

https://www.cvxpy.org,

makes CVXPY 1.0 the first DSL for log-log convex programming.

9
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Figure 3: Expression trees representing the optimiza-
tion problem (7).

Our atom library includes a number of the functions presented in §2.3 and §2.4, and our im-
plementation of DGP is a strict superset of generalized geometric programming. CVXPY 1.0 can
canonicalize any DGP problem and furnish a solution to it, along with the optimal dual values; it
does this by reducing every DGP problem to a DCP problem, canonicalizing and solving the DCP
problem, and retrieving a solution to the original problem.

4.1 Canonicalization

In CVXPY 1.0, canonicalization is facilitated by Reduction objects, which rewrite problems of one
form into equivalent problems of another form and record how to retrieve a solution to the source
problem from a solution to the reduced-to problem. Canonicalizing DGP problems in CVXPY 1.0
is simple: we first reduce each DGP problem to a DCP problem, after which we apply the DCP
canonicalization procedure.

We have added a class Dgp2Dcp that subclasses Reduction. Dgp2Dcp accepts exactly those prob-
lems that are DGP. When applied to a problem, the Dgp2Dcp reduction recursively replaces subex-
pressions with DCP log-log transformations or graph implementations. For example, constants are
replaced with their logarithms, positive variables are replaced with unconstrained variables, prod-
ucts of two expressions are replaced with sums of the log-log transformations of those expressions,
and sums of expressions are replaced with the log_sum_exp of their canonicalized expressions. This
procedure makes sense because the log-log transformation of f = h ◦ g is equal to the composition
of the log-log transformations of h and g.

Atoms like eye_minus_inv whose log-log transformations are not DCP are replaced by their
graph implementations (a graph implementation of eye_minus_inv is given in §2.4). For example,
the expression trace(eye_minus_inv(X)) would be canonicalized to trace(Y), together with the
log-log transformation of the constraint Y U + I <= Y, where U is a variable representing log X.

4.2 Solution retrieval

When a DGP problem P1 is reduced to a DCP problem P2, for each variable in P1, a variable
representing its logarithm is instantiated in P2. Given a solution to P2, i.e., an assignment of
numeric values to variables, we recover a solution to P1 by exponentiating the values of the variables
in P2 and assigning the results to the corresponding variables in P1. When P2 is unbounded, P1

is unbounded as well, in which case the optimal value of the optimization problem is 0 (if P1 is a
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minimization problem) or +∞ (if P1 is a maximization problem). Similarly, P1 is infeasible when
P2 is infeasible.

The optimal dual values of P1 are the same as those of P2. Under certain assumptions, the
optimal dual values of P2 represent fractional changes in the optimal objective given fractional
changes in the constraints [BKV+07, §3.3].

4.3 Examples

Hello, World. Below is an example of how to use CVXPY 1.0 to specify and solve the DGP
problem (7), meant to highlight the syntax of our modeling language. A more interesting example
is subsequently presented.

1 import cvxpy as cp
2
3 x = cp.Variable(pos=True)
4 y = cp.Variable(pos=True)
5 objective_fn = x * y
6 objective = cp.Minimize(objective_fn)
7 constraints = [cp.exp(y/x) <= cp.log(y)]
8 problem = cp.Problem(objective, constraints)
9 problem.solve(gp=True)
10 print("Optimal value: ", problem.value)
11 print("x: ", x.value)
12 print("y: ", y.value)
13 print("Dual value: ", constraints[0].dual_value)

The optimization problem problem has two scalar variables, x and y. For a problem to be DGP,
every optimization variable must be declared as positive, as done here with pos=True. The objective
is to minimize the product of x and y, which is neither convex nor concave but is log-log affine,
since the product atom is log-log affine. Every atom is an Expression object, which may in turn
have references to other Expressions; i.e., each Expression represents a mathematical expression
tree. In line 7, the Expressions are represented using three atoms: ratio (/), exp, and log. Also
in line 7, exp(y/x) is constrained to be no larger than log(y) via the relational operator <=, which
constructs a Constraint object linking two Expressions. Line 8 constructs but does not solve
problem, which encapsulates the expression trees for the objective and constraints. The problem
is DGP (which can be verified by asserting problem.is_dgp()), but it is not DCP (which can
be verified by asserting not problem.is_dcp()). Line 9 canonicalizes and solves problem. The
optimal value of the problem, the values of the variables, and the optimal dual value are printed in
lines 10-13, yielding the following output.

Optimal value: 48.81026898447343
x: 11.780089932635645
y: 4.143454698868564
Dual value: 2.843059917747706

As this code example makes clear, users do not need to know how canonicalization works. All
they need to know is how to construct DGP problems. Calling the solve method on a Problem
instance with the keyword argument gp=True canonicalizes the problem and retrieves a solution. If
the user forgets to type gp=True when her problem is DGP (and not DCP), a helpful error message
is raised to alert her of the omission.
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Perron-Frobenius matrix completion. We have implemented several functions of positive ma-
trices as atoms, including the trace, product, sum, Perron-Frobenius eigenvalue, and eye-minus-
inverse. As an example, we can use CVXPY 1.0 to formulate and solve a Perron-Frobenius matrix
completion problem. In this problem, we are given some entries of an elementwise positive matrix
A, and the goal is to choose the missing entries so as to minimize the Perron-Frobenius eigenvalue
or spectral radius. Letting Ω denote the set of indices (i, j) for which Aij is known, the optimization
problem is

minimize λpf(X)
subject to

∏
(i,j)6∈ΩXij = 1

Xij = Aij , (i, j) ∈ Ω,

(8)

which is an LLCP. Below is an implementation of the problem (8), with specific problem data

A =

1.0 ? 1.9
? 0.8 ?

3.2 5.9 ?

 , (9)

where the question marks denote the missing entries.

1 import cvxpy as cp
2
3 n = 3
4 known_value_indices = tuple(zip(*[[0, 0], [0, 2], [1, 1], [2, 0], [2, 1]]))
5 known_values = [1.0, 1.9, 0.8, 3.2, 5.9]
6 X = cp.Variable((n, n), pos=True)
7 objective_fn = cp.pf_eigenvalue(X)
8 constraints = [
9 X[known_value_indices] == known_values,
10 X[0, 1] * X[1, 0] * X[1, 2] * X[2, 2] == 1.0,
11 ]
12 problem = cp.Problem(cp.Minimize(objective_fn), constraints)
13 problem.solve(gp=True)
14 print("Optimal value: ", problem.value)
15 print("X:\n", X.value)

Executing the above code prints the below output.

Optimal value: 4.702374203221535
X:
[[1. 4.63616907 1.9 ]
[0.49991744 0.8 0.37774148]
[3.2 5.9 1.14221476]]
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