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Abstract

We consider the strongly convergent modified versions of the Krasnosel’skĭı-Mann, the forward-backward

and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö

Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, namely rates

of asymptotic regularity and metastability. Furthermore, our arguments avoid the use of sequential weak

compactness and use only a weak form of the projection argument.

1 Introduction

In nonlinear analysis one is often confronted with the need to find zeros of a sum of monotone operators. Two
well-known iterative splitting methods to approximate such zeros are the forward-backward and the Douglas-
Rachford algorithms (see [1]). The former, weakly converges to a zero of the sum of a multi-valued maximal
monotone operator with a single-valued cocoercive operator, while the latter weakly converges to a zero of the
sum of two maximal monotone operators. These convergence results stem from the weak convergence of the
Krasnosel’skĭı-Mann (KM) iteration to a fixed point of a nonexpansive map T in a Hilbert space H :

xn+1 = xn + λn(T (xn)− xn), (KM)

with x0 ∈ H a starting point and (λn) ⊂ [0, 1] a sequence of real numbers. One way to obtain strong convergence
is to impose stronger conditions on the operators, such as strong monotonicity or strong convexity. However, the
application to certain cases may be unfeasible, as the stronger conditions may prove to be too restrictive. The
proximal-Tikhonov algorithm (see [10]) was introduced as an alternative way to obtain, under mild conditions,
strong convergence to a zero of a maximal monotone operator A. This algorithm is based on the proximal point
algorithm [12, 15] and, in a first step, switches from the operator A to the operator A + µnId, where (µn) is
a sequence of nonnegative real numbers. As the original proximal point algorithm, in general, is only weakly
convergent, the added term µnId is crucial in guaranteeing the strong convergence of the iteration. Motivated
by this method, in [3] Radu Boţ, Ernö Csetnek and Dennis Meier considered the (KM) iteration with Tikhonov
regularization terms as follows:

xn+1 = βnxn + λn(T (βnxn)− βnxn), (T-KM)

where x0 ∈ H is the starting point, (λn), (βn) are sequences of positive numbers and T : H → H is a nonex-
pansive mapping. Boţ et al. obtained a strong convergence result for (T-KM) and for similar modifications of
the forward-backward and the Douglas-Rachford algorithms.

In this paper we obtain rates of asymptotic regularity and metastability for these modified iterations through
a quantitative analysis of the proofs in [3]. As such we are able to obtain quantitative versions of the convergence
results by Boţ et al.. Similarly to [6, 5, 4, 14], our analysis bypasses the use of sequential weak compactness and
only relies on a weak form of the metric projection argument (as explained in [8, 6]). Our results are guided by
proof theoretical techniques (in the context of the proof mining program [7, 9]), however no special knowledge
of mathematical logic is required to read this paper.

∗2010 Mathematics Subject Classification: 47J25, 47H09, 47H05, 03F10. Keywords: Fixed points of nonexpansive mappings,
Tikhonov regularization, splitting algorithms, metastability, asymptotic regularity.
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2 Preliminaries

Consider H a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. We start by recalling some notions
and properties concerning operators on Hilbert spaces. An operator A : H ⇒ H is said to be monotone if
and only if whenever (x, y) and (x′, y′) are elements of the graph of A, it holds that 〈x − x′, y − y′〉 ≥ 0. A
monotone operator A is said to be maximal monotone if the graph of A is not properly contained in the graph
of any other monotone operator on H . We denote by zer(A), the set of all zeros of A. Let A : H ⇒ H be
a maximal monotone operator and γ > 0. The resolvent function JγA is the single-valued function defined by
JγA = (I + γA)−1, and the reflected resolvent function is the function RγA := 2JγA − Id.

A mapping T : H → H is called nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖ , for all x, y ∈ H . The set of
fixed points of the mapping T will be denoted by FixT . If T is nonexpansive, then FixT is a closed and convex
subset of H .

For α ∈ (0, 1], a functional T : H → H is called α-averaged1 if there exists a nonexpansive operator
T ′ : H → H such that T = (1−α)Id+αT ′. The α-averaged operators are always nonexpansive. The 1

2 -averaged
operators are also called firmly nonexpansive operators. The resolvent function JγA is firmly nonexpansive and
the reflected resolvent function RγA is nonexpansive.

For δ > 0, a functional B : H → H is said to be δ-cocoercive if for all x, y ∈ H it holds that 〈x − y,B(x) −

B(y)〉 ≥ γ ‖B(x) − B(y)‖2.
For a comprehensive introduction to convex analysis and the theory of monotone operators in Hilbert spaces

we refer to [1].
The main purpose of this paper is to extract quantitative information from the proof of the following result.

Theorem 2.1. ([3, Theorem 3]) Let (βn), (λn) ⊂ (0, 1] be real sequences satisfying:

(i) limβn = 1, (ii)
∑

n≥0(1− βn) = ∞, (iii)
∑

n≥1 |βn − βn−1| <∞,

(iv) lim inf λn > 0, (v)
∑

n≥1 |λn − λn−1| <∞.

Consider the iterative scheme (T-KM) with and arbitrary starting point x0 ∈ H and a nonexpansive mapping

T : H → H such that FixT 6= ∅ . Then (xn) converges strongly to projFixT (0).

Our main result (Theorem 3.5) gives a bound on the metastability property of the sequence (xn), i.e.

∀k ∈ N ∀f : N → N ∃n ∈ N ∀i, j ∈ [n, f(n)] (‖xi − xj‖ ≤
1

k + 1
),

which is (non-effectively) equivalent to the Cauchy property for (xn).
We now present some useful quantitative lemmas which require the notion of monotone functional for two

particular cases. This relies on the strong majorizability relation from [2].

Definition 2.2. For functions f, g : N → N we define

g ≤∗ f := ∀n,m ∈ N (m ≤ n→ (g(m) ≤ f(n) ∧ f(m) ≤ f(n))) .

A function f : N → N is said to be monotone if f ≤∗ f . We say that a functional ϕ : N×N
N → N is monotone

if for all m,n ∈ N and all f, g : N → N,

(m ≤ n ∧ g ≤∗ f) → (ϕ(m, g) ≤ ϕ(n, f)) .

Remark 2.3. For f : N → N, the notion of being monotone corresponds to saying that f is a nondecreasing
function, i.e. ∀n ∈ N (f(n) ≤ f(n+ 1)).

In what follows we restrict our metastability results to monotone functions in N
N. However, there is no real

restriction in doing so, as for f : N → N, one has f ≤∗ fmaj, where fmaj is the monotone function defined by
fmaj(n) := max{f(i) : i ≤ n}. In this way, we avoid constantly having to switch from f to fmaj, and simplify
the notation.

Notation 2.4. Consider a function ϕ on tuples of variables x̄, ȳ. If we wish to consider the variables x̄ as

parameters we write ϕ[x̄](ȳ). For simplicity of notation we may then even omit the parameters and simply write

ϕ(ȳ).

Lemma 2.5 ([11]). Let (sn) be a bounded sequence of non-negative real numbers, with d ∈ N \ {0} an upper

bound for (sn), such that for any n ∈ N

sn+1 ≤ (1− αn)sn + αnrn + γn,

1The standard definition asks for α ∈ (0, 1). With this extension, 1-averaged is just another way of saying nonexpansive.
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where (αn) ⊂ [0, 1], (rn) and (γn) ⊂ [0,+∞) are given sequences of real numbers.

Assume that exist functions A, R, G : N → N such that, for all k ∈ N

(i)
A(k)∑
i=1

αi ≥ k ; (ii)∀n ≥ R(k)

(
rn ≤

1

k + 1

)
;

(iii) ∀n ∈ N

(
G(k)+n∑

i=G(k)+1

γi ≤
1

k + 1

)
.

Then

∀k ∈ N ∀n ≥ θ(k) (sn ≤
1

k + 1
),

with θ(k) := θ[A,R,G, d](k) := A(M − 1 + ⌈ln(3d(k + 1))⌉) + 1, where
M := max{R(3k + 2), G(3k + 2) + 1}.

The next result is an easy adaptation of [14, Lemma 14] for the case where (γn) ≡ 0.

Lemma 2.6. Let (sn) be a bounded sequence of non-negative real numbers and d ∈ N a positive upper bound on

(sn). Consider sequences of real numbers (αn) ⊂ (0, 1), (rn) and (vn) and assume the existence of a monotone

function A such that
∑A(k)

i=1 αi ≥ k, for all k ∈ N. For natural numbers k, n and q assume

∀i ∈ [n, q] (vi ≤
1

3(k + 1)(q + 1)
∧ ri ≤

1

3(k + 1)
),

and si+1 ≤ (1− αi)(si + vi) + αiri, for all i ∈ N. Then

∀i ∈ [σ(k, n), q] (si ≤
1

k + 1
),

with σ(k, n) := σ[A, d](k, n) := A (n+ ⌈ln(3d(k + 1))⌉) + 1.

The next result corresponds to a quantitative version of a weaker form of the projection argument of zero
onto FixT . Below BN := {x ∈ H : ‖x− p‖ ≤ N}, where p ∈ FixT is made clear by the context and N ∈ N.

Lemma 2.7 ([14]). Let N ∈ N \ {0} be such that N ≥ 2 ‖p‖ for some point p ∈ FixT . For any k ∈ N and

monotone function f : N → N, there are n ≤ 24N(f̌ (R)(0)+1)2 and x ∈ BN such that ‖T (x)−x‖ ≤ 1
f(n)+1 and

∀y ∈BN (‖T (y)− y‖ ≤
1

n+ 1
→ 〈x, x− y〉 ≤

1

k + 1
),

with R := 4N4(k + 1)2 and f̌ := max{f(24N(m+ 1)2), 24N(m+ 1)2}.

3 Quantitative results

In this section we give a quantitative analysis of Theorem 2.1 as well as some of its corollaries. We start by
stating the relevant quantitative conditions.

Given positive real sequences (βn), (λn), a constant ℓ ∈ N \ {0} and functions b,D,B, L : N → N and
h : N → N \ {0} we consider the following conditions:

(Q1) ∀n ∈ N(βn ≥ 1
h(n) )

(Q2) ∀k ∈ N ∀n ≥ b(k)(|1 − βn| ≤
1

k+1 ),

(Q3) ∀k ∈ N

(∑D(k)
i=1 (1− βi) ≥ k

)
,

(Q4) ∀k ∈ N ∀n ∈ N

(∑B(k)+n

i=B(k)+1 |βi − βi−1| ≤
1

k+1

)
,

(Q5) ∀n ∈ N(λn ≥ 1
ℓ
),

(Q6) ∀k ∈ N ∀n ∈ N

(∑L(k)+n

i=L(k)+1 |λi − λi−1| ≤
1

k+1

)
.

The first condition states that the function h witnesses the fact that βn > 0. The conditions (Q2) − (Q6)
correspond to quantitative strenghtenings of the conditions (i) − (v) in Theorem 2.1. Indeed, b is a rate of
convergence for βn → 1; the function D is a rate of divergence for (

∑
(1− βi)); the functions B and L are rates

for the Cauchy property of the convergent series
∑

|βi − βi−1| and
∑

|λi − λi−1|, respectively, and the number
ℓ is used to express the fact that (λn) is bounded away from 0.
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Example 3.1. Consider the sequences defined by λn = βn = 1 − 1
n+2 , for all n ∈ N. Then the conditions

(Q1)− (Q6) are satisfied with h ≡ 2, b = B = L = Id, D(k) := ek+2 and ℓ = 2.

In the following lemmas (xn) always denotes a sequence generated by (T-KM).

Lemma 3.2. Let N ∈ N \ {0} be such that N ≥ max{‖x0 − p‖ , ‖p‖}, for some p ∈ FixT . Then, ‖xn‖ ≤ 2N
and ‖T (xn)‖ ≤ 2N , for all n ∈ N.

Proof. Let p ∈ FixT be such that N ≥ max{‖x0 − p‖ , ‖p‖}. Since T is nonexpansive, we have

‖xn+1 − p‖ ≤ (1 − λn) ‖βnxn − p‖+ λn ‖T (βnxn)− T (p)‖

≤ ‖βnxn − p‖ = ‖βn(xn − p) + (βn − 1)p‖

≤ βn ‖xn − p‖+ (1− βn) ‖p‖ .

By induction on n one easily shows that ‖xn − p‖ ≤ N . Since T is nonexpansive, ‖T (xn)− p‖ ≤ N and the
result follows from the fact that N ≥ ‖p‖.

The next lemma gives a rate of asymptotic regularity for the sequence (xn).

Lemma 3.3. Let N ∈ N\{0} be such that N ≥ max{‖x0 − p‖ , ‖p‖}, for some fixed point p. Consider ℓ ∈ N\{0}
and monotone functions b,D,B, L : N → N satisfying conditions (Q2)− (Q6). Then

(i) ∀k ∈ N ∀n ≥ ν1(k)(‖xn+1 − xn‖ ≤ 1
k+1 ),

(ii) ∀k ∈ N ∀n ≥ ν2(k)(‖T (xn)− xn‖ ≤ 1
k+1 ),

where ν1(k) := ν1[N,D,B,L](k) := θ[D,0, G, 2N ](k), and

ν2(k) := ν2[N, ℓ, b,D,B, L](k) := max{b(4Nℓ(k + 1)− 1), ν1(2ℓ(k + 1)− 1)},

with G(k) := G[N,B,L](k) := max{B(4N(k+ 1)− 1), L(10N(k+ 1)− 1)}, and θ is as in Lemma 2.5 and 0 is

the zero function.

Proof. For all n ∈ N we have

‖T (βnxn)‖ ≤ ‖T (βnxn)− T (βnp)‖+ ‖T (βnp)− T (p)‖+ ‖T (p)‖

≤ ‖xn − p‖+ (1− βn) ‖p‖+ ‖p‖ ≤ 3N
(1)

Using (1) we derive

‖xn+1 − xn‖ ≤ ‖(1 − λn)(βnxn − βn−1xn−1) + (λn−1 − λn)βn−1xn−1‖

+ ‖λn(T (βnxn)− T (βn−1xn−1)) + (λn − λn−1)T (βn−1xn−1)‖

≤ ‖βnxn − βn−1xn−1‖+ |λn − λn−1|(‖βn−1xn−1‖+ ‖T (βn−1xn−1)‖)

≤ ‖βnxn − βn−1xn−1‖+ 5N |λn − λn−1|.

For n ≥ 1, we have

‖xn+1 − xn‖ = ‖βn(xn − xn−1) + (βn − βn−1)xn−1‖+ 5N |λn − λn−1|

≤ βn ‖xn − xn−1‖+ 2N |βn − βn−1|+ 5N |λn − λn−1|.

Observe that the function G is a Cauchy rate for (
∑
γn), where (γn) is given by γn := 2N |βn−βn−1|+5N |λn−

λn−1|. Indeed, for all n, k we have

G(k)+n∑

i=G(k)+1

γi = 2N

G(k)+n∑

i=G(k)+1

|βi − βi−1|+ 5N

G(k)+n∑

i=G(k)+1

|λi − λi−1|

≤ 2N

G(k)+n∑

i=B(4N(k+1)−1)+1

|βi − βi−1|+ 5N

G(k)+n∑

i=L(10N(k+1)−1)+1

|λi − λi−1|

≤
2N

4N(k + 1)
+

5N

10N(k + 1)
=

1

k + 1
.
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Applying Lemma 2.5 with d = 2N , and for all n ≥ 1, sn = ‖xn − xn−1‖, rn = 0, γn = 2N |βn−βn−1|+5N |λn−
λn−1| and αn = 1− βn we conclude Part (i). As for Part (ii), observe that for all n ∈ N

‖xn − T (xn)‖ ≤ ‖xn+1 − xn‖+ ‖(1− λn)(βnxn − T (xn)) + λn(T (βnxn)− T (xn))‖

≤ ‖xn+1 − xn‖+ (1 − λn) ‖βnxn − T (xn)‖+ λn ‖βnxn − xn‖

≤ ‖xn+1 − xn‖+ (1 − λn) ‖βnxn − βnT (xn)‖

+ (1− λn) ‖βnT (xn)− T (xn)‖ + λn(1− βn) ‖xn‖

≤ ‖xn+1 − xn‖+ (1 − λn) ‖xn − T (xn)‖

+ (1− λn)(1− βn) ‖T (xn)‖+ λn(1− βn) ‖xn‖ .

Hence, for n ≥ ν2(k)

‖xn − T (xn)‖ ≤
1

λn
(‖xn+1 − xn‖+ (1− λn)(1 − βn) ‖T (xn)‖+ λn(1− βn) ‖xn‖)

≤
1

λn
(‖xn+1 − xn‖+ 2N(1− λn)(1− βn) + 2Nλn(1− βn))

≤ ℓ (‖xn+1 − xn‖+ 2N(1− βn)) ≤
1

k + 1
,

which shows Part (ii).

The next result provides quantitative information on the fact that, with x̃ = projFixT (0), one has lim sup〈x̃, x̃−
xn〉 ≤ 0. Notice that, unlike the original proof, the quantitative version below does not require sequential weak
compactness – the elimination of this principle is justified in [6].

Lemma 3.4. Let N ∈ N\{0} be such that N ≥ max{‖x0 − p‖ , ‖p‖}, for some fixed point p. Consider ℓ ∈ N\{0}
and monotone functions b,D,B, L : N → N satisfying conditions (Q2) − (Q6). For any k ∈ N and monotone

function f : N → N, there are n ≤ ψ(k, f) and x ∈ B2N such that

‖T (x)− x‖ ≤
1

f(n) + 1
∧ ∀m ≥ n

(
〈x, x − xm〉 ≤

1

k + 1

)
,

where ψ(k, f) := ψ[N, ℓ, b,D,B, L](k, f) := ν2(48N(ǧ(R)(0) + 1)2), g(m) := f(ν2(m)), R := 64N4(k + 1)2 and

ǧ := max{g(48N(m+ 1)2), 48N(m+ 1)2}, with ν2 as in Lemma 3.3.

Proof. Given k ∈ N and monotone f : N → N, applying Lemma 2.7 to k and the function g one obtains
n0 ≤ 48N(ǧ(R)(0) + 1)2 and x ∈ B2N such that ‖T (x)− x‖ ≤ 1

g(n0)+1 and for all y ∈ B2N

‖T (y)− y‖ ≤
1

n0 + 1
→ 〈x, x − y〉 ≤

1

k + 1
. (2)

Define n := ν2(n0). By monotonicity, n ≤ ψ(k, f) and by the definition of g we conclude that ‖T (x)− x‖ ≤
1

f(n)+1 . By Part (ii) of Lemma 3.3 we have ‖T (xm)− xm‖ ≤ 1
n0+1 , for all m ≥ n. The result follows from (2)

since (xn) ⊂ B2N .

We are now able to prove our main result.

Theorem 3.5. Given (βn), (λn) ⊂ (0, 1], x0 ∈ H and a nonexpansive mapping T , let (xn) be generated by

(T-KM). Assume that there exist ℓ ∈ N\{0} and monotone functions b,D,B, L : N → N and h : N → N\{0} such

that the conditions (Q1)− (Q6) hold. Assume that there exists N ∈ N\ {0} such that N ≥ max{‖x0 − p‖ , ‖p‖},
for some p ∈ FixT . Then for all k ∈ N and monotone function f : N → N

∃n ≤ µ(k, f)∀i, j ∈ [n, f(n)](‖xi − xj‖ ≤
1

k + 1
),

where µ(k, f) := µ[N, ℓ, b, h,D,B, L](k, f) := σ(f̃ ,max{ψ(12k̃ + 1) − 1, f̃), n1}), with k̃ := 4(k + 1)2 − 1,

n1 := b(54N2(k̃ + 1) − 1), f̃(m) := f̃ [k,N, f, h](m) := 3(10N + 1)(k̃ + 1)(f(m) + 1)h(f(m)) − 1, for f(m) :=

f [k,N, b, f,D](m) := f(σ(k̃,max{m,n1})), ψ as in Lemma 3.4 and σ := σ[D, 9N2] as in Lemma 2.6.

Proof. Let k ∈ N and f : N → N monotone be given. With k̃ := 4(k+ 1)2 − 1 and n1 := b(54N2(k̃ + 1)− 1) we
define the functions

f(m) := f(σ(k̃,max{m,n1}))

and
f̃(m) := 3(10N + 1)(k̃ + 1)(f(m) + 1)h(f(m))− 1.

5



By Lemma 3.4 there exist n0 ≤ ψ(12(k̃ + 1)− 1, f̃) and x ∈ B2N such that ‖T (x)− x‖ ≤
1

f̃(n0) + 1
and

〈x, x − xm〉 ≤
1

12(k̃ + 1)
, for all m ≥ n0. (3)

We have, for all n ∈ N

‖xn+1 − x‖ ≤ (1− λn) ‖βnxn − x‖+ λn ‖T (βnxn)− T (x)‖+ λn ‖T (x)− x‖

≤ ‖βnxn − x‖+ ‖T (x)− x‖ .

Let wn := ‖T (x)− x‖ (2 ‖βnxn − x‖+ ‖T (x)− x‖). Using (Q1), for all n ∈ N

‖xn+1 − x‖2 ≤ (‖βnxn − x‖+ ‖T (x)− x‖)2

= ‖βnxn − x‖2 + wn

= ‖βn(xn − x) + (βn − 1)x‖2 + wn

= β2
n ‖xn − x‖2 + 2βn(1− βn)〈x, x − xn〉+ (1 − βn)

2 ‖x‖2 + wn

≤ βn ‖xn − x‖2 + (1− βn)(2βn〈x, x− xn〉+ (1− βn) ‖x‖
2) + wn

≤ βn(‖xn − x‖2 +
wn

βn
) + (1− βn)(2βn〈x, x− xn〉+ (1− βn) ‖x‖

2)

≤ βn(‖xn − x‖2 + h(n)wn) + (1− βn)(2βn〈x, x− xn〉+ (1− βn) ‖x‖
2
)

We will apply Lemma 2.6 with sn := ‖xn − x‖2, vn := h(n)wn, αn := 1−βn, rn := 2βn〈x, x−xn〉+(1−βn) ‖x‖
2
,

A is instantiated with the function D and d := 9N2. Let us see that the conditions of the lemma are satisfied.
By (Q3), it is clear that A satisfies the required condition. We have that

sn = ‖xn − x‖2 ≤ (‖xn − p‖+ ‖x− p‖)2 ≤ (N + 2N)2 = d.

With n := max{n0, n1} by (3) and (Q2), for all m ≥ n,

rm = 2βm〈x, x− xm〉+ (1− βm) ‖x‖2 ≤
2

12(k̃ + 1)
+

(‖x− p‖+ ‖p‖)2

54N2(k̃ + 1)
≤

1

3(k̃ + 1)
.

Observe that 2 ‖βnxn − x‖+‖T (x)− x‖ ≤ 2(‖xn‖+‖x− p‖+‖p‖)+1 ≤ 10N+1. For m ≤ f(n0) = f(σ(k̃, n)),
using the fact that the function h is monotone we have

vm = h(m) ‖T (x)− x‖ (2 ‖βmxm − x‖+ ‖T (x)− x‖) ≤
h(f(n0))(10N + 1)

f̃(n0) + 1

=
h(f(n0))(10N + 1)

3(10N + 1)(k̃ + 1)(f(n0) + 1)h(f(n0))
=

1

3(k̃ + 1)(f(σ(k̃, n)) + 1)

This shows that vm ≤ 1

3(k̃+1)(f(σ(k̃,n))+1)
and rm ≤ 1

3(k̃+1)
, for all m ∈ [n, f(σ(k̃, n))]. Hence, by Lemma 2.6

∀m ∈ [σ(k̃, n), f(σ(k̃, n))]

(
‖xm − x‖2 ≤

1

k̃ + 1

)
. (4)

We conclude that for i, j ∈ [σ(k̃, n), f(σ(k̃, n))]

‖xi − xj‖ ≤ ‖xi − x‖ + ‖xj − x‖ ≤
1

2(k + 1)
+

1

2(k + 1)
=

1

k + 1
,

which entails the result since σ(k̃, n) ≤ µ(k, f).

Remark 3.6. The proof of metastability result above does not require the projection argument neither sequen-
tial weak compactness. Nevertheless, in the presence of the projection point projFixT (0), following the arguments
culminating in (4) one can say that Theorem 3.5 corresponds to a quantitative version of Theorem 2.1.

Corollary 3.7. Let α ∈ (0, 1] and T : H → H be α-averaged. Given (βn) ⊂ (0, 1], (λn) ⊂ (0, 1
α
] and x0 ∈ H ,

consider (xn) generated by (T-KM). Let a ∈ N \ {0} be such that α ≥ 1
a
. Assume that there exist ℓ ∈ N \ {0}

and monotone functions b,D,B, L : N → N and h : N → N \ {0} such that the conditions (Q1) − (Q6) hold.
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Assume that there exists N ∈ N \ {0} such that N ≥ max{‖x0 − p‖ , ‖p‖}, for some p ∈ FixT . Then for all
k ∈ N and monotone function f : N → N

∃n ≤ µ1(k, f)∀i, j ∈ [n, f(n)] (‖xi − xj‖ ≤
1

k + 1
),

where µ1(k, f) := µ1[a,N, ℓ, b, h,D,B, L](k, f) := µ[N, aℓ, b, h,D,B, L](k, f), with µ as in Theorem 3.5.

Proof. Since T is α-averaged, there exists T ′ nonexpansive and such that T = (1 − α)Id + αT ′. It is easy to
see that (xn) is generated by (T-KM), with starting point x0, using the sequences (βn), (αλn) ⊂ (0, 1] and T ′.
Since FixT = FixT ′, by Theorem 3.5, we just need to check that the conditions (Q5) and (Q6) still hold using
the sequence (αλn) instead of the sequence (λn). The condition (Q5) holds with ℓ := aℓ, since for all n ∈ N we
have αλn ≥ α

ℓ
≥ 1

aℓ
. We have, for all k, n ∈ N that since α ∈ (0, 1]

L(k)+n∑

i=L(k)+1

|αλi − αλi−1| ≤

L(k)+n∑

i=L(k)+1

|λi − λi−1| ≤
1

k + 1
.

Hence (Q6) is also satisfied for the sequence (αλn) with the function L.

Corollary 3.8. Let T1 : H ⇒ H be maximal monotone and T2 : H → H be δ-cocoercive, for some δ > 0. Let
γ ∈ (0, 2δ]. Given (βn) ⊂ (0, 1], (λn) ⊂ (0, 4δ−γ

2δ ] and x0 ∈ H , consider (xn) generated, for all n ∈ N, by

xn+1 = (1− λn)βnxn + λnJγT1
(βnxn − γT2(βnxn)) (T-FB)

Assume that there exist ℓ ∈ N \ {0} and monotone functions b,D,B, L : N → N and h : N → N \ {0} such that
the conditions (Q1)− (Q6) hold. Assume that there exists N ∈ N \ {0} such that N ≥ max{‖x0 − p‖ , ‖p‖}, for
some p ∈ zer(T1 + T2). Then for all k ∈ N and monotone function f : N → N

∃n ≤ µ2(k, f)∀i, j ∈ [n, f(n)](‖xi − xj‖ ≤
1

k + 1
),

where µ2(k, f) := µ2[N, ℓ, b, h,D,B, L](k, f) := µ[N, 2ℓ, b, h,D,B, L](k, f), with µ as in Theorem 3.5.

Proof. It is straightforward to see that the iteration (xn) is generated by (T-KM) with T := JγT1
◦ (Id− γT2).

The resolvent function JγT1
is firmly nonexpansive, i.e. 1

2 -averaged. Furthermore, we have γ
2δ ∈ (0, 1] and,

using [1, Proposition 4.33] it follows that (Id − γT2) is γ
2δ -averaged. If γ < 2δ, then using [13, Theorem 3(b)]

it follows that T is 2δ
4δ−γ

-averaged. If γ = 2δ, then T is nonexpansive and therefore also 2δ
4δ−γ

-averaged. Since

FixT = zer(T1 + T2) [1, Proposition 25.1(iv)] we have N ≥ max{‖x0 − p‖ , ‖p‖}, for some p ∈ FixT . Noting
that 2δ

4δ−γ
∈ [ 12 , 1], we may apply Corollary 3.7 with a = 2 and the result follows.

Remark 3.9. If in Corollary 3.8 the resolvent function JγT1
is replaced by an arbitrary firmly nonexpansive

mapping T1, and p is some point in Fix (T1 ◦ (Id− γT2)), then the result holds also for γ = 0, by Corollary 3.7.
In such case, the sequence (λn) is allowed to vary in the interval (0, 2].

Corollary 3.10. Let T1, T2 : H ⇒ H be two maximal monotone operators and γ > 0. Given (βn) ⊂ (0, 1],
(λn) ⊂ (0, 2] and x0 ∈ H , consider (xn) generated, for all n ∈ N, by





yn = JγT2
(βnxn)

zn = JγT1
(2yn − βnxn)

xn+1 = βnxn + λn(zn − yn)

(T-DR)

Assume that there exist ℓ ∈ N \ {0} and monotone functions b,D,B, L : N → N and h : N → N \ {0} such that
the conditions (Q1)− (Q6) hold. Assume that there exists N ∈ N \ {0} such that N ≥ max{‖x0 − p‖ , ‖p‖}, for
some p ∈ Fix (RγT1

◦RγT2
). Then, for all k ∈ N and monotone function f : N → N

(i) ∃n ≤ µ3(k, f)∀i, j ∈ [n, f(n)] (‖xi − xj‖ ≤ 1
k+1 ),

(ii) ∃n ≤ µ4(k, f)∀i, j ∈ [n, f(n)] (‖yi − yj‖ ≤ 1
k+1 ),

(iii) ∃n ≤ µ5(k, f)∀i, j ∈ [n, f(n)] (‖zi − zj‖ ≤ 1
k+1 ),

where µ3(k, f) := µ3[N, ℓ, b, h,D,B, L](k, f) := µ[N, 2ℓ, b, h,D,B, L](k, f), µ4(k, f) := max{µ3(2k+1, g1), b(8N(k+
1)− 1)} and
µ5(k, f) := max{µ4(3k + 2, g2), ν1(6ℓ(k + 1)− 1), b(12ℓN(k+ 1)− 1)},
with µ as in Theorem 3.5, and g1(m) := f(max{m, b(8N(k + 1)− 1)}) and g2(m) := f(max{m, ν1(6ℓ(k + 1)−
1), b(12ℓN(k + 1)− 1)}).
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Proof. It is easy to see that the iteration (xn) is generated by (T-KM) using the sequences (βn) and (λn

2 ), and
with T := RγT1

◦RγT2
, which is nonexpansive. Hence, applying Theorem 3.5 we obtain Part (i).

By Part (i), there exists n0 ≤ µ3(2k + 1, g1) such that ‖xi − xj‖ ≤ 1
2(k+1) , for all i, j ∈ [n0, g1(n0)]. Define

n := max{n0, b(8N(k + 1)− 1)} (≤ µ4(k, f)). Since [n, f(n)] ⊆ [n0, g1(n0)], we have for i, j ∈ [n, f(n)]

‖yi − yj‖ ≤ ‖βixi − βjxj‖ ≤ ‖xi − xj‖+ |βi − βj | ‖xj‖

≤
1

2(k + 1)
+

(
1

8N(k + 1)
+

1

8N(k + 1)

)
2N =

1

k + 1
,

which shows Part (ii).
Define n1 := max{ν1(6ℓ(k+ 1)− 1), b(12ℓN(k+ 1)− 1)}, where ν1 is as in Lemma 3.3. By the definition of

xn+1, for i ≥ n1

‖zi − yi‖ ≤ ℓ ‖xi+1 − βixi‖ ≤ ℓ(‖xi+1 − xi‖+ 2N(1− βi))

≤
ℓ

6ℓ(k + 1)
+

2ℓN

12ℓN(k + 1)
=

1

3(k + 1)

By Part (ii), there exists n2 ≤ µ4(3k + 2, g2) such that ‖yi − yj‖ ≤ 1
3(k+1) , for all i, j ∈ [n2, g2(n2)]. Define

n := max{n1, n2} (≤ µ5(k, f)). Since [n, f(n)] ⊆ [n2, g2(n2)], we have for i, j ∈ [n, f(n)]

‖zi − zj‖ ≤ ‖zi − yi‖+ ‖yi − yj‖+ ‖yj − zj‖ ≤
1

k + 1
,

which concludes the result.
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