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Abstract
A cruise company faces three decision problems: at a strategic level, to decide in
which maritime area and in which season window to locate each ship of its fleet; at a
tactical level, given a ship in a maritime area and in a season window, to decide which
cruises to offer to the customers; at an operational level, to determine the day-by-day
itinerary, in terms of transit ports, arrival and departure times and so on. This paper
focuses on the tactical level, namely on the Cruise Itineraries Optimal Scheduling
(CIOS), aiming at determining a scheduling of cruises with the objective to maximize
the revenue provided by a given ship placed in a specified maritime area, in a selected
season window, taking into account a number of constraints. In particular, we refer
to luxury cruises, implying several additional considerations to be taken into account.
We propose an Integer Linear Programming (ILP) model for such a CIOS problem.
This model has been experimented by a major luxury cruise company to schedule the
itineraries of its fleet in many geographical areas all over the world. A commercial
solver has been used to solve the ILP problem.Herewe report, as illustrative examples,
the results obtained on some of these real instances to show the computational viability
of the proposed approach.
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1 Introduction

The annual reports issued by CLIA (Cruise Lines International Association) show
how the cruising industry has become the fastest growing sector of leisure and tourist
business. In particular the 2019 Cruise Industry Outlook (see [5]) points out that the
expected number of passengers in 2019 amounts to the order of 30 millions, with
an increase of 69% in the last 10years. Also in terms of capacity, an extraordinary
increase is recorded, because the companies make multimillion investments to have
more innovative and ever-bigger ships. While at December 2015, CLIA’s fleet was
composed of 448 ships, between 2016 and 2020, 65 new ships will sail (for more
details on the trends of the sector, see [6]).

As regards the current challenges for cruises management, in [16] the most impor-
tant ones are surveyed. In particular, in the cruising industry business, ships deployment
strategies and itineraries planning play a fundamental role. They are usually designed
according to economic and operational considerations, but they are also strongly
affected by the target market. Hence, the cruise companies can be divided into two
broad classes: the mass market class and the luxury market class. The mass market
cruise companies usually offer a catalogue of cruises where a same basic itinerary is
repeated many times, often week-by-week, aiming at satisfying customers at a first,
and probably unique, cruise experience, not requiring so much in terms of originality
of the itinerary. On the contrary, a luxury market company usually deals with return-
ing customers, which require new itineraries not previously experienced. Therefore a
luxurymarket cruise company is compelled to publish yearly a catalogue of cruises dif-
ferent among them and from the year before. The different demands between first-time
cruisers and more experienced cruisers are clearly stated in [3] and in the references
reported therein.

In its decision making process, a cruise company faces the following three levels
of management decisions (see, e.g. [15]):

– at a strategic level, the deployment of the fleet, that is to decide in which maritime
area and in which season window to locate each ship of its fleet;

– at a tactical level, given a ship in a maritime area, in a season window, to establish
which cruises to offer to the customers, where each cruise is characterized by the
embarkation port, the disembarkation port and cruise length (in days);

– at an operational level, given a cruise, namely embarkation port, disembarkation
port and number of days, to determine the day-by-day itinerary, in terms of transit
ports, arrival and departure times in transit ports, and so on.

The problemof theCruise ItinerariesOptimal Scheduling (CIOS) concerns the tactical
level. It consists in determining the scheduling of the cruises offered to customers in
a given maritime area in a determined season period, with the objective to maximize
the company revenue, taking into account several constraints on the scheduling.

Although the cruise sector is of great andgrowing economical importance, it appears
that quantitativemodels in the decision processes are up to now rarely adopted to tackle
CIOS problem. Most papers on maritime transport regards the management of cargo
ships (see e.g. [4,9]); other papers deal with the management of passenger ferries
(see e.g. [17]). Only few papers deal with cruise ships management and they mainly
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focus on theCruise ItineraryDesignProblem (CIDP), namely the design of day-by-day
itineraries, that is they only consider the problem at the operational level [2,11–13,18].
In particular, see the recent paper [2] and the references reported therein for an update
literature review on the CIDP problem. Other papers are limited to economic, social
and environmental issues (see e.g. [14]). We have not been able to find papers on the
CIOS problem, i.e. which consider the tactical level, and it seems to be new in the
Operations Research literature.

In this paper, we consider the CIOS problem referring to a luxury market cruise
company and, as already observed, this implies several additional considerations to be
taken into account, hence an increased difficulty. In particular, three different types of
cruises must be considered:

– standard cruise: a cruise defined by an embarkation port, a disembarkation port
and a duration;

– cruise with a milestone: a cruise that must depart and/or arrive in a specific port
in a specific day of the season; its presence is usually due to some particular event
that a cruise must meet in some port;

– charter cruise: a cruise with both embarkation port/departure day and disembarka-
tion port/arrival day given. They are usually offered as corporate cruises.

The cruises with a milestone and the charter cruises are typically proposed only by
luxury cruises companies, being usually very expensive.

We propose an Integer Linear Programming (ILP) model for this problem. We
coded it by using AMPL language [8] and solved the resulting ILP problem by using
the commercial solver GUROBI [10]. Several real instances have been solved in order
to provide the cruise company with the itineraries schedule of its fleet in many geo-
graphical areas all over the world. It is important to note that the adoption of an exact
solution approach, rather than the use of some metaheuristic, is allowed since the
cruises scheduling is developed years in advance, before becoming operative, so that
a long computing time (even of some hours) for an instance is admissible. Of course,
if the computing time becomes too large, the run can be untimely truncated, getting an
approximate solution along with the optimality gap that gives a measure of the quality
of the current feasible solution.

This work has been developed within a joint project (named Magellano Project),
between ACTOR SRL1 and a major luxury cruise company (which we do not mention
for the sake of privacy), aiming at providing cruise companies with a decision support
system able to tackle all three levels of the decision making process. As regards the
third level of the decision making process, the day-by-day itinerary optimization with
the objective to minimize costs and to maximize some attractiveness index of the
cruise, has been dealt with in the talk [7] and will be the subject of a subsequent paper.

The paper is organized as follows: in Sect. 2 the description of the CIOS is reported.
In Sect. 3 we describe in detail the mathematical model developed, and in Sect. 4 we
report some experimental results on real problem instances. Finally, some concluding
remarks are drawn in Sect. 5.

1 ACTOR SRL is a Spin-Off of SAPIENZA University of Rome (www.actorventure.com).
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2 Problem description

The CIOS problem consist in selecting a subset of cruises among all the available
cruises in a given maritime area, in a determined season period, aiming at maximizing
the overall company revenue. Such revenue is estimated by using information on past
records of cruises in the same maritime area and by the same or similar ships, as
detailed in the sequel.

Now we report all the elements that characterize the CIOS problem. A ship, a
maritime area, a season window (defined with a starting and ending date) and a set of
turnaround ports of the area are given. These ports can be used as the embarkation
or disembarkation port of a cruise and their set is denoted by P . We highlight that
turnaround ports have some specific characteristics so that not all ports presented in
the maritime area con be considered. In particular, turnaround ports must be easily
reachable by passengers, e.g. being close to an international airport, and they could
also be attractive destinations where cruisers may spend a few days before or after
enjoying the cruise. Turnaround port can also be transit port but, of course, these latter
are of interest in the day-by-day itinerary planning and not in the CIOS problem.

The first cruise of the season must start at a given embarkation port pfirst ∈ P ,
where the ship must be docked at the beginning of the season; the last cruisemust end
at a given disembarkation port plast ∈ P , where the ship will be docked at the end
of the season. In the sequel, for the sake of shortness we denote them p f i and pla ,
respectively.

The basic requests which must be taken into account in the selection of the cruises
are the following:

C1: the disembarkation port of a cruise is the embarkation port of the next cruise,
except for the first (p f i ) and the last (pla) port visited during the season;

C2: in absence of milestones and charter cruises, disembarkation and embarkation in
a port p ∈ P (with p �= p f i and p �= pla) occur in the same day;

C3: for each port p ∈ P , the minimum and the maximum number of allowed visits
of the port p is given. We denote them nvmin

p and nvmax
p , respectively;

C4: for each port p ∈ P , the minimum number of days between two consecutive visit
of the port p is given and denoted by ndmin

p ;
C5: a setL of the cruise durations (in days) allowed is assigned and for each � ∈ L the

minimum and the maximum number of cruises of duration � which are allowed
in the schedule is given. They are denoted by ncmin

� and ncmax
� , respectively.

While constraints C1 and C2 are basic constraints, i.e. usual continuity constraints,
constraints C3, C4 and C5 are relevant to luxury cruises. Indeed, they clearly aim at
offering a catalogue of cruises differentiated enough among them. We call constraints
C3–C5 operational constraints.

To complete the description of the notations used, we indicate the days of the season
period as elements of the ordered set D = {0, 1, 2, . . . , N } (d = 0 and d = N are
the first and the last day of the season, respectively). The cruises can start at any day
d ∈ D and de and dd denote the day of the embarkation and disembarkation of a
cruise. Similarly, d f i and dla indicate the day of embarkation at p f i and the day of
disembarkation at pla . This distinction is necessary since, both d f i and dla will be
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determined by the optimization process and, as described in the sequel, it could be
d f i �= 0 and dla �= N .

Therefore, if we denote by C the set of all possible cruises that can be operated by
the ship in the given area and in the assigned season segment, any cruise C ∈ C is
characterized by the embarkation port pe ∈ P , the disembarkation port pd ∈ P , the
day of embarkation de and the duration � ∈ L. Hence, it results

C = {(pe, pd , de, �) ∈ P × P × D × L}

and each cruise is identified by a quadruple C = (pe, pd , de, �).
In the case of cruise with milestones, we can have a milestone on embarkation, i.e.

a request for a cruise which must embark from a prefixed port p̄e on given day d̄e

and/or a milestone on disembarkation, i.e. a request for a cruise which must disembark
in a prefixed port p̄d on given day d̄d . We denote by Me the set of the pairs Me =
{( p̄e, d̄e) ∈ P × D} indicating milestones on embarkation and by Md the set of
the pairs Md = {( p̄d , d̄d) ∈ P × D} indicating milestones on disembarkation. A
charter cruise is a cruise with embarkation and disembarkation ports, duration and
embarkation day assigned. We denote by Cch the set of the charter cruises, i.e. the set
of particular quadruples Cch = {( p̄e, p̄d , d̄e, �̄) ∈ C}.

Finally, observe that the season segment could not be exactly covered by cruises
of given durations � ∈ L. Therefore we must allow for some days tolerance ndt f i on
the day d f i of embarkation in p f i , so that, actually d f i ∈ {0, . . . , ndt f i }. Similarly,
some days tolerance ndtla on the day dla of disembarkation in pla are allowed, so
that dla ∈ {(N − ndtla), . . . , N } (see also Fig. 1 in the sequel).

In the absence of milestones or charter cruises, a feasible solution for the CIOS
problem, i.e. a feasible cruise schedule, is a sequence of cruises {Ci }i≥1, with Ci =
(pei , p

d
i , dei , �i ) ∈ C, ordered according to dei such that

(i) there exists

(p f i , pd , d f i , �) ≡ (pe1, p
d
1 , de1, �1) ∈ C, with d f i ∈ {0, . . . , ndt f i };

(ii) there exists M ≥ 2 such that

(peM , pdM , deM , �M ) ≡ (peM , pla, dla − �M , �M ) ∈ C,

with dla ∈ {(N − ndtla), . . . , N };

(iii) for all i = 1, . . . , M − 1,

pei+1 = pdi
dei+1 = dei + �i ; (2.1)

(iv) it results
M∑

i=1

�i ≤ N ; (2.2)
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(v) the operational constraints C3, C4 and C5 are satisfied.

The cruise defined in item (i) is the first cruise (C1) of the sequence. The cruise defined
in item (ii) is the last cruise (CM ) of the sequence which embarks in the day dla − �M .
Of course, the value of the integer M (the number of cruises scheduled in the season)
is not known in advance, but it will be an output of the optimization process.

In the presence of milestones or charter cruises some days off in port, ndof fi , can
be expected between the end of cruise Ci and the beginning of the next one Ci+1,
i = 1, . . . M − 1. So that, in this case, (2.1) and (2.2) are replaced by

dei+1 = dei + �i + ndof fi (2.3)
M∑

i=1

(�i + ndof fi ) ≤ N . (2.4)

The maximum value allowed for ndof fi , i = 1, . . . M − 1, is given and indicated by

ndof fmax.
Finally, we denote by S the set of feasible cruise schedules, i.e. the set of sequences

S = {C1, . . . ,CM } which are feasible solution for the CIOS problem.
For the sake of clarity, we summarize in Table 1, the fundamental elements of the

CIOS problem up to now introduced.
Now we turn to the computation of the company revenue. For each cruise Ci ∈ C

the net revenue r(Ci ) is given by the company. It is estimated from past records of
cruises by the same or a similar ship deployed in the same maritime area. Forecasts
on the cruise market trend can be also taken into account to possibly upgrade this
revenue. Therefore, to any feasible schedule S ∈ S it is associated a total net revenue
given by

R(S) =
∑

1≤i≤M
Ci∈S

r(Ci ). (2.5)

Moreover, for any S ∈ S, a payoff is due for the number of days of the schedule off
in ports, i.e. for the not sailing days of the ship. This payoff can be computed as

PO(S) = w
(
d f i + (N − dla) +

∑

1≤i≤M−1
Ci∈S

ndof fi

)
, (2.6)

wherew is a suitable parameter which accounts for the loss of revenue due to the days
of the schedule off in ports. Of course, PO(S) �= 0 if there exist days tolerance at the
beginning (d f i �= 0), at the end (dla �= N ) of the schedule, or between the cruises Ci

and Ci+1 (nd
of f
i �= 0 for some i = 1, . . . , M − 1).

Nowwe can formally state the CIOS problem as the problem of determining S∗ ∈ S
which maximize the objective function R(S) − PO(S) for all S ∈ S, namely the
problem {

max R(S) − PO(S)

S ∈ S.
(2.7)
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Table 1 Summary of the elements which characterize a CIOS problem

P The set of turnaround ports

pe, pd ∈ P Embarkation/disembarkation port of a cruise

p f i , pla ∈ P Embarkation/disembarkation port of the first/last
cruise of the season

nvmin
p , nvmax

p Minimum/maximum number of allowed visits of
port p

ndmin
p Minimum number of days between two

consecutive visit of port p

L Set of allowed cruise durations

� An allowed cruise duration � ∈ L
ncmin

�
, ncmax

�
Minimum/maximum number of cruises of
duration � allowed

D = {0, 1, 2, . . . , N } Ordered set of the days of the season

de, dd ∈ D Embarkation/disembarkation day of a cruise

d f i , dla ∈ D Embarkation day at p f i /disembarkation day at
pla of the first/last cruise of the season

ndt f i Number of days tolerance allowed on the day
d f i of embarkation in p f i

ndtla Number of days tolerance allowed on the day
dla of disembarkation in pla

ndof fi Number of days off in port between cruise Ci
and Ci+1

ndof fmax Maximum value allowed for ndof fi ,
i = 1, . . . M − 1

C Set of all possible cruises in the given area

C = (pe, pd , de, �) A cruise C ∈ C
Me Set of milestones on embarking

Md Set of milestones on disembarking

Cch Set of charter cruises

S Set of all feasible cruise schedules

S = {C1, . . . ,CM } A feasible cruise schedule S ∈ S

3 Themathematical model

In this section we describe the mathematical model we propose for solving the CIOS
problem. First we report the problem data which constitute the data parameters of the
model. Then we introduce the decision variables of the model.

3.1 Themodel parameters

The data parameters are:

• the sets P , C,Me, Md , Cch , L;
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• the ordered set D = {0, . . . , N };
• the ports p f i , pla ∈ P;
• for each p ∈ P , the values nvmin

p , nvmax
p , ndmin

p ∈ N, with nvmin
p ≤ nvmax

p ≤ N

and ndmin
p ≤ N ;

• for each � ∈ L, the values ncmin
� , ncmax

� ∈ N, with ncmin
� ≤ ncmax

� ;
• the number of days tolerance allowed ndt f i , ndtla ∈ N, with ndt f i ≤ N and
ndtla ≤ N ;

• the number of days off in port allowed ndof fmax ∈ N, with ndof fmax ≤ N ;
• for each C ∈ C the value of the revenue r(C) ∈ R;
• the parameter w ∈ R.

All these parameters have been already described in Sect. 2. They are summarized
in Table 1; the parameter w is introduced in (2.6) and its meaning is expounded
immediately after.

In themodel implementationwe also need a technical parameter, denoted by BigM ,
adopted to allow binary variables to turn constraints on or off.

3.2 The decision variables

Preliminarily, for the sake of brevity of the notation, for each p ∈ P , we introduce a
set V(p) ⊆ N which is the set of the number of allowed visits at the port p during the
whole season, namely

V(p) = {n ∈ N | nvmin
p ≤ n ≤ nvmax

p }.

Nowwe can define the decision variables of the model we propose. First we introduce
the following binary variables used for identifying the sequence of the cruises in the
schedule:

x(pe, pd , �, npe, npd) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if a cruise of duration � starting from port pe,
visited for the npe-th time, and arriving to port
pd , visited for the npd -th time, is in the schedule

0 otherwise,

where pe ∈ P , pd ∈ P , � ∈ L and npe ∈ V(pe), npd ∈ V(pd) are integer variables
used to take into account the request on the minimum/maximum number allowed of
visits of ports pe and pd , respectively.

Then we introduce other binary variables for coupling a cruise with its embarkation
and disembarkation days:

ye(pe, pd , �, npe, npd , de) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if a cruise of duration � starting on day de

from port pe, visited for the npe-th time,
arriving to port pd , visited for the npd -th time,
is in the schedule

0 otherwise,
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yd(pe, pd , �, npe, npd , dd) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if a cruise of duration � ending on day dd

in port pd , visited for the npd -th time,
originating from port pe, visited for the npe-th
time, is in the schedule

0 otherwise,

where pe ∈ P , pd ∈ P , � ∈ L, npe ∈ V(pe) and npd ∈ V(pd). Of course, if it
results x( p̄e, p̄d , �̄, n̄pe, n̄pd) = 1, then both ye( p̄e, p̄d , �̄, n̄pe, n̄pd , de) = 1 and
yd( p̄e, p̄d , �̄, n̄pe, n̄pd , dd) = 1, for some de, dd ∈ D.

Then, in order to identify the embarkation day (from pe) and the disembarkation
day (in pd ) of a cruise, taking into account the number of times a cruise visits a port,
we need to specify these days also on the basis of the counters npe and npd . Hence,
we introduce the following integer variables:

ge(pe, pd , �, npe, npd) ∈ D: the embarkation day from the port pe, visited for
the npe-th time by a cruise of duration � which disembarks in the port pd , visited
for the npd -th time,
gd(pe, pd , �, npe, npd) ∈ D: the disembarkation day in the port pd , visited for
the npd -th time by a cruise of duration �, originated from the port pe, visited for
the npe-th time,

where pe ∈ P , pd ∈ P , � ∈ L, npe ∈ V(pe) and npd ∈ V(pd).
Of course, the decision variables up to now introduced are not indipendent. Con-

straints (3.5) and (3.6) reported in the sequel, show the relationship among them.
Actually, some of them could be eliminated, but we prefer to keep them in the descrip-
tion of the model, since their removal would make the expression of the constraints
much less readable.

Finally, we need to identify the starting day d f i of the first cruise and the ending
day dla of the last cruise of the sequence, hence we introduce the following pair of
integer variables:

nd f i ∈ {0, 1, . . . , ndt f i }: the number of days that elapse from the first day of the
season (day 0) to the embarkation day of the first cruise of the sequence (d f i );
ndla ∈ {0, 1, . . . , ndtla}: the number of days that elapse from the disembarkation
day of last cruise in the sequence (dla) to the last day of the season (day N ).

The value of these variables enables to determine the days d f i and dla ; in fact, it
results d f i = nd f i and dla = N − ndla .

Finally, for each port p ∈ P we introduce the following integer variable:

ndof f (p, np) ∈ {0, . . . , ndof fmax}: the number of days that the ship spends in the port
p visited for the np-th time, if there are days off in port p between the disembarkation
day in p and the embarkation day from p of two consecutive cruises.

Figure 1 provides an illustrative example of the variables nd f i , ndla along with the
parameters ndtla and ndt f i .
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Fig. 1 Scheme for a season segment {0, . . . , N }. Example of nd f i = 4, ndla = 2 and days tolerance
ndt f i = 6, ndtla = 4

3.3 The objective function

In terms of the decision variables now introduced, the objective function of the CIOS
problem defined in (2.7) can be expressed as follows. Since the net revenue of a cruise
C = (pe, pd , de, �) for all C ∈ C is a given issue denoted by r(pe, pd , de, �), for
each feasible cruise schedule S ∈ S, the total net revenue (2.5) can be written

R(S) =
∑

p∈P

∑

q∈P

∑

d∈D

∑

�∈L

(
r(p, q, d, �)

∑

n∈V(p)

∑

m∈V(q)

ye(p, q, �, n,m, d)

)
. (3.1)

Similarly, the payoff (2.6) can be expressed as

PO(S) = w

(
nd f i + ndla +

∑

p∈P

∑

n∈V(p)

ndof f (p, n)

)
. (3.2)

Then we define the objective function to be maximized as

R(S) − ψ · PO(S), (3.3)

where ψ ≥ 0 is a real parameter enabling us to give different weights to the term
PO(S) in the objective function.

3.4 The constraints

In this section we describe the set of constraints which define the feasible set S in
(2.7). They are structural constraints and operational constraints.

3.4.1 Structural constraints

• Constraints forcing at most one cruise at each day:

∑

p∈P

∑

q∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(q)

ye(p, q, �, n,m, d) ≤ 1,

∑

p∈P

∑

q∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(q)

yd(p, q, �, n,m, d) ≤ 1
(3.4)
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for all d ∈ D.
The first constraint in (3.4), impose that at most one cruise can embark each day.
The second one is the analogous but corresponding to disembarkation days.

• Constraints that define the embarkation days and disembarkation days:

∑

d∈D
d · ye(p, q, �, np, nq, d) = ge(p, q, �, np, nq),

∑

d∈D
ye(p, q, �, np, nq, d) = x(p, q, �, np, nq) (3.5)

∑

d∈D
d · yd(p, q, �, np, nq, d) = gd(p, q, �, np, nq),

∑

d∈D
yd(p, q, �, np, nq, d) = x(p, q, �, np, nq), (3.6)

for all p, q ∈ P , for all � ∈ L and for all np ∈ V(p), nq ∈ V(q).
Constraints (3.5) can be easily interpreted as definitions of departure days, since
they couple the decision variables x , y, ge with the cruise departure days d. Con-
straints in (3.6) are the analogous but corresponding to disembarkation days.

• Constraints which impose that the first cruise in the schedule must embark from
p f i , that is p f i must be visited for the first time by the first cruise of the sequence:

∑

q∈P
q �=p f i

∑

�∈L
x(p f i , q, �, 1, 1) +

∑

�∈L
x(p f i , p f i , �, 1, 2) = 1;

∑

p∈P
p �=p f i

∑

�∈L

∑

n∈V(p)

x(p, p f i , �, n, 1) = 0.
(3.7)

More precisely, the first constraint in (3.7) assures that either one cruise embarking
from p f i and disembarking in any other port, visited for the first time is selected,
or a cruise departing from p f i and disembarking in the same port, visited for the
second time, is selected. The second one, completes the first one, by imposing
that no cruise, departing from whatever port (except than p f i ) can end in p f i

visiting p f i for the first time. Indeed, the first time of visiting p f i has to be the
first departure, not an arrival.

• Constraints which assure that the last cruise in the schedule must disembark at
pla :

∣∣∣∣∣∣

∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, pla, �,m, np) −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(pla, q, �, np,m)

∣∣∣∣∣∣

≤ BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, pla, �,m, np + 1)

⎞

⎠ , (3.8)
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for all np, (np + 1) ∈ V(pla), with pla �= p f i or np �= 1.

∑

p∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(pla)

x(p, pla, �, n,m)

−
∑

q∈P

∑

�∈L

∑

n∈V(pla)

∑

m∈V(q)

x(pla, q, �, n,m) = 1, if pla �= p f i ,

∑

p∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(pla)

x(p, pla, �, n,m)

−
∑

q∈P

∑

�∈L

∑

n∈V(pla)

∑

m∈V(q)

x(pla, q, �, n,m) = 0, if pla = p f i . (3.9)

Constraints in (3.8) express the fact that, if the cruise disembarking in pla , visiting
pla for the (np + 1)-th time is selected, then the difference within the absolute
value must be zero, i.e. the number of all the cruises that disembark in pla , visiting
pla for the np-th time and the number of all the cruises that embark from pla ,
visited for the np-th time must be the same.
Constraints in (3.9) impose that there must be one additional cruise disembarking
in pla compared with all the cruises that embark from it. The only case in which
there can be the same number of cruises embarking and disembarking in pla , is
pla = p f i .

• The continuity constraints given by (2.3):

gd(p, q, �, np, nq) = ge(p, q, �, np, nq)+ � · x(p, q, �, np, nq)+ndof f (q, nq)

for all p, q ∈ P , for all � ∈ L and for all np ∈ V(p), nq ∈ V(q).

• The constraint on the number of days off in port:

ndof f (q, nq) ≤ ndof fmax

∑

p∈P

∑

�∈L

∑

m∈V(p)

x(p, q, �,m, nq), (3.10)

for all q ∈ P , for all nq ∈ V(q)

Constraint (3.10) allows days off in a port q ∈ P in the sequence of cruises if
ndof fmax > 0 and set ndof f (q, nq) = 0 if no cruise disembarking in the port q is
selected.

• Constraints which ensure that for any port p �= p f i , p �= pla , if the ship disem-
barks np times at port p, then it must also embark np times from p:

∑

q∈P

∑

�∈L

∑

n∈V(q)

x(q, p, �, n, np) =
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(p, q, �, np,m) (3.11)

for all p ∈ P , p �= pla , for all np ∈ V(p), with (p �= p f i or np �= 1).
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• Constraints that sort the number of visits in the same port:

∑

q∈P

∑

�∈L

∑

n∈V(q)

x(q, p, �, n, np + 1) ≤
∑

q∈P

∑

�∈L

∑

n∈V(q)

x(q, p, �, n, np),

∑

q∈P

∑

�∈L

∑

m∈V(q)

x(p, q, �, np + 1,m) ≤
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(p, q, �, np,m),

∑

q∈P

∑

�∈L

∑

m∈V(q)

x(p, q, �, np + 1,m) ≤
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, p, �,m, np),

(3.12)
for all p ∈ P and for all np, (np + 1) ∈ V(p), with p �= p f i or np �= 1.
Constraints in (3.12) guarantee that the number of visits at the same port is increas-
ing. Therefore, a port p cannot be visited for the (np + 1)-th time unless it has
been already visited for np-th time.

• Constraints that sort the days of visits in the same port:

BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, p, �,m, np + 1)

⎞

⎠

+
∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(q, p, �,m, np + 1) ≥
∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(q, p, �,m, np),

BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(p, q, �, np + 1,m)

⎞

⎠

+
∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(p, q, �, np + 1,m) ≥
∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(p, q, �, np,m)

(3.13)
for all p ∈ P and for all np, (np + 1) ∈ V(p).
The first constraint in (3.13) imposes that, if the cruise going from port q to port p,
visited for the (np+1)-th time, is selected, than the day of embarkation of a cruise
going from any port q and disembarking at port p, visited for the (np+1)-th time,
must be greater than or equal to the day of embarkation of a cruise going from any
port q and disembarking at port p, visited for the np-th time.
Similarly, the second constraint in (3.13) requires that, if the cruise embarking from
port p, visited for the (np + 1)-th time, and disembarking at port q is selected,
then the day of disembarkation of a cruise embarking from port p, visited for the
(np + 1)-th time, and disembarking at any port q must be greater than or equal to
the day of disembarkation of a cruise embarking from port p, visited for the np-th
time, and disembarking at any port q.
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• Constraints that sort the days of disembarkation and embarkation in the same port:

∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(q, p, �,m, np) ≤
∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(p, q, �, np + 1,m)

+ BigM (1 − x(p, q, �, np + 1, nq)) ,

(3.14)
for all p ∈ P and for all np, (np + 1) ∈ V(p).
Constraint in (3.14) requires that the day of disembarkation of a cruise that dis-
embarks at port p for the np-th time must be smaller than or equal to the day of
embarkation of a cruise that embarks from port p for the (np+ 1)-th time, if such
a cruise is selected.

• Constraint which define the first embarkation day from p f i :

∑

q∈P
q �=p f i

∑

�

ge(p f i , q, �, 1, 1) = nd f i .

This constraint states that the embarkation day of the first cruise of the seasonmust
be equal to the variable nd f i .

• Constraints which define the last disembarkation day in pla :

∑

p∈P

∑

�∈L

∑

n∈V(p)

gd(p, pla, �, n, nq) ≤ N − ndla, (3.15)

for all nq ∈ V(pla);

N − ndla −
∑

p∈P

∑

�∈L

∑

n∈V(p)

gd(p, pla, �, n, npla)

≤ BigM

⎛

⎝1 −
∑

p∈P

∑

�∈L

∑

n∈V(p)

x(p, pla, �, n, npla)

+
∑

p∈P

∑

�∈L

∑

n∈V(p)

x(p, pla, �, n, npla + 1)

⎞

⎠ ,

(3.16)

for all npla ∈ {nvmin
pla

, . . . , nvmax
pla

− 1};

N − ndla −
∑

p∈P

∑

�∈L

∑

n∈V(p)

gd
(
p, pla, �, n, nvmax

pla
)

≤ BigM

⎛

⎝1 −
∑

p∈P

∑

�∈L

∑

n∈V(p)

x
(
p, pla, �, n, nvmax

pla
)
⎞

⎠ .

(3.17)
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Constraint in (3.15) states that the disembarkation day in pla of the last cruise in the
season (as well as of any other cruise disembarking in pla) is selected respecting
the defined days tolerance.
As regards the constraints in (3.16), the right hand side of (3.16) is zero only if
port pla is visited for the npla-th time and not visited for the (npla + 1)-th time,
that is if the npla-th visit is the last visit of port pla in the season window. In this
case (3.16) states that the last disembarking day in pla must be greater than or
equal to the day defined by N − ndla . Constraint (3.15) along with (3.16) implies
that the disembarking day of the last cruise of the season, namely dla , is equal to
N − ndla .
Constraint (3.17) is analogous to constraint (3.16), but it applies to the case that
npla reaches the value nvmax

pla
.

• Sequencing constraints:

∣∣∣∣∣∣

∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(p, q, �, np,m) −
∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(q, p, �,m, np)

∣∣∣∣∣∣

≤ BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, p, �,m, np)

⎞

⎠ + ndof f (p, np),

(3.18)
for all p ∈ P , p �= pla , for all np ∈ V(p), with (p �= p f i or np �= 1);

∣∣∣∣∣∣

∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(pla, q, �, np,m) −
∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(q, pla, �,m, np)

∣∣∣∣∣∣

≤ BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, pla, �,m, np)

⎞

⎠

+ BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, pla, �,m, np + 1)

⎞

⎠ + ndof f (pla, np),

(3.19)
for all np, (np + 1) ∈ V(pla), with (p �= p f i or np �= 1).
Constraints in (3.18) express the requirement that if some cruise disembarked in
p, with p �= pla , visiting p for the np-th time, with p �= p f i or np �= 1, then
the difference between the embarkation day and the previous disembarkation day
at the port p, visited for the np-th time, must be equal to the number of days off
ndof f (p, np) of staying moored in p. Constraints in (3.19) express the analogous
requirement for p = pla .
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3.4.2 Operational constraints

A second set of constraints must be considered for taking into account the additional
requirements on the schedule given by constraints C3–C5. They are reported in the
following.

• Constraints on minimum and maximum number of cruises of duration � allowed:

ncmin
� ≤

∑

p∈P

∑

q∈P

∑

n∈V(p)

∑

m∈V(q)

x(p, q, �, n,m) ≤ ncmax
�

for all � ∈ L.
• Constraint onminimum number of days between two consecutive visits at the same
port:

∑

q∈P

∑

�∈L

∑

m∈V(q)

gd(q, p, �,m, np + 1) −
∑

q∈P

∑

�∈L

∑

m∈V(q)

ge(p, q, �, np,m)

≥ ndmin
p − BigM

⎛

⎝1 −
∑

q∈P

∑

�∈L

∑

m∈V(q)

x(q, p, �,m, np + 1)

⎞

⎠

(3.20)
for all p ∈ P and for all np, np + 1 ∈ V(p).
Constraint (3.20) makes sure that, if a port p has been visited for the np-th time,
and there is a subsequent visit in the same port p, a minimun number of days must
elapse between these two visits.

• Constraint on minimum and maximum number of visits in each port:

nvmin
p ≤

∑

p∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(q)

x(p, q, �, n,m) ≤ nvmax
p

for all p ∈ P , p �= pla ;

nvmin
pla ≤

∑

q∈P

∑

�∈L

∑

n∈V(pla)

∑

m∈V(q)

x(pla, q, �, n,m) + 1 ≤ nvmax
pla + 1. (3.21)

Constraint in (3.21) allows one additional visit in pla , besides the maximum num-
ber of visits on that port, in order to assure that pla is always be reached.

• Milestones on embarkation, i.e. ports to be visited on embarkation in specified
days:

∑

q∈P

∑

�∈L

∑

n∈V(pe)

∑

m∈V(q)

ye(pe, q, �, n,m, de) = 1, for all (pe, de) ∈ Me.
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• Milestones on disembarkation, i.e. ports to be visited on disembarkation in speci-
fied days:

∑

p∈P

∑

�∈L

∑

n∈V(p)

∑

m∈V(pd )

yd(p, pd , �, n,m, dd) = 1, for all (pd , dd) ∈ Md .

• Constraints that define charter cruises:

∑

n∈V(pe)

∑

m∈V(pq )

ye(pe, pd , �, n,m, de) = 1, for all (pe, pd , �, de) ∈ Cch .

4 Some experimental results

As already mentioned, the main aim of this paper is to propose an ILP model for the
class of CIOS problems, with a particular focus on luxury cruises. The overall goal
is to provide a luxury cruise company with a decision support system able to face
the three levels of decisions reported in the Introduction, where the CIOS problem
represent the important intermediate level. The CIOS problem is dealt with well in
advance, usually two years before the interested season, hence it represents an off-line
decision stage. In other words, in practice, the computing time for solving the CIOS
problem, actually is not a critical issue. Therefore we decided to use a standard ILP
solver, rather than to develop some metaheuristic.

The availablity of a large database including all the main ports of the world usually
visited by cruises enabled to perform an extensive experimentation of our model on
several differentmaritime areas,with season segments of different lenghts, for different
ships and taking into account many different operational constraints. Of course there
is no room to report here the results of such large experimentation. In order to give
evidence of the viability and the reliability of the proposed approach, we limit to
describe in the sequel some results obtained on real instances as illustrative examples.

Following the indication of the cruise company, for the particular ship andmaritime
area considered in this experimentation, the value of the parameter w which appears
in the objective function corresponding to the payoff in (3.2) has been set to w =
188, 008.6 US$. Moreover, in the experimentation reported in the sequel, we choose
ψ = 10 in (3.3) and we set BigM = 106. Bigger values of ψ could be adopted in
order to further “penalize” the introduction of days off in port in the optimal schedule,
since these are are usually not desirable. Note that, according to this last approach, in
the experimentation reported here, we also set ndof fmax = 0, hence allowing days off in
port only in the first (p f i ) and in the last (pla) port of the cruise schedule.

We coded the ILP model described in Sect. 3 by using AMPL language [8] and we
used the GUROBI 8.1 solver [10] for solving all the problem instances considered. The
runs have been performed on a PC with an Intel Core i7-2600 3.40GHz Processor
and 16GB RAM. Moreover, we set the maximum CPU elapsed time to a prefixed
time_limit. The quality of the solution obtained is measured by mean of the relative
optimality gap (rel_opt_gap).
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Now we describe an example of a real instance of the CIOS problem. We consider
a given ship located in the Mediterranean maritime area in the season segment April
01–June 30, 2019.

The problem data of this example are the following:2

• P = {PTLIS, ESBCN MCMCM, ITCVV, ITVCE, GRPIR};
• D = {0, 1, 2, . . . , 91};
• p f i = pla = PTLIS;
• L = {7, 10, 12};
• C = {(pe, pd , de, �) ∈ P × P × D × L};
• the revenues r(C) in US$ for each cruise C ∈ C.

The cruises which can be considered in this season, for the assigned maritime area,
taking into account all the possible durations are 108 different cruises; moreover, since
the embarkation day of each cruise can vary within the season segment, on the overall
we have an upper bound on the number of different possible cruises equal to 9, 828
(we do not report the complete list).

Moreover, we have the following operational requests:

• Minimum and maximum number of visits for each port nvmin
p , nvmax

p along with
minimum number of days between two consecutive visit of a port ndmin

p :

PTLIS ESBCN MCMCM ITCVV ITVCE GRPIR

nvmin
p 2 1 1 1 1 1

nvmax
p 2 3 3 4 3 3

ndmin
p 10 10 7 7 10 7

• Number of days tolerance and days off in ports allowed:

ndt f i = 3, ndtla = 4, ndof fmax = 0.

• Minimum and maximum number of cruises of duration � ∈ L allowed ncmin
� and

ncmax
� :

• A milestone on disembarkation in MCMCM (Monaco Monte Carlo port) on May
14, 2019 (May 14–25, 2019, Cannes Festival) and no milestone on embarking:

Md = {(MCMCM, 48)}, Me = ∅. (4.1)

2 The name of the ports are reported according to the United Nations Code for Trade and Transport
Locations (UN/LOCODECode List ) which is a combination of a 2-character country code and a 3-character
location code (e.g., PTLIS denotes Lisbon in Portugal, ITCVV indicates Civitavecchia, the port of Rome, in
Italy, GRPIR Piraeus, port of Athen, in Greece). The complete list can be found at www.unece.org/cefact/
locode/service/location.html.
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� = 7 � = 10 � = 12

ncmin
�

3 1 1
ncmax

�
10 3 2

Table 2 Optimal cruise schedule for Scenario 1

Seq. pe pd � npe npd de dd revenue

1 PTLIS ESBCN 7 1 1 0 7 1,188,247

2 ESBCN GRPIR 10 1 1 7 17 1,784,382

3 GRPIR ITVCE 10 1 1 17 27 2,822,643

4 ITVCE MCMCM 12 1 1 27 39 3,261,511

5 MCMCM MCMCM 7 1 2 39 46 1,557,281

6 MCMCM ITVCE 7 2 2 46 53 1,666,549

7 ITVCE GRPIR 7 2 2 53 60 1,534,232

8 GRPIR ITVCE 7 2 3 60 67 1,428,613

9 ITVCE ITCVV 10 3 1 67 77 2,216,900

10 ITCVV MCMCM 7 1 3 77 84 1,462,973

11 MCMCM PTLIS 7 3 2 84 91 1,557,281

tot_revenue = 20,480,612, nd f i = ndla = 0, rel_opt_gap = 0.16

• A charter cruise with pe = pd = ITCVV (Civitavecchia port) in the period June
01–08, 2019 (Corporate convention at sea):

Cch = {(ITCVV, ITCVV, 62, 7)}. (4.2)

In particular, we consider 3 different scenarios of this instance:

Scenario 1: the problem instance without milestones and without charter cruises,
i.e. Md = Me = ∅ and Cch = ∅, which correspond to standard cruises;
Scenario 2: the problem instance with the milestone on disembarkation (4.1) and
no charter cruise, i.e. Cch = ∅;
Scenario 3: the problem instance without milestones, i.e. Md = Me = ∅ and
with the charter cruise in (4.2).

In solving the ILP problems arising from these scenarios we adopt the CPU
time_limit = 3600 seconds.

Now we report the output schedule obtained, i.e. the sequence of cruises in terms
of their embarkation (pe) and disembarkation (pd ) ports, duration � (in days), number
of visits of the ports pe, pd (npe and npd ), embarking (de) and disembarking (dd )
days, net revenue (in US$) of each selected cruise, overall net revenue (tot_revenue),
possible days gap at the first and at the last port, namely nd f i and ndla , and the relative
optimality gap (rel_opt_gap).

In particular, Table 2, Table 3 andTable 4 report the optimal schedule for Scenario 1,
Scenario 2 and Scenario 3, respectively.
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Table 3 Optimal cruise schedule for Scenario 2

Seq. pe pd � npe npd de dd revenue

1 PTLIS ITCVV 7 1 1 0 7 1,188,247

2 ITCVV GRPIR 10 1 1 7 17 1,784,382

3 GRPIR ITCVV 10 1 2 17 27 2,822,643

4 ITCVV ITCVV 7 2 3 27 34 1,975,850

5 ITCVV ITVCE 7 3 1 34 41 1,464,977

6 ITVCE MCMCM 7 1 1 41 48 1,462,973

7 MCMCM ITVCE 12 1 2 48 60 2,291,561

8 ITVCE MCMCM 7 2 2 60 67 1,462,973

9 MCMCM MCMCM 7 2 3 67 74 1,557,281

10 MCMCM ESBCN 7 3 1 74 81 1,666,549

11 ESBCN PTLIS 10 1 2 81 91 2,053,218

tot_revenue = 19,730,654, nd f i = ndla = 0, rel_opt_gap = 0.19

Table 4 Optimal cruise schedule for Scenario 3

Seq. pe pd � npe npd de dd revenue

1 PTLIS ESBCN 7 1 1 0 7 1,188,247

2 ESBCN GRPIR 10 1 1 7 17 1,784,382

3 GRPIR ESBCN 10 1 2 17 27 2,822,643

4 ESBCN MCMCM 7 2 1 27 34 1,975,850

5 MCMCM ITVCE 7 1 1 34 41 1,666,549

6 ITVCE GRPIR 7 1 2 41 48 1,534,232

7 GRPIR GRPIR 7 2 3 48 55 1,379,656

8 GRPIR ITCVV 7 3 1 55 62 1,428,613

9 ITCVV ITCVV 7 1 2 62 69 1,464,977

10 ITCVV ESBCN 12 2 3 69 81 2,431,270

11 ESBCN PTLIS 10 3 2 81 91 2,053,218

tot_revenue = 19,729,637, nd f i = ndla = 0, rel_opt_gap = 0.17

Even if the output schedules obtained in these three scenarios are only illustrative
examples, they clearly highlight that the approach proposed in this paper is viable in
solving both standard CIOS problems, i.e. without operational constraints on mile-
stones or charters cruise (Scenario 1) and problems involving specific operational
requests (Scenarios 2–3). Moreover, it is worthwhile observing that in all the three
cases a relative optimality gap lower that 0.20 is obtained within the CPU time limit.
Moreover, note that in the three cases both nd f i and ndla turns out to be zero.

We report in the following figures themaps corresponding to the optimal solution of
the Scenario 1, i.e. the 11 cruises whose schedule is detailed in Table 2.We splitted the
maps into three figures for clarity. In particular, Figure 2 shows cruises 1–4, Figure 3
shows cruises 5–7 and Figure 4 shows cruises 8–11.

123



Cruise itineraries optimal scheduling

Fig. 2 Scenario 1, days {0, . . . , 39} of the cruises detailed in Table 2. Cruise 1: a 7-days cruise (in black).
Cruises 2 and 3: two 10-days cruises (in green). Cruise 4: a 12-days cruise (in red) (color figure online)

Fig. 3 Scenario 1, days {39, . . . , 60} of the cruises detailed in Table 2. Cruise 5, 6 and 7: three 7-days
cruises

Fig. 4 Scenario 1, days {60, . . . , 91} of the cruises detailed in Table 2. Cruise 8: a 7-days cruise (in black).
Cruise 9: a 10-days cruise (in green). Cruises 10 and 11: two 7-days cruises (color figure online)
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To assess whether a better accuracy can be achieved, we performed another
experimentation on the Scenario 1: we set the required relative optimality gap
rel_opt_gap=0.10 aiming at evaluating the CPU time needed to obtain such accu-
racy. Starting from a relative optimality gap of 1.98 (at the first feasible solution) it
turned out that a CPU time of 25 hours is necessary. It is also worth noting that the
corresponding optimal value is tot_revenue=20,662,249 and hence only an improve-
ment smaller than 1% is get with respect to the optimal value obtained by one hour
CPU time, with rel_opt_gap=0.16 (see Table 2).

Although the main focus of this paper is not on computational aspects of the CIOS
problem, we report in the sequel some results obtained on other problems instances.
The aim is to give an idea on the performance of the solver used in tackling CIOS
problems of increasing dimension. Therefore we considered two variations of the
Scenario 1 obtained by lengthening the season segment. The rationale behind this
choice is that, from the extensive testing performed (not reported here), we noticed
that an elongation of the season length, strongly affects the performance of the solver
adopted. Therefore we considered two further standard cruise scenarios (i.e. without
milestones and charter cruises) denoted by Scenario 1B and Scenario 1C. Of course,
we needed to change accordingly the operational requests on minimum and maximum
number of visits for each port and on minimum and maximum number of cruises of
duration � allowed as follows:

• Scenario 1B—Season segment April 1–July 31, 2019:

PTLIS ESBCN MCMCM ITCVV ITVCE GRPIR

nvmin
p 2 1 1 1 1 1

nvmax
p 2 4 4 4 4 4

� = 7 � = 10 � = 12

ncmin
�

5 1 1
ncmax

�
15 4 3

• Scenario 1C—Season segment April 1–August 31, 2019:

PTLIS ESBCN MCMCM ITCVV ITVCE GRPIR

nvmin
p 2 1 1 1 1 1

nvmax
p 2 5 5 5 5 5
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� = 7 � = 10 � = 12

ncmin
�

10 1 1
ncmax

�
20 7 5

Note that the size of the latter Scenario 1C, actually goes far beyond a realistic scenario,
since the season segment therein considered exceeds four months which is the max-
imum length of season segment usually adopted by cruise companies when dealing
with CIOS problem.

Without reporting the complete output schedules obtained for the new scenarios,
we now summarize in the following Table 5 the characteristics of the three scenarios
(the new ones, alongwith Scenario 1) and the optimality gap reachedwithin a prefixed
CPU solving time. In particular, we report:

• length of the season segment (in days);
• size of the corresponding problem instance in terms of number of variables and
number of constraints of the ILP model;

• CPU time_limit (in hours) and the corresponding value of the relative optimality
gap (rel_opt_gap) obtained within such limit.

It is important to highlight that the number of variables and the number of constraints
reported in Table 5 refer to the “adjusted problem” after presolving. As well known,
presolve phase aims at reducing the model size and tightening the formulation. We
only recall that presolve remove redundant information (in terms of variables and
constraints) by performing single/multi-row and columns reduction and we refer to
[1] for any detail on the presolve phase. In our experimentation, we adopted the
standard presolve provided by GUROBI 8.1 solver with presolve_level = 1. Of course,
the elapsed time due to presolving is included in the total solution time.

First, Table 5 clearly points out how the problem size increases as the length of
the season segment grows. As concerns the performance of the solver, if we refer to a
relative optimality gap of 0.25, on both the real scenarios (Scenario 1 and Scenario 1B)
this value is reached within a reasonable time. Indeed an elapsed time of 3 hours can be
considered feasible, taking into account that, as already observed, the CIOS problem
represents an off-line step of the decision process, and cruise companies usually deals
with it many months (even years) in advance. As regards Scenario 1C (which we
artificially created) the 5 months long season segment leads to a larger dimension
problem and 18 hours of computational time are not enough to reach the prefixed

Table 5 Summary of the characteristics of the three scenarios, CPU time limit adopted and relative opti-
mality gap obtained

Season segment (days) Variables Constraints CPU time_limit (h) rel_opt_gap

Scenario 1 91 135,796 5459 1 0.16

Scenario 1B 122 306,037 9087 3 0.24

Scenario 1C 153 535,860 12,655 18 0.26
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relative optimality gap of 0.25. Even if this gap can be considered, in general, not a
very good performance, we highlight that it is achieved starting from an initial gap
(corresponding to the first feasible solution) which is usually greater than 1.90.

Of course, in our extensive experimentation, we also observed the solver perfor-
mance on several instances obtained by increasing the number of ports in the set P
and the number of cruise durations � ∈ L, but there is no room to discuss these results
in this paper.

5 Conclusions

In this paper we considered the CIOS problem, focusing on luxury cruises, which
is an emerging market segment. We described in detail the ILP model we propose
for determining an optimal schedule of cruises, aiming at maximizing the overall net
revenue of a ship operating in a givenmaritime area, in a selected season segment. This
problem corresponds to the tactical level, the second one, of the three levels decision
making process of a cruise company. We showed that the model we proposed allows
the user to obtain a complete cruises schedule of a ship for a whole season segment,
by using a commercial ILP solver. Considerations about the performance of the solver
on some instances of the problem are briefly reported, too.

The model we proposed has been experimented by a luxury cruise company to
schedule the cruises of its fleet. This experimentation was possible, since we comple-
mented the development of the model with a friendly graphical user interfaces to enter
data corresponding to different scenarios and to display results, as well as to perform
“what-if” analyses.

This work has been developed within an innovative project (named theMagellano
Project) covering all three levels of the decision making process, as well as related
issues of interest for the sector of the cruise companies, like e.g., the cruise prices
optimization, the emergency evacuation of a ship, the on board food supply chain.
The approach adopted is based on models and methods of Operations Research and
we believe that the cruise sector could greatly benefit by adopting these models and
methods to an extent larger than the present one, which is definitely very small.
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