
Disciplined Quasiconvex Programming

Akshay Agrawal
akshayka@cs.stanford.edu

Stephen Boyd
boyd@stanford.edu

March 2, 2020

Abstract

We present a composition rule involving quasiconvex functions that general-
izes the classical composition rule for convex functions. This rule complements
well-known rules for the curvature of quasiconvex functions under increasing
functions and pointwise maximums. We refer to the class of optimization
problems generated by these rules, along with a base set of quasiconvex and
quasiconcave functions, as disciplined quasiconvex programs. Disciplined qua-
siconvex programming generalizes disciplined convex programming, the class
of optimization problems targeted by most modern domain-specific languages
for convex optimization. We describe an implementation of disciplined quasi-
convex programming that makes it possible to specify and solve quasiconvex
programs in CVXPY 1.0.

1 Introduction

A real-valued function f is quasiconvex if its domain C is convex, and for any α ∈ R,
its α-sublevel sets {x ∈ C | f(x) ≤ α } are convex [BV04, §3.4]. A function f is
quasiconcave if −f is quasiconvex, and it is quasilinear if it is both quasiconvex
and quasiconcave. A quasiconvex program (QCP) is a mathematical optimization
problem in which the objective is to minimize a quasiconvex function over a convex
set. Because every convex function is also quasiconvex, QCPs generalize convex
programs. Though QCPs are in general nonconvex, many can nonetheless be solved
efficiently by a bisection method that involves solving a sequence of convex programs
[BV04, §4.2.5], or by subgradient methods [Kiw01; Kon03].

The study of quasiconvex functions is several decades old [Fen53; Nik54; Lue68].
Quasiconvexity has been of particular interest in economics, where it arose in the
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study of competitive equilibria and the modeling of utility functions [AD54; GM04].
More recently, quasiconvex programming has been applied to control [Gu94; BL06;
SB10], model order reduction [SMD08], computer vision [KK06; KK07], computa-
tional geometry [Epp05], and machine learning [HLSS15]. While QCPs have many
applications, it remains difficult for non-experts to specify and solve them in practice.
The point of this paper is to close that gap.

Domain-specific languages (DSLs) have made convex optimization widely acces-
sible. DSLs let users specify their programs in natural mathematical notation, ab-
stracting away the process of canonicalizing problems to standard forms for numerical
solvers. The syntax of most DSLs for convex optimization, including CVX [GB14],
CVXPY [DB16; AVD+18], Convex.jl [UMZ+14], and CVXR [FNB17], is determined
by a grammar known as disciplined convex programming (DCP) [GBY06]. DCP in-
cludes a set of functions with known curvature (affine, convex, or concave) and mono-
tonicity, and a composition rule for combining the functions to produce expressions
that are also convex or concave. Some software does exist for solving quasiconvex
problems (e.g., YALMIP [Löf04]), but no DSLs exist for specifying them in a way
that guarantees quasiconvexity.

In this paper, we introduce disciplined quasiconvex programming (DQCP), an
analog of DCP for quasiconvex optimization. Like DCP, DQCP is a grammar that
consists of a set of functions and rules for combining them. A contribution of this
paper is the development of a theorem for the composition of a quasiconvex function
with convex (and concave) functions that guarantees quasiconvexity of the compo-
sition. This rule includes as a special case the composition rule for convex functions
upon which DCP is based. The class of programs producible by DQCP is a subset
of QCPs (and depends on the function library), and a superset of the class corre-
sponding to DCP.

In §2, we review properties of quasiconvex functions, state our composition the-
orem, and provide several examples of quasiconvex functions. In §3, we describe a
bisection method for solving QCPs. In §4, we present DQCP, and in §5, we describe
an implementation of DQCP in CVXPY 1.0.

2 Quasiconvexity

2.1 Properties

In this section, we review basic properties of quasiconvex functions, many of which
are parallels of properties of convex functions; see [GP71] for many more.
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Jensen’s inequality. Quasiconvex functions are characterized by a kind of Jensen’s
inequality: a function f mapping a set C into R is quasiconvex if and only if C is
convex and, for any x, y ∈ C and θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}.

Similarly, f is quasiconcave if and only if C is convex and f(θx + (1 − θ)y) ≥
min{f(x), f(y)}, for all x, y ∈ C and θ ∈ [0, 1].

Functions on the real line. For f : C ⊆ R → R, quasiconvexity can be de-
scribed in simple terms: f is quasiconvex if it is nondecreasing, nonincreasing, or
nonincreasing over C ∩ (∞, t] and nondecreasing over [t,∞) ∩ C, for some t ∈ C.

Representation via a family of convex functions. The sublevel sets of a quasi-
convex function can be represented as inequalities of convex functions. In this sense,
every quasiconvex function can be represented by a family of convex functions. If
f : C → R is quasiconvex, then there exists a family of convex functions φt : C → R,
indexed by t ∈ R, such that

f(x) ≤ t ⇐⇒ φt(x) ≤ 0.

The indicator functions for the sublevel sets of f ,

φt(x) =

{
0 f(x) ≤ t

∞ otherwise,

generate one such family. As another example, if the sublevel sets of f are closed,
a suitable family is φt(x) = infz∈{ z | f(z)≤t }‖x − z‖. We are typically interested in
finding families that possess nice properties. For the purpose of DQCP, we seek
functions φt whose 0-sublevel sets can be represented by convex cones over which
optimization is tractable.

Partial minimization. Minimizing a quasiconvex function over a convex set with
respect to some of its variables yields another quasiconvex function.

Supremum of quasiconvex functions. The supremum of a family of quasicon-
vex functions is quasiconvex, as can be easily verified [BV04, §3.4.4]; similarly, the
infimum of quasiconcave functions is quasiconcave.
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Composition with monotone functions. If g : C → R is quasiconvex and h is
a nondecreasing real-valued function on the real line, then f = h ◦ g is quasiconvex.
This can be seen by observing that for any α ∈ R, a point x (belonging to the
domain of f) is in the α-sublevel set of f if and only if

g(x) ≤ sup{ y | h(y) ≤ α }.

Because g is quasiconvex, this shows that the sublevel sets of f are convex. Similarly,
a nonincreasing function of a quasiconvex function is is quasiconcave, a nondecreasing
function of a quasiconcave function is quasiconcave, and a nonincreasing function of
a quasiconcave function is quasiconvex.

2.2 Composition theorem

A basic result from convex analysis is that a nondecreasing convex function of a
convex function is convex; DCP is based on a generalization of this result. The
composition rule for convex functions admits a partial extension for quasiconvex
functions, which we state below as a theorem. Though the theorem is straightfor-
ward, we are unaware of any references to it in the literature. Of course, the analog
of the theorem for quasiconcave functions also holds.

In the statement of the theorem, when considering a function g mapping a subset
of Rn into Rk, we use g1, g2, . . . , gk to denote the components of g. These components
are the real functions defined by

g(x) = (g1(x), g2(x), . . . , gk(x)),

for x in the domain of g.

Theorem 1. Suppose h is a quasiconvex mapping of a subset C of Rk into R ∪∞,
and {I1, I2, I3} is a partition of {1, 2, . . . , k} such that h is nondecreasing in the
arguments indexed by I1 and nonincreasing in the arguments indexed by I2. Suppose
also that g maps a subset of Rn into Rk in such a way that its components gi are
convex for i ∈ I1, concave for i ∈ I2, and affine for i ∈ I3. Then the composition

f = h ◦ g

is quasiconvex. If additionally h is convex, then f is convex as well.

The final statement of the theorem is just the well-known composition rule for
convex functions.
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We provide two proofs of this result. The first proof directly verifies that the
domain of f is convex and that f satisfies the modified Jensen’s inequality. This
proof is almost identical to a proof of the composition theorem for convex functions.
The only difference is that an application of Jensen’s inequality for convex functions
is replaced with its variant for quasiconvex functions. The second proof just applies
the composition theorem for convex functions to the representation of a quasiconvex
function via a family of convex functions.

Proof via Jensen’s inequality. Assume x, y are in the domain of f , and θ ∈ [0, 1].
Since the components of g are convex or concave (or affine), the convex combination
θx+ (1− θ)y is in the domain of g. For i ∈ I1, the components are convex, so

gi(θx+ (1− θ)y) ≤ θgi(x) + (1− θ)gi(y).

For i ∈ I2, the inequality is reversed, and for i ∈ I3, it is an equality. Since x and y are
in the domain of f , g(x) and g(y) are in the domain C of h, and θg(x)+(1−θ)g(y) ∈
C. Let ei denote the ith standard basis vector of Rk. Since h is an extended-value
function and in light of its per-argument monotonicities, C extends infinitely in the
directions −ei for i ∈ I1 and ei for i ∈ I2. This fact, combined with the inequalities
involving the components of g and the fact that θg(x) + (1− θ)g(y) ∈ C, shows that
g(θx+ (1− θ)y) ∈ C. Hence the domain of f is convex.

By the monotonicity of h and Jensen’s inequality applied to the components of
g,

h(g(θx+ (1− θ)y)) ≤ h(θg(x) + (1− θ)g(y)).

Because h is quasiconvex,

h(θg(x) + (1− θ)g(y)) ≤ max{h(g(x)), h(g(y))}.

Hence f is quasiconvex.

Proof via representation by convex functions. Let φt : C → R be a member of a
family of convex functions, indexed by t, such that φt(x) ≤ 0 if and only if h(x) ≤ t.
Assume without loss of generality that the per-argument monotonicities of φt match
those of h (e.g., take φt to be the indicator function for the t-sublevel set of h). Then
f(x) = h(g(x)) ≤ t if and only if φt(g(x)) ≤ 0. By the composition theorem for
convex functions, φt ◦ g is convex. We therefore conclude that the sublevel sets of f
are convex, i.e., f is quasiconvex.
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2.3 Examples

Product. The scalar product f(x, y) = xy is quasiconcave when restricted to either
R2

+ or R2
−, where Rn

+ denotes the set of nonnegative real n-vectors and Rn
− the

set of nonpositive real n-vectors. The product is quasiconvex when one variable is
nonnegative and the other is nonpositive. From this fact and the composition rule,
one can deduce that the product of two nonnegative concave functions is quasiconcave
(see also [Bec68; KN05]), and the product of a nonnegative concave function with a
nonpositive convex function is quasiconvex.

Ratio. The ratio f(x, y) = x/y is quasilinear on R×R++, as well as on R×R−−
(but not on R2), where Rn

++ and Rn
−− denote the sets of positive and negative

real n-vectors, respectively. When x ≥ 0 and y > 0, f is increasing in x and
decreasing in y. Hence the ratio of a nonnegative convex function and a positive
concave function is quasiconvex, and the ratio of a nonnegative concave function
and a positive convex function is quasiconcave. The problem of maximizing the
ratio of a nonnegative concave function and a positive convex function is known as
concave-fractional programming [Sch78; Sch81].

Linear-fractional function. The function

f(x) =
aTx+ b

cTx+ d

is quasilinear when the denominator is positive. This can be seen by the compo-
sition rule, since the ratio x/y is quasilinear when y > 0. It is also quasilinear
when restricted to negative denominators. The problem of minimizing a linear-
fractional function over a polyhedron is known as linear-fractional programming.
Though linear-fractional programming is often described as a generalization of linear
programming, linear-fractional programs can be reduced to linear programs [CC62].

Distance ratio function. The function

f(x) =
‖x− a‖2
‖x− b‖2

is quasiconvex on the halfspace {x ∈ Rn | ‖x−a‖2 ≤ ‖x− b‖2 }. This result cannot
be derived by applying the composition rule to the ratio function, but it is simple to
show that its sublevel sets are Euclidean balls [BV04, §3.4].
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Monotone functions on the real line. Monotone functions whose domains are
convex subsets of R are quasilinear; examples include the exponential function, log-
arithm, square root, and positive odd powers.

Generalized eigenvalue. The maximum eigenvalue of a symmetric matrix is con-
vex, since it can be written as the supremum of a family of linear functions. Anal-
ogously, the maximum generalized eigenvalue λmax(A,B) of a pair of symmetric
matrices (A,B) (with B positive definite) is quasiconvex, since

λmax(A,B) = sup
x 6=0

xTAx

xTBx

is the supremum of a family of linear-fractional functions [BV04, §3.4]. Another way
to see this is to note that the inequality

λmax(A,B) = sup{λ ∈ R | Ax = λBx} ≤ t

is satisfied if and only if tB − A is positive semidefinite. Similarly, the minimum
generalized eigenvector is quasiconcave in A and B.

2.3.1 Integer-valued functions

Ceiling and floor. The functions dxe = inf{ z ∈ Z | z ≥ x } and bxc = sup{ z ∈
Z | z ≤ x } are quasilinear, because they are monotone functions on the real line.

Sign. The function mapping a real number to −1 if it is negative and +1 otherwise
is quasilinear.

Rectangle. The rectangle function f : R→ R given by

f(x) =

{
0 |x| > 1

2

1 |x| ≤ 1
2

is quasiconcave.

Length of a vector. The length of a vector in Rn is defined as the largest index
corresponding to a nonzero component:

len(x) = max{i | xi 6= 0}.

This function is quasiconvex on Rn because its sublevel sets are subspaces. The
inequality f(x) ≤ α implies xi = 0 for i = bαc+ 1, . . . , n.
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Cardinality of a nonnegative vector. The function card(x), which gives the
number of nonzero components in the vector x, is quasiconcave on Rn

+: card(x+y) ≥
min{card(x), card(y)} for nonnegative x and y.

Matrix rank. The matrix rank is quasiconcave on the set of positive semidefinite
matrices, since the rank of a sum of positive semidefinite matrices is at least the
minimum of the ranks of the matrices.

3 Solution method

The problem of minimizing a quasiconvex function f : C → R can be solved in many
ways [Kiw01; Kon03; HLSS15]. Here, we describe a simple method that reduces a
QCP to a sequence of convex feasibility problems [BV04, §4.2.5]. Suppose the interval
[α, β] is known to contain the optimal value p?. Put t = (α+β)/2, and let φt : C → R
be a family of convex functions indexed by t ∈ R such that f(x) ≤ t if and only if
φt(x) ≤ 0. Consider the convex feasibility problem

find x
subject to φt(x) ≤ 0.

(1)

If this problem yields a feasible point x, then p? ≤ t and in particular p? ∈ [α, f(x)];
otherwise, p? ∈ [t, β]. In either case, solving the feasibility problem yields an interval
containing the optimal value, with width half as large as the original interval. To
obtain an ε-suboptimal solution to the QCP, we repeat this process until the width
of the interval is at most ε, which requires at most dlog2(β − α)/εe iterations.

Finding an initial interval for bisection. The optimal value p? is usually not
known before solving a QCP. In such cases, a simple heuristic can be employed to find
an interval containing it, assuming that the QCP is feasible (which can be checked
by solving a single convex feasibility problem). Start with a candidate interval [α, β],
where α < 0 and β > 0. If the problem (1) is feasible for t = β and infeasible for
t = α, then p? ∈ [α, β]. Otherwise, if the problem is infeasible for t = β, put α := β
and β := 2β. If on the other hand the problem is feasible for t = α, put β := α and
α := 2α. Repeating this process will eventually produce an interval containing p?,
provided that the QCP is not unbounded.
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4 Disciplined quasiconvex programming

DQCP is a grammar for constructing QCPs from a set of functions, or atoms, with
known curvature (affine, convex, concave, quasiconvex, or quasiconcave) and per-
argument monotonicities. A program produced using DQCP is called a disciplined
quasiconvex program; we say that such programs are DQCP-compliant, or just
DQCP, for short. DQCP guarantees that every function appearing in a disciplined
quasiconvex program is affine, convex, concave, quasiconvex, or quasiconcave.

A disciplined quasiconvex program is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ αi, i = 1, . . . ,m1

βi ≤ gi(x), i = 1, . . . ,m2

f̃i(x) ≤ g̃i(x), i = 1, . . . ,m3

hi(x) = h̃i(x), i = 1, . . . , p.

(2)

The functions fi must be quasiconvex, gi must be quasiconcave, f̃i must be convex,
g̃i must be concave, and hi, h̃i must be affine; αi and βi must be constants. All of the
functions appearing in (2) must be produced from atoms, using only the composition
rule from Theorem 1 and the rules governing the maximum of quasiconvex functions,
the minimum of quasiconcave functions, and composition with monotone functions
(see §2.1). Because Theorem 1 includes the composition rule for convex functions as
a special case, DQCP is a modest extension of DCP.

A mathematical expression is verifiably quasiconvex under DQCP if it is

• a convex expression;

• a quasiconvex atom, applied to a variable or constant;

• the max of quasiconvex expressions;

• a nondecreasing function of a quasiconvex expression, or a nonincreasing func-
tion of a quasiconcave expression;

• the composition of a quasiconvex atom with convex, concave, and affine ex-
pressions that satisfies the hypotheses of Theorem 1.

These rules are applied recursively, with the recursion bottoming out at variables
and constants. For example, if exp(·) and the generalized eigenvalue λmax(·, ·) are
atoms, and X and Y are matrix variables, then the expressions

λmax(X, Y ), exp(λmax(X, Y )), and exp(exp(λmax(X, Y )))

9



Figure 1: Expression trees representing the pro-
gram (3).

are all verifiably quasiconvex under DQCP, since exp(·) is increasing and λmax(·, ·)
is quasiconvex. Likewise, an expression is quasiconcave under DQCP if it is a con-
cave expression, a quasiconcave atom applied to a variable or constant, the min
of quasiconcave functions, a nondecreasing function of a quasiconcave function, a
nonincreasing function of a quasiconvex function, or a valid composition of a quasi-
concave function with convex, concave, and affine functions. Whether an expression
is convex, concave, or affine under DQCP is precisely the same as under DCP.

A DQCP program is naturally represented as a collection of expression trees, one
for the objective and one for each constraint. Verifying whether a program is DCQP
amounts to recursively verifying that each expression tree is DQCP. For example,
the program

minimize −
√
x/y

subject to exp(x) ≤ y
(3)

can be represented by the trees shown in figure 1. This program is DQCP when y
is known to be positive, because the ratio of a nonnegative concave functions and a
positive convex function is quasiconcave, and the negation of a quasiconcave function
is quasiconvex. The atoms in this program are the functions exp(·),

√
·, and ·/·.

Every disciplined quasiconvex program is a QCP, but the converse is not true.
This is not a limitation in practice, since the atom library is extensible.

The grammar. Table 1 specifies the DQCP grammar, in the programming lan-
guages sense [ALS+06, §4]. In the specification, S denotes the start symbol. The
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symbols
AFF, CVX, CCV, QCVX, QCCV

are nonterminals used to represent affine, convex, concave, quasiconvex, and qua-
siconcave expressions producible by DQCP. Their lowercase counterparts represent
atoms, e.g., cvx stands for a convex atom. Atoms can have multiple curvatures. For
example, every affine atom is also a convex atom and a concave atom. The symbols

incr, decr

denote nondecreasing and nonincreasing functions, respectively,

constant, variable

denote numerical constants and optimization variables, and

cvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)

denotes a composition of a convex atom with convex, concave, and affine expressions
that can be certified as convex via Theorem 1. Because DQCP is a grammar for
QCPs, it can be used to define the syntax of a DSL for quasiconvex optimization.

5 Implementation

We have implemented DQCP in CVXPY 1.0, a Python-embedded DSL for convex
optimization [DB16; AVD+18]. Our implementation, which is available at

https://www.cvxpy.org,

makes CVXPY the first DSL for quasiconvex optimization. Because DQCP is a
generalization of DCP, it fits seamlessly into CVXPY, which parses problems using
DCP by default. Our atom library includes many of the functions presented in §2.3.
We have also implemented the bisection method described in §3.

5.1 Canonicalization

The process of rewriting a problem to an equivalent standard form is called canon-
icalization. In CVXPY 1.0, canonicalization is facilitated by Reduction objects,
which rewrite problems of one form into equivalent problems of another form.

11
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S → QCVX
S → QCCV

LEAF → constant
LEAF → variable

AFF → LEAF
AFF → aff(AFF, . . . ,AFF)

CVX → AFF
CVX → cvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)

CCV → AFF
CCV → ccv(CCV, . . . ,CCV,CVX, . . . ,CVX,AFF, . . . ,AFF)

QCVX → CVX
QCVX → qcvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)
QCVX → incr(QCVX)
QCVX → decr(QCCV)
QCVX → max{QCVX, . . . ,QCVX}

QCCV → CCV
QCCV → qccv(CCV, . . . ,CCV,CVX, . . . ,CVX,AFF, . . . ,AFF)
QCCV → incr(QCCV)
QCCV → decr(QCVX)
QCCV → min{QCCV, . . . ,QCCV}

Table 1: The DQCP grammar, which extends DCP. The rules for compositions with
convex, concave, and affine expressions denote compositions satisfying the hypotheses
of Theorem 1.
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We have implemented a reduction called Dqcp2Dcp that canonicalizes DQCP
problems by converting them into an equivalent one-parameter family of DCP feasi-
bility problems. When applied to a DQCP problem, this reduction first introduces
a scalar parameter and constrains the problem’s objective to be no greater than the
parameter. It recursively processes this constraint and every other constraint, repre-
senting the sublevel sets of quasiconvex expressions and superlevel sets of quasicon-
cave expressions in DCP-complaint ways. The reduction then emits a parameterized
DCP problem. The constraints of the emitted problem are the canonicalized con-
straints of the original problem, and the objective is to find an assignment to the
variables that satisfies the constraints. A solution to the original problem can be
obtained by running bisection on the emitted problem.

5.2 Bisection

We have implemented the bisection routine described in §3. Our method first checks
whether the original problem is feasible by solving a convex feasibility problem.
If the problem is feasible, our routine automatically finds an interval containing the
optimal value and then runs bisection. Our bisection routine tightens the boundaries
of the bisection interval depending on the values of the original problem’s objective
function. For example, when the objective is integer-valued, our implementation will
tighten a lower bound α to dαe, and an upper bound β to bβc.

5.3 Examples

Hello, world. Below is an example of how to use CVXPY 1.0 to specify and solve
the problem (3), meant to highlight the syntax of our modeling language. More
interesting examples are subsequently presented.

1 import cvxpy as cp

2
3 x = cp.Variable()

4 y = cp.Variable(pos=True)

5 objective_fn = -cp.sqrt(x)/y

6 objective = cp.Minimize(objective_fn)

7 constraint = cp.exp(x) <= y

8 problem = cp.Problem(objective, [constraint])

9 problem.solve(qcp=True)

10 print("Optimal value: ", problem.value)

11 print("x: ", x.value)

13



12 print("y: ", y.value)

The optimization problem problem has two scalar variables, x and y. Notice that
y is declared as positive in line 3, with pos=True. The objective is to minimize the
ratio of −

√
x and y, which is quasiconvex since the ratio is quasiconcave when the

numerator is a nonnegative concave expression and the denominator is a positive
convex expression. Line 6 constructs the objective of the problem. In line 7, exp(x)
is constrained to be no larger than y via the relational operator <=. Line 8 constructs
problem, which represents the optimization problem as two expression trees, one for
objective fn and one for constraint. The internal nodes in these expression trees
are the atoms sqrt, exp, ratio (/), and negation (-). The problem is DQCP, which
can be verified by asserting problem.is dqcp(). Line 9 canonicalizes problem,
parsing it as a DQCP (qcp=True), and then solves it by bisection. The optimal value
of the problem and the values of the variables are printed in lines 10-12, yielding the
following output.

1 Optimal value: -0.4288821220397949

2 x: 0.49999737143004713

3 y: 1.648717724845007

As this example makes clear, users do not need to know how canonicalization or
bisection work. All they need to know is how to construct DQCP problems. Calling
the solve method on a Problem instance with the keyword argument qcp=True

canonicalizes the problem and retrieves a solution. If the user forgets to type
qcp=True when her problem is DQCP (and not DCP), a helpful error message is
raised to alert her of the omission.

Generalized eigenvalue matrix completion. We have implemented the max-
imum generalized eigenvalue as an atom. As an example, we can use CVXPY 1.0
to formulate and solve a generalized eigenvalue matrix completion problem. In this
problem, we are given some entries of two symmetric matrices A and B, and the
goal is to choose the missing entries so as to minimize the maximum generalized
eigenvalue λmax(A,B). Letting Ω denote the set of indices (i, j) for which Aij and
Bij are known, the optimization problem is

minimize λmax(X, Y )
subject to Xij = Aij, (i, j) ∈ Ω,

Yij = Bij, (i, j) ∈ Ω,

14



which is a QCP. Below is an implementation of this problem, with specific problem
data

A =

1.0 ? 1.9
? 0.8 ?
? ? ?

 , B =

3.4 ? 1.4
? 0.2 ?
? ? ?

 .
(The question marks denote the missing entries.)

1 import cvxpy as cp

2
3 X = cp.Variable((3, 3))

4 Y = cp.Variable((3, 3))

5 gen_lambda_max = cp.gen_lambda_max(X, Y)

6 omega = tuple(zip(*[[0, 0], [0, 2], [1, 1]]))

7 constraints = [

8 X[omega] == [1.0, 1.9, 0.8],

9 Y[omega] == [3.0, 1.4, 0.2],

10 ]

11 problem = cp.Problem(cp.Minimize(gen_lambda_max), constraints)

12 problem.solve(qcp=True)

13 print("Generalized eigenvalue: ", gen_lambda_max.value)

14 print("X: ", X.value)

15 print("Y: ", Y.value)

Executing the above code prints the below output.

Objective: 4.000002716411653

X: [[9.99999767e-01 9.86154616e-16 1.89999959e+00]

[9.86154616e-16 7.99999761e-01 5.19126535e-15]

[1.89999911e+00 5.19126535e-15 1.25733692e+00]]

Y: [[ 2.99999980e+00 -2.78810135e-16 1.40000015e+00]

[-2.78810135e-16 1.99999804e-01 2.14473098e-16]

[ 1.40000015e+00 2.14473098e-16 1.14038551e+00]]

Notice that the gen lambda max atom automatically enforced the symmetry and
positive definiteness constraints on X and Y .

Minimum length least squares. Our atom library includes several integer-valued
functions, including the length function. As an example, the following QCP finds
a minimum-length vector x ∈ Rn that has small mean-square error for a particular
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least squares problem:

minimize len(x)
subject to 1/n‖Ax− b‖22 ≤ ε.

The problem data are A ∈ Rn×n, b ∈ Rn, and ε ∈ R. Below is an implementation
of this problem in CVXPY.

1 import cvxpy as cp

2 import numpy as np

3 np.set_printoptions(precision=2)

4
5 n = 10

6 np.random.seed(1)

7 A = np.random.randn(n, n)

8 x_star = np.random.randn(n)

9 b = A @ x_star

10 epsilon = 1e-2

11
12 x = cp.Variable(n)

13 mse = cp.sum_squares(A @ x - b)/n

14 problem = cp.Problem(cp.Minimize(cp.length(x)), [mse <= epsilon])

15 problem.solve(qcp=True)

16 print("Length of x: ", problem.value)

17 print("MSE: ", mse.value)

18 print("x: ", x.value)

19 print("x_star: ", x_star)

Running the code produces the following output.

Length of x: 8.0

MSE: 0.00926009328775564

x: [-0.26 1.38 0.21 0.94 -1.15 0.15 0.66 -1.16 -0. -0. ]

x_star: [-0.45 1.22 0.4 0.59 -1.09 0.17 0.74 -0.95 -0.27 0.03]
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