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Abstract. We consider a Bar Charts Packing Problem (BCPP), in
which it is necessary to pack bar charts (BCs) in a strip of minimum
length. The problem is, on the one hand, a generalization of the Bin
Packing Problem (BPP), and, on the other hand, a particular case of the
Project Scheduling Problem with multidisciplinary jobs and one limited
non-accumulative resource. Earlier, we proposed a polynomial algorithm
that constructs the optimal package for a given order of non-increasing
BCs. This result generalizes a similar result for BPP. For Two-Bar Charts
Packing Problem (2-BCPP), when each BC consists of two bars, the al-
gorithm we have proposed constructs a package in polynomial time, the
length of which does not exceed 2 OPT +1, where OPT is the minimum
possible length of the packing. As far as we know, this is the first guar-
anteed estimate for 2-BCPP. We also conducted a numerical experiment
in which we compared the solutions built by our approximate algorithms
with the optimal solutions built by the CPLEX package. The experimen-
tal results confirmed the high efficiency of the developed algorithms.

Keywords: Bar Chart · Strip Packing · APX.

1 Introduction

When solving the problem of optimizing the investment portfolio in the oil and
gas sector, we faced the following problem [5]. Suppose that the territory of
the oil and gas field divided into clusters. For each cluster, a set of projects
for its development is known. The project is characterized, in particular, by
annual oil production. If we know the start year of the project, then we know
the volumes of oil production in the first and all subsequent years of the project.
The production schedule for each project can be represented in the form of a bar
chart (BC), in which the bar’s height corresponds to the volume of production
in the corresponding year. It is required to determine the year of the launch of
each project in such a way that the execution time of all projects is minimal,
and the annual production volume from all cluster deposits does not exceed a
predetermined value D, which is defined, for example, by the pipeline capacity.

⋆ The work is supported by Mathematical Center in Akademgorodok under agreement
No 075-2019-1613 with the Ministry of Science and Higher Education of the Russian
Federation.
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Fig. 1. Feasible packing of BCs.

Imagine a horizontal strip of height D. Then, the problem described above
comes down to finding packing of BCs in a part of the strip (a rectangle of height
D) of minimum length. Moreover, when packing each BC, the bars correspond-
ing to production volumes in different years can move vertically, but they are
inextricably horizontal and cannot be rearranged. Fig. 1 shows an example of
feasible packing of three BCs, from which it follows that projects (a) and (b)
start in the first year, project (c) starts in the fourth year, and all projects end in
year 5. That is, the length of the strip (rectangle) into which all BCs are packed
is 5.

We were unable to find any publications on BCs packing. Similar prob-
lems that were studied reasonably well are the Bin Packing Problem (BPP)
[2,4,15,16,20,25,26] and the problem of packing rectangles in a strip [1,3,12,13,21,23].

In the classical BPP, a set L of items, a size of each items, and a set of identical
D-size containers (bins) are specified. All items must be placed in a minimum
number of bins. One of the well-known algorithms for packing items in containers
is First Fit Decreasing (FFD). As part of this algorithm, objects are numbered in
non-increasing order. Then, all items are scanned in order, and the current item is
placed in the first suitable bin. In 1973, Johnson proved that the FFD algorithm
uses no more than 11/9 OPT (L) + 4 containers [15]. In 1985 Backer showed
that the additive constant can be reduced to 3 [2]. Yue in 1991 proved that
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FFD(L) ≤ 11/9 OPT (L) + 1 [25]. Furthermore, in 1997 he improved the result
to FFD(L) ≤ 11/9 OPT (L)+7/9 together with Li [20]. In 2007, Dósa found the
tight boundary of the additive constant and gave an example when FFD(L) =
11/9 OPT (L) + 6/9 [4]. A Modified First Fit Decreasing (MFFD) algorithm
improves FFD by dividing items into groups by size and packing items from
different groups separately. Johnson and Garey proposed this modification, and
in 1985 they showed thatMFFD(L) ≤ 71/60OPT (L)+31/6 [16]. Subsequently,
the result was improved by Yue and Zhang to MFFD(L) ≤ 71/60 OPT (L) + 1
[26].

The BPP is a particular case of the problem of packing rectangles in a hor-
izontal strip when all objects have the same width. Therefore, the problem of
packing rectangles in a strip is NP-hard too. Moreover, if P 6= NP , then both
problems are 3/2-inapproximable [24]. Formally, the problem of tight packing
of rectangles into a semi-infinite strip of height D is as follows. For each rect-
angle i ∈ L, we know the width wi and the height hi. It is required to find
the packing of the set of rectangles L in a strip of minimum length. Rotation
of rectangles is prohibited. The Bottom-Left algorithm proposed by Baker [1]
arranges rectangles in descending order of height and has a ratio of 3. Coffman
et al. [3] in 1980 proposed algorithms with ratio 3 and 2.7. Sleator [22] showed
that his algorithm packs the rectangles into a strip whose length does not exceed
2 OPT (L) + wmax(L)/2, where wmax(L) is the width of the widest rectangle
in the set. Since wmax(L) ≤ OPT (L), the algorithm guarantees a ratio of 2.5.
This ratio was reduced by Schiermeyer [21] and Steinberg [23] to 2. Harren and
van Stee [12] were the first who evaluated a ratio of less than 2. Their proposed
algorithm has a ratio of 1.9396. The smallest estimate for the ratio known to
date obtained by Harren et al. [13] in 2014, and equals (5/3 + ε)OPT (L), for
any ε > 0.

The problem under consideration is also a particular case of the project
scheduling problem. Realy, each project consists of a sequence of jobs that needs
to be done one after another without delay (no-wait). Each job has a unit dura-
tion and consumes the non-accumulative resource. It is required to find the start
moment for each project in such a way that all projects are finished in minimum
time, consuming together at most D resource during each moment.

Resource-limited scheduling has been the subject of many publications dis-
cussing renewable and nonrenewable or accumulative resources. An overview of
the results can be found, for example, in [14,18]. For the case of an accumulative
resource, exact and asymptotically exact algorithms have been developed [6,7].
In the case of a limited renewable resource, the scheduling problem is NP-hard,
and polynomial algorithms with guaranteed accuracy estimates are not known
for it. As a rule, heuristic algorithms are developed for its approximate solution,
and a posteriori analysis is performed [8,9,14,18]. For example, in [7,8,9,10,11]
multidisciplinary partially ordered jobs of arbitrary duration are considered that
consume different amounts of a homogeneous resource at different time moments,
and the authors developed approximate algorithms for solving the problem, and
also performed a posteriori analysis, which showed a quite high efficiency. For
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comparison, the authors used a problem library PSPLIB [17]. For some instances
from the dataset J60 [8,9,10], and dataset J120 [11], the best-known solutions
were improved. We were unable to find publications in which polynomial algo-
rithms with guaranteed accuracy estimates proposed for such kind of project
scheduling problem.

The problem of packing BCs in the particular case when all BCs consist of
one bar is a BPP. In this article, to construct an approximate solution to the
problem, we developed a greedy algorithm (GA) and obtained some qualitative
results for non-increasing BCs with an arbitrary number of bars. The main result
of the article is the proof that, for arbitrary two-bar charts, algorithm A, which
uses the GA as a procedure, builds a package whose length does not exceed
2 OPT +1, where OPT is the minimum packing length. As far as we know, this
is the first a priori estimate for the problem under consideration, which proves,
in particular, that it belongs to the APX class.

The rest of the article is organized as follows. Section 2 provides a statement
of the packing problem for BCs with an arbitrary number of bars, as well as
a statement in the case of two-bar charts (2-BCs) in the form of Boolean Lin-
ear Programming (BLP). Section 3 describes the greedy algorithm GA for the
densest packing of BCs in a unit-height strip. Some properties of the algorithm
are also given there. Section 4 discusses the packing problem of 2-BCs. We pro-
posed an approximate algorithm that uses the GA algorithm as a procedure. At
the preliminary stage of the algorithm, some BCs are combined into one BC,
in which at least one bar has a height greater than 1/2. This section gives the
main result of the article, which consists in proving that the developed algorithm
builds a package whose length does not exceed 2 OPT + 1, where OPT is the
minimum length of a strip into which all 2-BCs can be packed. In Section 5,
we described the results of a numerical experiment, which made it possible to
conduct a posteriori analysis of the developed algorithm. To build the optimal
solution to the BLP, we used the CPLEX package and compared the optimal
solution with the solution built by our algorithms. In section 6, we summarize
and outline directions for further research.

2 Formulation of the problem

We have a horizontal stripe, the height of which, without loss of generality, equals
1 (D = 1), and the set S of BCs. Each BC i ∈ S consists of the sequence of li
bars (max

i∈S
li = l). Each bar j in BC i has a width that equals 1 and a height

that equals hj
i ∈ (0, 1] (Hi = max

j=1,...,li
hj
i ). We introduce the Cartesian coordinate

system so that the lower boundary of the strip coincides with the abscissa. Let
us consider a part of the strip to the right of the origin 0, which we divide into
the cells of width that equals 1, and number these cells with integers 1, 2, . . ..

Definition 1. BC i is non-increasing (non-decreasing) if hj
i ≥ hj+1

i (hj
i ≤

hj+1
i ) for all j = 1, . . . , li − 1.



Two-Bar Charts Packing Problem 5

Definition 2. Packing is a function p : S → Z+, which associates with each
BC i an integer p(i) corresponding to the cell number of the strip into which the
first bar of BC i falls.

As a result of packing p, bars from BC i occupy the cells p(i), p(i)+1, . . . , p(i)+
li − 1.

Definition 3. The packing is feasible if the sum of the heights of the bars that
fall into one cell of the strip does not exceed 1. That is for each cell k the
inequality

∑

i∈S:p(i)≤k≤p(i)+li−1

h
k−p(i)+1
i ≤ 1

holds.

Definition 4. The packing length L(p) is the number of strip cells in which
falls at least one bar.

We can assume that any packing p begins from the first cell, and in each cell
from 1 to L(p), there is at least one bar. If this is not the case, then all or part
of the package can be moved to the left.

The Bar Charts Packing Problem (BCPP) is to build a feasible
min-length package.

Another measure of packing quality is density. It is a ratio of the sum of the
bar’s heights to the packing length. The density cannot be greater than 1, and
the higher the density, the better the packing.

Let us formulate the 2-BCPP problem, in which each BC has two bars, in
the form of BLP. To do this, we introduce the following notation. Let the ith
2-BC have the height of the first bar ai, and the second bi. We introduce the
variables:

xij =

{

1, if the first bar of BC i is in the cell j;
0, else.

yj =

{

1, if the cell j contains at least one bar;
0, else.

Then 2-BCPP is written as follows.
∑

j

yj → min
xij ,yj∈{0,1}

; (1)

∑

j

xij = 1, i ∈ S; (2)

∑

i

aixij +
∑

k

bkxk,j−1 ≤ yj, ∀j. (3)

Both problems BCPP and 2-BCPP are strongly NP-hard as the generaliza-
tions of the BPP [15]. Moreover, these problems are 3/2-inapproximable [24].
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3 Greedy algorithm G

First, we describe the version of the greedy algorithm (denote it by G), which
builds an order-preserving package. That is, if the elements of the set S are
ordered, then the first bar of the ith BC cannot be placed to the right of the
first bar of the jth BC if and only if i < j.

Let the elements of the set S be arbitrarily numbered (ordered) by integers
from 1 to n = |S|. We denote the resulting ordered set by P . In algorithm G,
the first BC in P is placed starting from the first cell and excluded from P .
Then the following procedure is repeated for current list P . For the first item in
the P , a cell is searched with the minimum number, not to the left of the cell
containing the first bar of the previous BC, starting from which it can be placed
preserving the feasibility of the packing. We exclude the first BC from the list
P . The process continues until P 6= ∅.

Algorithm G constructs a feasible package for a specific permutation of BCs
with O(nl) time complexity. In [5], we proved the lemma, which can be rephrased
for BCPP as follows.

Lemma 1. [5] If each BC is non-increasing, then for a given order of BCs,
algorithm G constructs the optimal order-preserving solution to the BCPP.

The statement of the lemma generalizes the following statement for the BPP
[19]: There always exists at least one ordering of items that allows first-fit to
produce an optimal solution.

Since the order does not matter for identical BCs, it is true the following

Corollary 1. If all BCs are equal non-increasing or non-decreasing, then the
algorithm G constructs a package of minimum length.

In case of non-decreasing BCs, the optimal solution can be built by an al-
gorithm similar to G when the package is constructed from right to left. Since
2-BCs are either non-increasing or non-decreasing, the following also holds.

Corollary 2. If all 2-BCs are equal, then the algorithm G constructs an optimal
solution to the 2-BCPP.

4 2-BCPP

In this section, we consider the problem in the case where each BC consists of two
bars. To denote it, we use the 2-BCPP entry. Since 2-BCPP is a generalization
of the BPP, let us try to use it. To do this, put each BC i in a minimal 2-
width rectangle that has a height equals Hi = max{ai, bi}. As a result, we
get a set of items L, each of which i has a width equals 2 and characterized
only by its height Hi. That is, we got BPP, for the solution of which we can use
well-known approximate algorithms. Using the MFFD algorithm, it is possible to
construct a package of items from L using at most 71/60 OPT (L)+1 bins, where
OPT (L) is the minimum number of containers for packing items from L [26].
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This packing is feasible for 2-BCPP too. Since the height of the minimum bar in
each rectangle containing BC can be arbitrarily small, the package constructed
by the MFFD algorithm for 2-BCPP can have the density of 2 times less than the
packing density of items from L. Therefore, the strip length, in which the MFFD
algorithm packs all 2-BCs, is limited to 142/60 OPT+2 ≈ 2.367 OPT+2, where
OPT is the minimum packing length of 2-BCs.

Remark 1. Any BC i ∈ S fits a rectangle of width li and height Hi, and we can
pack the resulting set of rectangles R using the known algorithms. For exam-
ple, an algorithm from [13] will construct (without rotation of the rectangles) a
package whose length is not more than (5/3 + ε) OPT (R), where OPT (R) is
the minimum possible packing length of the rectangles of the set R, and ε > 0.
The resulting solution will be valid for BCPP too and will have a length at most
l(5/3+ε)OPT , where OPT is the optimal value of the BCPP objective function.

If all BCs have the same width l, then the MFFD algorithm for BPP will
build a package for BCPP with a length of no more than l(71/60 OPT + 1).

Below for 2-BCPP we propose a greedy algorithm, which is somewhat differ-
ent from G. We denote it by GA. Let, as before, the list P be an ordered set of
elements from S. The first element in P is placed in cells 1 and 2 and removed
from P . Let some BCs are packed and deleted from P . Items deleted from P
do not move further. Then the typical procedure is performed, which consists of
the following. For each BC in P , we search the leftmost position that does not
violate the feasibility of the packing. Among BCs that could be placed to the
left of all, choose BC with a minimum number, fix its position in the package
and delete it from P . The algorithm stops when P = ∅.

Algorithm G builds an order-preserving package. As a result of the algorithm
GA, BCs with higher numbers can stand in the package to the left of BCs
with lower numbers. Depending on the order of BCs in P , the algorithm GA
builds different solutions. Further, we propose algorithm A, using the GA as a
procedure, which builds a package of at most 2 OPT + 1 length, where OPT is
the smallest possible packing length. Algorithm A consists of three stages.

The first stage is preparatory, and it consists of combining BCs so that, if it
is possible, in each 2-BC, the height of at least one bar is greater than 1/2. For
this, the pair of BCs i and j, for which ai, bi, aj , bj ≤ 1/2, are combined into one
new BC of width 2 with the height of bars ai + aj and bi + bj . As a result, the
set S is transformed: two BCs i and j are removed from it, and one new BC is
added. The procedure of combining BCs is repeated until S contains the pairs of
BCs with both bars no more than 1/2. As a result, for each BC, except possibly
one, the maximum bar’s height will be greater than 1/2 (Fig. 2b).

At the second stage of algorithm A, we split the updated set S into two
subsets S1 and S2. In S1 we include non-increasing, and in S2 non-decreasing
BCs (Fig. 2b). Without loss of generality, we assume that a small BC, for which
both bars are at most 1/2, if it exists, is the last element of the set S1. We pack
the set of elements in S1 using the algorithm GA (from left to right), and we
pack the set of elements in S2 by the analog of the algorithm GA from right to
left. Then we get two packages: left and right.
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Fig. 2. Illustration of the operation of algorithm A. a) a set S; b) a set of combined
BCs; c) a package constructed by algorithm A.

At the third stage of algorithm A, we shift the right package of the elements
of the set S2 to the left to the maximum so as not to violate the feasibility of
the packing (Fig. 2c).

Lemma 2. The time complexity of algorithm A is O(n2).

Proof. The first stage of algorithm A can be implemented with a time complexity
of O(n) as follows. Put M = ∅. Browse the BCs in numerical order. If the next
BC has the first bar greater than the second and more than 1/2, then we put it
in the set S1. If the next BC has a second bar greater than the first and more
than 1/2, then we put it in the set S2. If both bars do not exceed 1/2 and M = ∅,
then put the current BC in M and continue viewing. If both bars do not exceed
1/2 and M 6= ∅, then combine the current BC with BC in M . If the resulting
new combined BC has at least one bar greater than 1/2, then exclude it from
M and put it in S1 if the first bar is larger than the second; otherwise we put it
in S2. If, after combining the current BC with BC in M , a new BC with both
bars not exceeding 1/2 is obtained, then we leave the new merged BC in M and
proceed to consider the next BC in P . Thus, as a result of one scan of all BCs,
we will form the sets S1 and S2.
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At the second stage, we pack the elements of the sets S1 and S2 separately
using the algorithm GA. At each step of the algorithm GA, one BC is added
to the already constructed package. The complexity of the process of finding
the best position for the current BC equals O(n). The number of steps of the
algorithm GA is at most n. Therefore, the time complexity of the second stage
of algorithm A is O(n2).

The complexity of the third stage is O(1). The lemma is proved.

Theorem 1. Algorithm A with time complexity O(n2) constructs a package for
2-BCPP whose length is at most 2 OPT +1, where OPT is the minimum length
of a strip into which all 2-BCs can be packed.

Proof. We first consider the packing of the set S1. In this set, all BCs are not
increasing, and the height of the first bar for all BCs, except, perhaps, the last
BC, is greater than 1/2. Algorithm GA, when packing next BC, shifts it as far
as possible to the left. Let k BCs are already packed, then the height of the last
bar is bk. Consider the (k + 1)th BC. The following two cases are possible:

1. ak+1 + bk ≤ 1;
2. ak+1 + bk > 1.

In the first case, we place the first bar of the (k + 1)th BC over the second bar
of the kth BC. In the second case, we put the (k+1)th BC in the next two free
cells. In both cases, after adding the (k + 1)th BC, the total packing density of
the first non-empty cells, except, possibly, the last, is greater than 1/2.

For the set S2, we carry out packing in a similar way from right to left. As a
result, the packing density of non-empty cells without the first cell of the right
package will be more than 1/2.

Let us denote by b the height of the last bar in the left package, and by a
the height of the first bar in the right package. After shifting the right package
to the left to the maximum so that the total packing is feasible, we get one of
the following cases.

– a+ b > 1. Then the left and right packages are touching each other, and the
density of the whole package is at least 1/2.

– a+ b ≤ 1. Then the right bar of the left package and the left bar of the right
package occupy the same cell (Fig. 2c). In this case, a+ b can be at least 1/2
or at most 1/2, and then the density of the whole package is at least 1/2,
excluding maybe one cell.

In any way, we have that the package density of all cells, except, possibly, one,
is more than 1/2. From this, we obtain the statement of the theorem.

Remark 2. Algorithm A constructs a package whose density is below bounded by
1/2, and this estimate is tight, which follows from the following instance. Let all
BCs be equal with the height of the first bar ai = 1, and the second bi = ε, i ∈ S.
Then each BC in the optimal package will occupy two cells, and the density of
such packing (1 + ε)/2 tends to 1/2 when ε tends to 0. However, if instead of
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density, we compare the length of package constructed by the algorithm GA with
the minimum packing length, the difference will be less than two times. For the
considered instance, for example, the ratio is 1, i.e., GA constructs the optimal
solution. Therefore, to obtain a more accurate estimate for the ratio, one needs
to find a more accurate lower bound for the length of the optimal packing.

Remark 3. After the first step of algorithm A, several BCs are combined into
one BC, which reduces the number of feasible packages. In addition, the length
of the package constructed by the algorithm GA substantially depends on the
order of elements in the list P . In the next section, we present the results of
a numerical experiment in which the lengths of the package constructed by the
algorithm GA for different BCs ordering are compared with the minimal packing
length.

5 Simulation

For simulation, all the proposed algorithms were implemented in the Python
programming language. In the numerical experiment, the input data waer gen-
erated randomly. As parameters ai, bi (i = 1, . . . , n) of the problem (1)-(3),
random independent values were uniformly distributed in the segment (0, 1]. We
treated the instances of different sizes n ∈ [10, 1000]. For each value of n, 100
different instances were generated. To build the optimal solution to BLP or to
find the lower bound for the objective function, we used the IBM ILOG CPLEX
12.10 software package. The calculations were carried out on a computer Intel
Core i7-3770 3.40GHz 16Gb RAM.

We examined six different approximate algorithms: the algorithms A, GA,
and their modifications. To evaluate the influence of the first stage of algorithm
A, we use algorithm A1 without the first stage. The quality of the solution built
by algorithm depends significantly on the order of elements in the set P . To
evaluate the influence of the ordering, we implemented the algorithms A LO,
GA LO, and A1 LO. The abbreviation “LO” means that before packing, we
order the BCs lexicographically in non-increasing order of bar’s height and then
apply the algorithms A, GA, and A1, correspondently.

Table 1 presents the results of a numerical experiment. One can see the
benefits of the preliminary lexicographic ordering (LO) of the BCs. CPLEX
operating time was limited to 20 seconds when n < 500, 40 seconds when n =
500, 120 seconds when n = 750 and 300 seconds when n = 1000. For each
size and each algorithm, the table shows the mean values Rav and standard
deviations Rsd of R which is defined as follows. If we know the optimal solution,
then R is the ratio. If CPLEX failed to find an optimal solution, then R is
the objective function of an approximate solution divided by the lower bound
for objective function yielded by CPLEX during the allotted time. For n ≤ 75,
CPLEX often builds only an approximate solution to the problem, which is tight
enough (the average value of R is about 1.11). However, when the size increases
up to 1000, CPLEX builds the approximate solution significantly worse than the
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package build by the proposed approximate algorithms. We show the graphics
of R depending on n for the algorithms CPLEX, A, and GA LO in Fig. 3. In
this figure, we also showed the standard deviation from the mean values of R
for different algorithms. It is also important to note that for all n, the running
time of approximate algorithms did not exceed 1 second. For example, when
n = 1000, the algorithm A built solutions in 0.25 seconds.

n
CPLEX A A LO A1 A1 LO GA GA LO

Rav Rsd Rav Rsd Rav Rsd Rav Rsd Rav Rsd Rav Rsd Rav Rsd

10 1 0.02 1.21 0.09 1.16 0.08 1.2 0.1 1.12 0.08 1.14 0.08 1.07 0.07
25 1.06 0.04 1.29 0.09 1.22 0.08 1.25 0.07 1.16 0.06 1.18 0.06 1.1 0.05
50 1.08 0.03 1.28 0.05 1.21 0.04 1.22 0.05 1.13 0.04 1.16 0.03 1.09 0.03
75 1.11 0.01 1.27 0.03 1.2 0.03 1.21 0.03 1.12 0.03 1.15 0.02 1.08 0.02
100 1.11 0.01 1.26 0.02 1.19 0.02 1.19 0.02 1.11 0.02 1.14 0.02 1.08 0.02
250 1.15 0.01 1.22 0.02 1.17 0.02 1.15 0.01 1.07 0.02 1.11 0.01 1.05 0.01
500 1.18 0.085 1.19 0.012 1.16 0.011 1.12 0.011 1.05 0.012 1.09 0.009 1.04 0.009
750 1.24 0.1 1.18 0.007 1.15 0.009 1.11 0.008 1.04 0.009 1.08 0.008 1.03 0.009
1000 1.24 0.076 1.18 0.008 1.15 0.009 1.1 0.008 1.04 0.009 1.08 0.007 1.02 0.007

Table 1. Simulation results: mean values Rav and standard deviations Rsd of R.

Thus we can conclude that the algorithmGA LO (with lexicographic order of
the BCs) is the best among all considered algorithms and, starting from n = 75,
it builds solutions more accurately than CPLEX in 5 minutes. The algorithm A1
turned out to be better in most cases than the algorithm A. We would also like
to note that this experiment confirmed the significant influence of the ordering
of BCs. All algorithms with preliminary lexicographic ordering turned out to be
significantly more accurate than algorithms without preliminary ordering.

6 Conclusion

We examined the problem BCPP of packing BCs in a strip of minimum length.
For the particular case, when all BCs have two bars each, the polynomial al-
gorithm A developed by us builds a package whose length does not exceed
2 OPT + 1, where OPT is the minimum possible package length. As far as we
know, this is the first guaranteed estimate for 2-BCPP, which proves, in particu-
lar, that it belongs to the APX class. We also conducted a numerical experiment
in which we compared the solutions built by our approximate algorithms with
the optimal solutions built by the CPLEX package. Based on the results of a
numerical experiment, we conclude that the algorithm GA LO, which uses the
greedy algorithm GA to pack BCs lexicographically ordered in non-increasing
order, significantly outperforms all the others. In particular, for the number of
BCs n = 1000, it constructs a solution in less than 1 second, and the value of
the objective function on this solution differs from the optimal value of the ob-
jective function by no more than 1.05 times (an average of 1.02 times). CPLEX
in 5 minutes builds a solution on which the value of the objective function is,
on average, 1.24 times worse than the optimal value of the objective function.



12 A. Erzin et al.

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

1,40

1,45

10 25 50 75 100 250 500 750 1000

R

n

CPLEX

GA_LO

A

Fig. 3. Dependence of R on the dimension n.

On a larger dimension, CPLEX in 5 minutes does not produce a single feasible
solution. If we increase the CPLEX operating time, the general trend will not
change (see. Fig. 3).

In the future, we plan, firstly, to reduce the guaranteed estimate for the ratio,
and, secondly, to consider BCs with a large number of bars.
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4. Dósa Gy.: The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is
FFD(I) ≤ 11/9 OPT (I) + 6/9. Lecture Notes in Computer Sciences 4614, 1–11
(2007)

5. Erzin A., et al.: Optimal Investment in the Development of Oil and Gas Field. CCIS
(2020) (in the press)



Two-Bar Charts Packing Problem 13

6. Gimadi E., Sevastianov S.: On Solvability of the Project Scheduling Problem with
Accumulative Resources of an Arbitrary Sign. Selected papers in Operations Re-
search Proceedings 2002. Berlin-Heidelberg: Springer Verlag, 241–246 (2003)

7. Gimadi E.Kh., Goncharov E.N., Mishin D.V. : On Some Realizations of Solving
the Resource Constrained Project Scheduling Problems. Yugoslav J. of Operations
Research 29(1), 31–42 (2019)

8. Goncharov E.: A greedy heuristic approach for the Resource-Constrained Project
Scheduling Problem. Studia Informatica Universalis. 9(3), 79–90 (2011)

9. Goncharov E.: A stochastic greedy algorithm for the resource-constrained project
scheduling problem. Discrete Analysis and Operations Research. 21(3), 11–24 (2014)

10. Goncharov E.N., Leonov V.V.: Genetic Algorithm for the Resource-Constrained
Project Scheduling Problem. Automation and Remote Control. 78(6), 1101–1114
(2017)

11. Goncharov E.N. Variable Neighborhood Search for the Resource Constrained
Project Scheduling Problem. Bykadorov et al. (Eds.): MOTOR 2019. CCIS 1090,
39–50 (2019)

12. Harren R., van Stee R.: Improved absolute approximation ratios for two-
dimensional packing problems. In APPROX: 12th Int. Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, 177–189 (2009)

13. Harren R., Jansen K., Pradel L., van Stee R.: A (5/3 + epsilon)-approximation for
strip packing. Computational Geometry. 47(2), 248–267 (2014)

14. Hartmann S.: A self-adapting genetic algorithm for project scheduling under re-
source constraints. Naval Res. Logist. 49, 433–448 (2002)

15. Johnson D.S.: Near-optimal bin packing algorithms. Massachusetts Institute of
Technology. PhD thesis (1973)

16. Johnson D.S., Garey M.R.: A 71/60 theorem for bin packing. J. of Complexity.
1(1), 65–106 (1985)

17. Kolisch R., Sprecher A.: PSPLIB – a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1996)

18. Kolisch R., Hartmann S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

19. Lewis R.: A General-Purpose Hill-Climbing Method for Order Independent Min-
imum Grouping Problems: A Case Study in Graph Colouring and Bin Packing.
Computers and Operations Research. 36(7), 2295–2310 (2009)

20. Li R., Yue M. The proof of FFD(L) ≤ 11/9 OPT (L) + 7/9. Chinese Science
Bulletin. 42(15), 1262–1265 (1997)

21. Schiermeyer I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In ESA:
Proc. 2nd European Symposium on Algorithms, 290–299 (1994)

22. Sleator D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf.
Process. Lett. 10(1), 37–40 (1980)

23. Steinberg A.: A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comput. 26(2) 401–409 (1997)

24. VaziraniV.V.: Approximation Algorithms. Springer Berlin Heidelberg. (2001)
25. Yue M.: A simple proof of the inequality FFD(L) ≤ 11/9 OPT (L)+1, ∀L, for the

FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica. 7(4), 321–331
(1991)

26. Yue M., Zhang L.: A simple proof of the inequality MFFD(L) ≤ 71/60 OPT (L)+
1, ∀L, for the MFFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica.
11(3), 318–330 (1995)


	Two-Bar Charts Packing Problem

