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Abstract

We propose a flexible approach for computing the resolvent of the sum of weakly monotone
operators in real Hilbert spaces. This relies on splitting methods where strong convergence
is guaranteed. We also prove linear convergence under Lipschitz continuity assumption. The
approach is then applied to computing the proximity operator of the sum of weakly convex
functions, and particularly to finding the best approximation to the intersection of convex sets.
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1. Introduction

In this paper, we explore a straightforward path to the problem of computing the resolvent of the
sum of two (not necessarily monotone) operators using resolvents of individual operators. When
applied to normal cones of convex sets, this computation solves the best approximation problem of
finding the projection onto the intersection of these sets.

In general, computations involved simultaneously two or more operators are usually difficult.
One popular approach is to treat each operator individually, then use these calculations to construct
the desired answer. Prominent examples of such splitting strategy include the Douglas–Rachford
algorithm [9, 11] and the Peaceman–Rachford algorithm [12] that apply to the problem of finding
a zero of the sum of maximally monotone operators. In [3], the authors proposed an extension
of Dykstra’s algorithm [10] for constructing the resolvent of the sum of two maximally monotone
operators. By product space reformulation, this problem was then handled in [5] for finitely many
operators. Recently, the so-called averaged alternating modified reflections algorithm was used in [2]
to study this problem, and was soon after re-derived in [1] from the view point of the proximal and
resolvent average. Because computing the resolvent of a finite sum of operators can be transformed
into that of the sum of two operators by a standard product space setting, as done in [5, 2], we will
focus our consideration to the case of two operators for reason of clarity.
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The goal of this paper is to provide a flexible approach for computing the resolvent of the sum
of two weakly monotone operators from individual resolvents. Our work extends and complements
recent results in this direction. We also present applications to computing the proximity operator
of the sum of two weakly convex functions and to finding the best approximation to the intersection
of two convex sets.

The paper is organized as follows. In Section 2, we provide necessary materials. Section 3
contains our main results. Finally, applications are presented in Section 4.

2. Preparation

We assume throughout that X is a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. The set of nonnegative integers is denoted by N, the set of real numbers by R, the set of
nonnegative real numbers by R+ := {x ∈ R

∣∣ x ≥ 0}, and the set of the positive real numbers by
R++ := {x ∈ R

∣∣ x > 0}. The notation A : X ⇒ X indicates that A is a set-valued operator on X.

Given an operator A on X, its domain is denoted by dom A := {x ∈ X
∣∣ Ax 6= ∅}, its range

by ran A := A(X), its graph by gra A := {(x, u) ∈ X × X
∣∣ u ∈ Ax}, its set of zeros by zer A :=

{x ∈ X
∣∣ 0 ∈ Ax}, and its fixed point set by Fix A := {x ∈ X

∣∣ x ∈ Ax}. The inverse of A,
denoted by A−1, is the operator with graph gra A−1 := {(u, x) ∈ X × X

∣∣ u ∈ Ax}. Recall from [8,
Definition 3.1] that an operator A : X ⇒ X is said to be α-monotone if α ∈ R and

∀x, y ∈ dom A, 〈x − y, Ax − Ay〉 ≥ α‖x − y‖2. (1)

In this case, we say that A is monotone if α = 0, strongly monotone if α > 0, and weakly monotone
if α < 0. The operator A is said to be maximally α-monotone if it is α-monotone and there is no
α-monotone operator B : X ⇒ X such that gra B properly contains gra A.

The resolvent and the reflected resolvent of A : X ⇒ X are respectively defined by

JA := (Id +A)−1 and RA := 2JA − Id, (2)

where Id is the identity operator. We conclude this section by an elementary formula for computing
the resolvent of special composition via resolvents of its components.

Proposition 2.1 (resolvent of composition). Let A : X ⇒ X, q, r ∈ X, θ ∈ R++, and σ ∈ R.
Define Ā := A ◦ (θ Id −q) + σ Id −r and let γ ∈ R++. Then the following hold:

(i) A is (resp. maximally) α-monotone if and only if Ā is (resp. maximally) (θα+σ)-monotone.
(ii) If 1 + γσ 6= 0, then

JγĀ =
1

θ

(
J γθ

1+γσ
A

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
r − q

)
+ q

)
; (3)

and if, in addition, A is maximally α-monotone and 1 + γ(θα + σ) > 0, then JγĀ and J γθ

1+γσ
A

are single-valued and have full domain.

Proof. (i): This is straightforward from the definition.

(ii): We note that (θ Id −q)−1 = 1
θ
(Id +q), that (T − z)−1 = T −1 ◦ (Id +z), and that (αT )−1 =

2



T −1 ◦ ( 1
α

Id) for any operator T , any z ∈ X, and any α ∈ Rr {0}. Using these facts yields

JγĀ =
(
(1 + γσ) Id +γA ◦ (θ Id −q) − γr

)−1
(4a)

=

((1 + γσ

θ
(Id +q) + γA

)
◦ (θ Id −q)

)−1

◦ (Id +γr) (4b)

= (θ Id −q)−1 ◦

(
1 + γσ

θ
Id +γA +

1 + γσ

θ
q

)−1

◦ (Id +γr) (4c)

= (θ Id −q)−1 ◦

(
1 + γσ

θ

(
Id +

γθ

1 + γσ
A

))−1

◦

(
Id −

1 + γσ

θ
q

)
◦ (Id +γr) (4d)

=
1

θ
(Id +q) ◦

(
Id +

γθ

1 + γσ
A

)−1

◦

(
θ

1 + γσ
Id

)
◦

(
Id +γr −

1 + γσ

θ
q

)
(4e)

=
1

θ
(Id +q) ◦ J γθ

1+γσ
A

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
r − q

)
(4f)

=
1

θ

(
J γθ

1+γσ
A

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
r − q

)
+ q

)
. (4g)

Since A is maximally α-monotone, Ā is maximally (θα+σ)-monotone. Now, since 1+γ(θα+σ) > 0,
[8, Proposition 3.4] implies the conclusion. �

3. Main results

In this section, let A, B : X ⇒ X, ω ∈ R++, and r ∈ X. We present a flexible approach to the
computation of the resolvent at r of the scaled sum ω(A + B), that is to

compute Jω(A+B)(r). (5)

Our analysis relies on the observation that this problem can be reformulated into the prob-
lem of finding a zero of the sum of two suitable operators. Indeed, when r ∈ dom Jω(A+B) =
ran (Id +ω(A + B)), we have by definition that

x ∈ Jω(A+B)(r) ⇐⇒ r ∈ x + ω(A + B)x ⇐⇒ 0 ∈ (A + B)x +
1

ω
x −

1

ω
r. (6)

By writing 1
ω

= σ + τ and 1
ω

r = rA + rB , the last inclusion is equivalent to

0 ∈ (A + σ Id −rA)x + (B + τ Id −rB)x, (7)

which leads to finding a zero of the sum of two new operators A + σ Id −rA and B + τ Id −rB .

Based on this observation, we proceed with a more general formulation. Given θ ∈ R++ and
q ∈ X, we take (σ, τ) ∈ R

2 and (rA, rB) ∈ X2 satisfying

σ + τ =
θ

ω
and rA + rB =

1

ω
(q + r), (8)

and define

Aσ := A ◦ (θ Id −q) + σ Id −rA and Bτ := B ◦ (θ Id −q) + τ Id −rB. (9)

Now, we will derive the formula for the resolvent of the scaled sum via zeros of the sum of these
newly defined operators.
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Proposition 3.1 (resolvent via zeros of sum of operators). Suppose r ∈ ran (Id +ω(A + B)).
Then

Jω(A+B)(r) = θ zer(Aσ + Bτ ) − q. (10)

Consequently, if Aσ + Bτ is strongly monotone, then Jω(A+B)(r) and zer(Aσ + Bτ ) are singletons.

Proof. For every z ∈ X, we derive from (8) and (9) that

θz − q ∈ Jω(A+B)(r) ⇐⇒ r ∈ (θz − q) + ω(A + B)(θz − q) (11a)

⇐⇒ 0 ∈ (A + B)(θz − q) +
θ

ω
z −

1

ω
(q + r) (11b)

⇐⇒ 0 ∈ (A + B)(θz − q) + (σ + τ)z − (rA + rB) (11c)

⇐⇒ 0 ∈
(
A(θz − q) + σz − rA

)
+

(
B(θz − q) + τz − rB

)
(11d)

⇐⇒ z ∈ zer(Aσ + Bτ ). (11e)

The remaining conclusion follows from [4, Proposition 23.35]. �

The new operators Aσ and Bτ along with Proposition 3.1 allow for the flexibility in chosing
(σ, τ) and (rA, rB) as one can decide the values of these parameters as long as (8) is satisfied. We
are now ready for our main result.

Theorem 3.2 (resolvent of sum of α- and β-monotone operators). Suppose that A and B
are respectively maximally α- and β-monotone with α + β > −1/ω, that r ∈ ran (Id +ω(A + B)),
and that (σ, τ) satisfies

θα + σ > 0 and θβ + τ ≥ 0. (12)

Let γ ∈ R++ be such that 1 + γσ 6= 0 and 1 + γτ 6= 0. Given any κ ∈ ]0, 1] and x0 ∈ X, define the
sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ(2JγBτ − Id)(2JγAσ − Id)xn (13)

with explicit formulas

JγAσ =
1

θ

(
J γθ

1+γσ
A

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
rA − q

)
+ q

)
(14a)

and JγBτ =
1

θ

(
J γθ

1+γτ
B

◦

(
θ

1 + γτ
Id +

γθ

1 + γτ
rB − q

)
+ q

)
. (14b)

Then Jω(A+B)(r) = J γθ

1+γσ
A

(
θ

1+γσ
x + γθ

1+γσ
rA − q

)
with x ∈ Fix(2JγBτ − Id)(2JγAσ − Id) and the

following hold:

(i)

(
J γθ

1+γσ
A

(
θ

1+γσ
xn + γθ

1+γσ
rA − q

))

n∈N

converges strongly to Jω(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the convergences in (i) and (ii) are linear.

Proof. We first note that the existence of (σ, τ) ∈ R
2 satisfying (8) and (12) is ensured since α+β >

−1/ω. Next, (12) implies that 1 + γ(θα + σ) > 0 and 1 + γ(θβ + τ) > 0. Using Proposition 2.1, we
derive that Aσ and Bτ are respectively maximally (θα+σ)- and (θβ+τ)-monotone and that JγAσ and
JγBτ are single-valued and have full domain. It then follows from (12) that Aσ and also Aσ +Bτ are
strongly monotone. By Proposition 3.1 and [4, Proposition 26.1(iii)(b)], zer(Aσ + Bτ ) = {JγAσ (x)}
with x ∈ Fix(2JγBτ − Id)(2JγAσ − Id) and Jω(A+B)(r) = θJγAσ (x) − q.
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Now, Proposition 2.1(ii) implies (14), which yields

θJγAσ − q = J γθ

1+γσ
A

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
rA − q

)
. (15)

Therefore,

Jω(A+B)(r) = θJγAσ(x) − q = J γθ

1+γσ
A

(
θ

1 + γσ
x +

γθ

1 + γσ
rA − q

)
. (16)

(i): By apply [4, Theorem 26.11(iv)(b)] with all λn = κ if κ < 1 and apply [4, Proposition 26.13]
if κ = 1, we obtain that JγAσ (xn) → JγAσ (x). Now combine with (15) and (16).

(ii): Again apply [4, Theorem 26.11] with all λn = κ.

(iii): Assume that A is Lipschitz continuous with constant ℓ. It is straightforward to see that
Aσ is Lipschitz continuous with constant (θℓ + |σ|). The conclusion follows from [8, Theorem 4.8]
with λ = µ = 2 and δ = γ. �

Remark 3.3. Some remarks regarding Theorem 3.2 are in order.

(i) If A is α-monotone with α ∈ R+ and maximally monotone, then it is maximally α-monotone
(see [8, Lemma 3.2]). In [4, Proposition 26.1(iii), Theorem 26.11, and Proposition 26.13],
the maximal monotonicity assumption is needed only to ensure the full domain of resolvents,
which already holds due to our assumptions on the choice of γ and that A and B are respec-
tively maximally α- and β-monotone.

(ii) Under the assumptions made, A + B is (α + β)-monotone but not necessarily maximal. If in
addition A + B is indeed maximally (α + β)-monotone, then Jω(A+B) has full domain by [8,
Proposition 3.4(ii)]; thus, the condition on r can be removed.

(iii) The iterative scheme (13) is the Douglas–Rachford algorithm if κ = 1/2 and the Peaceman–
Rachford algorithm if κ = 1. For a more general version of (13), we refer the readers to [8];
see also [6, 7].

(iv) If the condition (12) is replaced by

α + σ ≥ 0 and β + τ > 0, (17)

then the conclusions of Theorem 3.2(ii)–(iii) still hold true, while Theorem 3.2(i) only holds
for κ < 1; see also [5, Theorem 2.1(ii) and Remark 2.2(iv)].

(v) One can simply choose θ = 1 and q = 0, in which case, (14) reduces to

JγAσ = J γ
1+γσ

A ◦
1

1 + γσ
(Id +γrA) and JγBτ = J γ

1+γτ
B ◦

1

1 + γτ
(Id +γrB). (18)

(vi) When A and B are maximally monotone, i.e., α = β = 0, (12) is satisfied whenever σ > 0
and τ ≥ 0. One thus can choose for instance σ = τ = θ

2ω
.

(vii) It is always possible to find γ ∈ R++ satisfying even 1+ γσ > 0 and 1+ γτ > 0. In fact, these
inequalities are automatic regardless of γ ∈ R++ as long as σ and τ are both nonnegative.

When A and B are maximally monotone, the following result gives an iterative method for
computing the resolvent of A + B in which each iteration only requires the computations in terms
of JA and JB .
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Proposition 3.4 (resolvent of sum of two maximally monotone operators). Suppose that
A and B are maximally monotone, that ω 6= 1/2, and that r ∈ ran (Id +ω(A + B)). Define

Ā :=
2ω

θ(2ω − 1)
A ◦ (θ Id −q) +

1

θ(2ω − 1)
(θ Id −q − r) (19a)

and B̄ :=
2ω

θ(2ω − 1)
B ◦ (θ Id −q) +

1

θ(2ω − 1)
(θ Id −q − r). (19b)

Let κ ∈ ]0, 1], let x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ(2JB̄ − Id)(2JĀ − Id)xn (20)

with explicit formulas

JĀ =
1

θ

(
JA ◦

((
1 −

1

2ω

)
(θ Id −q) +

1

2ω
r

)
+ q

)
(21a)

and JB̄ =
1

θ

(
JB ◦

((
1 −

1

2ω

)
(θ Id −q) +

1

2ω
r

)
+ q

)
. (21b)

Then Jω(A+B)(r) = JA

(
(1 − 1

2ω
)(θx − q) + 1

2ω
r
)

with x ∈ Fix(2JB̄ −Id)(2JĀ −Id) and the following

hold:

(i)
(
JA

(
(1 − 1

2ω
)(θxn − q) + 1

2ω
r
))

n∈N
converges strongly to Jω(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof. Choosing

σ = τ =
θ

2ω
> 0, rA = rB =

1

2ω
(q + r), and γ =

2ω

θ(2ω − 1)
> 0, (22)

we have that (8) is satisfied and that

Aσ = A ◦ (θ Id −q) +
1

2ω
(θ Id −q − r) and Bτ = B ◦ (θ Id −q) +

1

2ω
(θ Id −q − r), (23)

which yields γAσ = Ā and γBτ = B̄. Since 1 + γσ = 1 + γθ/(2ω) = 2ω/(2ω − 1) = γθ, we get (21)
from (14). Now apply Theorem 3.2 with α = β = 0. �

Thanks to the flexibility of parameters, our results recapture the formulation and convergence
analysis of recent methods. In particular, Corollaries 3.5 and 3.6 are in the spirit of [2, Theorem 3.1]
and [1, Theorem 3.2], respectively.

Corollary 3.5. Let η ∈ ]0, 1[ and γ ∈ R++. Suppose that A and B are maximally monotone and

that r ∈ ran
(
Id + γ

2(1−η) (A + B)
)
. Let κ ∈ ]0, 1], let x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ
(
2ηJγB(Id +r) − 2ηr − Id

)(
2ηJγA(Id +r) − 2ηr − Id

)
xn. (24)

Then J γ
2(1−η)

(A+B)(r) = JγA(x+r) with x ∈ Fix(2ηJγB(Id +r)−2ηr − Id)(2ηJγA(Id +r)−2ηr − Id)

and the following hold:

(i) (JγA(xn + r))
n∈N

converges strongly to J γ
2(1−η)

(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
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(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof. Let ω = γ
2(1−η) , θ = 1

η
, σ = τ = θ

2ω
= 1−η

γη
, q = −r, and rA = rB = 0. Then (8) is satisfied,

Aσ = A ◦

(
1

η
Id +r

)
+

1 − η

γη
Id and Bτ = B ◦

(
1

η
Id +r

)
+

1 − η

γη
Id . (25)

Noting 1 + γσ = 1 + (1 − η)/η = 1/η = θ, we have from (14) that

JγAσ = η (JγA(Id +r) − r) and JγBτ = η (JγB(Id +r) − r) . (26)

Applying Theorem 3.2 with α = β = 0 completes the proof. �

Corollary 3.6. Suppose that A and B are maximally monotone and that A + B is also maximally
monotone. Let η ∈ ]0, 1[, κ ∈ ]0, 1], x0 ∈ X, and define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κ
(
2ηJB + 2(1 − η)r − Id

)(
2ηJA + 2(1 − η)r − Id

)
xn. (27)

Then J 1
2(1−η)

(A+B)(r) = JA(x) with x ∈ Fix(2ηJB + 2(1 − η)r − Id)(2ηJA + 2(1 − η)r − Id) and the

following hold:

(i) (JA(xn))n∈N converges strongly to J 1
2(1−η)

(A+B)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If A is Lipschitz continuous, then the above convergences are linear.

Proof. Apply Proposition 3.4 with ω = 1
2(1−η) , θ = 1

η
, and q = 1−η

η
r = 1

2ω−1r and note that

J 1
2(1−η)

(A+B) has full domain due to Remark 3.3(ii). �

4. Applications

In this section, we provide transparent applications of our result to computing the proximity oper-
ator of the sum of two weakly convex functions and to finding the closest point in the intersection
of closed convex sets.

We recall that a function f : X → ]−∞, +∞] is proper if dom f := {x ∈ X
∣∣ f(x) < +∞} 6= ∅

and lower semicontinuous if ∀x ∈ dom f , f(x) ≤ lim infz→x f(z). The function f is said to be
α-convex for some α ∈ R if ∀x, y ∈ dom f , ∀κ ∈ ]0, 1[,

f((1 − κ)x + κy) +
α

2
κ(1 − κ)‖x − y‖2 ≤ (1 − κ)f(x) + κf(y). (28)

We say that f is convex if α = 0, strongly convex if α > 0, and weakly convex if α < 0.

Let f : X → ]−∞, +∞] be proper. The Fréchet subdifferential of f at x is given by

∂̂f(x) :=

{
u ∈ X

∣∣∣ lim inf
z→x

f(z) − f(x) − 〈u, z − x〉

‖z − x‖
≥ 0

}
. (29)

It is known that if f is differentiable at x, then ∂̂f(x) = {∇f(x)}, and that if f is convex, then the
Fréchet subdifferential coincides with the convex subdifferential, i.e.,

∂̂f(x) = ∂f(x) := {u ∈ X
∣∣ ∀z ∈ X, f(z) − f(x) ≥ 〈u, z − x〉}. (30)
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The proximity operator of f with parameter γ ∈ R++ is the mapping Proxγf : X ⇒ X defined by

∀x ∈ X, Proxγf (x) := argmin
z∈X

(
f(z) +

1

2γ
‖z − x‖2

)
. (31)

Given a nonempty closed subset C of X, the indicator function ιC of C is defined by ιC(x) = 0 if
x ∈ C and ιC(x) = +∞ if x /∈ C. It is clear that ProxγιC

= PC , where PC : X ⇒ C is the projector
onto C given by

∀x ∈ X, PCx := argmin
c∈C

‖x − c‖. (32)

If C is convex, then the normal cone to C is the operator NC : X ⇒ X defined by

∀x ∈ X, NC(x) :=

{
{u ∈ X

∣∣ ∀c ∈ C, 〈u, c − x〉 ≤ 0} if x ∈ C,

∅ otherwise.
(33)

Lemma 4.1. Let f : X → ]−∞, +∞] and g : X → ]−∞, +∞] be proper, lower semicontinuous,
and respectively α- and β-convex, let ω ∈ R++, and let r ∈ ran(Id +ω(∂̂f + ∂̂g)). Suppose that
α + β > −1/ω. Then

J
ω(∂̂f+∂̂g)

(r) = J
ω∂̂(f+g)

(r) = Proxω(f+g)(r). (34)

Consequently, if C and D are closed convex subsets of X with C∩D 6= ∅ and r ∈ ran(Id +NC+ND),
then

JNC+ND
(r) = PC∩D(r). (35)

Proof. On the one hand, noting that ran(Id +ω(∂̂f + ∂̂g)) = dom J
γ(∂̂f+∂̂g)

and that ∂̂f + ∂̂g ⊆

∂̂(f + g), we have for any p ∈ X that

p ∈ J
ω(∂̂f+∂̂g)

(r) ⇐⇒ r ∈ p + ω(∂̂f + ∂̂g)(p) (36a)

=⇒ r ∈ p + ω∂̂(f + g)(p) (36b)

⇐⇒ p ∈ J
∂̂(f+g)

(r). (36c)

On the other hand, it follows from, e.g., [8, Lemma 5.3] that f + g is (α + β)-convex. Since
1 + ω(α + β) > 0, we learn from [8, Lemma 5.2] that Proxω(f+g) = J

ω∂̂(f+g)
is single-valued and

has full domain. Combining with (36) implies (34).

Now, since C and D are closed convex sets, ιC and ιD are convex functions, and therefore,
∂̂ιC = ∂ιC = NC and ∂̂ιD = ∂ιD = ND. Applying (34) to (f, g) = (ιC , ιD) and ω = 1 yields

JNC+ND
(r) = ProxιC+ιD

(r) = ProxιC∩D
(r) = PC∩D(r), (37)

which completes the proof. �

We now derive some applications of Theorem 3.2. In what follows, θ ∈ R++ and q ∈ X.

Corollary 4.2 (proximity operator of sum of α- and β-convex functions). Let f : X →
]−∞, +∞] and g : X → ]−∞, +∞] be proper, lower semicontinuous, and respectively α- and β-
convex, let ω ∈ R++, and let r ∈ ran(Id +ω(∂̂f + ∂̂g)). Suppose that α + β > −1/ω and let
(σ, τ) ∈ R

2 and (rf , rg) ∈ X2 be such that σ + τ = θ/ω, rf + rg = (q + r)/ω,

θσ + α > 0 and θβ + τ ≥ 0. (38)
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Let γ ∈ R++ be such that 1 + γσ > 0 and 1 + γτ > 0. Given any κ ∈ ]0, 1] and x0 ∈ X, define the
sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κRgRf xn, (39)

where

Rf :=
2

θ

(
Prox γθ

1+γσ
f

◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
rf − q

)
+ q

)
− Id (40a)

and Rg :=
2

θ

(
Prox γθ

1+γτ
g

◦

(
θ

1 + γτ
Id +

γθ

1 + γτ
rg − q

)
+ q

)
− Id . (40b)

Then Proxω(f+g)(r) = Prox γθ
1+γσ

f

(
θ

1+γσ
x + γθ

1+γσ
rf − q

)
with x ∈ Fix RgRf and the following hold:

(i)

(
Prox γθ

1+γσ
f

(
θ

1+γσ
xn + γθ

1+γσ
rf − q

))

n∈N

converges strongly to Proxω(f+g)(r).

(ii) If κ < 1, then (xn)n∈N converges weakly to x.
(iii) If f is differentiable with Lipschitz continuous gradient, then the above convergences are linear.

Proof. By assumption, [8, Lemma 5.2] implies that ∂̂f and ∂̂g are respectively maximally α- and
β-monotone, and that

J γ
1+γσ

∂̂f
= Prox γ

1+γσ
f and J γ

1+γτ
∂̂g

= Prox γ

1+γτ
g . (41)

Next, Lemma 4.1 implies that J
ω(∂̂f+∂̂g)

(r) = Proxω(f+g)(r). The conclusion then follows from

Theorem 3.2 applied to (A, B) = (∂̂f, ∂̂g). �

Corollary 4.3 (projection onto intersection of two closed convex sets). Let C and D be
closed convex subsets of X with C ∩ D 6= ∅ and let r ∈ ran(Id +NC + ND). Let σ ∈ R++, τ ∈ R+,
and (rC , rD) ∈ X2 with rC + rD = (σ + τ)(q + r)/θ. Let also γ ∈ R++, κ ∈ ]0, 1], x0 ∈ X, and
define the sequence (xn)n∈N by

∀n ∈ N, xn+1 := (1 − κ)xn + κR̄DR̄Cxn, (42)

where

R̄C :=
2

θ

(
PC ◦

(
θ

1 + γσ
Id +

γθ

1 + γσ
rC − q

)
+ q

)
− Id (43a)

and R̄D :=
2

θ

(
PD ◦

(
θ

1 + γτ
Id +

γθ

1 + γτ
rD − q

)
+ q

)
− Id . (43b)

Then
(
PC

(
θ

1+γσ
xn + γθ

1+γσ
rC − q

))
n∈N

converges strongly to PC∩D(r) = PC

(
θ

1+γσ
x + γθ

1+γσ
rC − q

)

with x ∈ Fix R̄DR̄C . Furthermore, if κ < 1, then (xn)n∈N converges weakly to x.

Proof. We first derive from [4, Example 20.26] that NC and ND are maximally monotone and from
[4, Example 23.4] that

J γ
1+γσ

NC
= JNC

= PC and J γ
1+γτ

ND
= JND

= PD. (44)

Setting ω := θ/(σ + τ) > 0, we note that r ∈ ran(Id +NC + ND) = ran
(

Id +ω(NC + ND)
)

and from Lemma 4.1 that Jω(NC+ND)(r) = JNC+ND
(r) = PC∩D(r). Now apply Theorem 3.2 to

(A, B) = (NC , ND). �

As in the proof of Corollary 3.5, if we choose θ = 1
η

(with η ∈ ]0, 1[), σ = τ = 1−η
γη

, q = −r, and
rC = rD = 0, then Corollary 4.3 reduces to [2, Corollary 3.1].
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