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Abstract

In this paper, we consider a nonsmooth convex finite-sum problem with a conic constraint. To
overcome the challenge of projecting onto the constraint set and computing the full (sub)gradient,
we introduce a primal-dual incremental gradient scheme where only a component function and
two constraints are used to update each primal-dual sub-iteration in a cyclic order. We demon-
strate an asymptotic sublinear rate of convergence in terms of suboptimality and infeasibility
which is an improvement over the state-of-the-art incremental gradient schemes in this setting.
Numerical results suggest that the proposed scheme compares well with competitive methods.

keywords: Incremental Gradient; Primal-Dual Method; Convex Optimization.

1 Introduction

Convex constrained optimization has a broad range of applications in many areas, such as machine
learning (ML). As data gets more complex and the application of ML algorithms becomes more
diversified, the goal of recent ML research is to improve the efficiency and scalability of algorithms.
In this paper, we consider the following nonsmooth and convex constrained problem,

min
x∈X

f(x) s.t. Ax− b ∈ −K, (1)

where f(x) =
∑m

i=1 fi(x), A =
[
AT1 . . . ATm

]T
, b =

[
bT1 . . . bTm

]T
, K = Πm

i=1Ki. For each
i ∈ {1, . . . ,m}, the function fi : Rn → R is convex (possibly nonsmooth), Ai ∈ Rdi×n, bi ∈ Rdi
and Ki ⊆ Rdi is a closed convex cone, and X ⊂ Rn is a compact and convex set. We assume
that the projection onto Ki can be computed efficiently while the projection onto the preimage set
{x | Aix− bi ∈ −Ki} is assumed to be impractical for any i ∈ {1, . . . ,m}.

Letting d ,
∑m

i=1 di, we introduce a dual multiplier y = [yi]
m
i=1 ∈ Rd for the constraint in (1)

and y∗ denotes a dual optimal solution. Suppose a constant B > 0 exists such that ‖y∗‖ ≤ B.
Such a bound B can be computed efficiently if a slater point of (1) is available, see Lemma 2. Let
Y = Πm

i=1Yi, Yi = {yi ∈ Rdi |
√
m‖yi‖ ≤ B+ 1} which implies that ‖y‖ ≤ B+ 1, for all y ∈ Y , then

problem (1) can be equivalently written as the following saddle point (SP) problem:

min
x∈X

max
y=[yi]mi=1∈Y ∩K∗

φ(x, y) ,
m∑
i=1

fi(x) + yTi (Aix− bi), (2)

where K∗ denotes the dual cone of K, i.e., K∗ , {u ∈ Rd : 〈u, v〉 ≥ 0, ∀v ∈ K}.
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Motivation. Problem (1) has a broad range of applications in ML, wireless sensor networks,
signal processing, etc. Next, we illustrate examples written in the form of problem (1) in which
projecting on the constraint is challenging.

Example 1. (Basis Pursuit Denoising (BPD) problem) Let x∗ be a solution of a linear system
of equations Ax = b, where A and b represent a transformation matrix and the observation vector,
respectively. This problem arises in signal processing, image compression and compressed sensing
[7] to recover a sparse solution x given A and b. In particular, one needs to solve minx{‖x‖1 | Aix =
bi, ∀i ∈ {1, . . . ,m}}. In real-world applications, the observations b might be noisy [9]. Therefore,
the problem can be formulated as follows:

min ‖x‖1, s.t. ‖Aix− bi‖ ≤ δ/
√
m, ∀i ∈ {1, . . . ,m}.

BDP problem is a special case of (1) and the constraint can be written as (bi−Aix,−δ/
√
m) ∈ −Ki

where Ki = {(y, t) ∈ Rdi × R | ‖y‖ ≤ t} is a second-order cone. Projection onto the second-order
cone can be computed as:

ΠK(y, t) =


(y, t) if ‖y‖ ≤ t;
(0, 0) if ‖y‖ ≤ −t;
‖y‖+t

2

(
y
‖y‖ , 1

)
otherwise,

where ΠK(y) denotes the projection of y onto K [2]; however, projection onto the preimage set
{x | Aix− bi ∈ −Ki} can be impractical.

Example 2. (Constrained Lasso problem) Let y ∈ Rs, B ∈ Rs×n, and x ∈ Rn denote the response
vector, the design matrix of predictors, and the vector of unknown regression coefficients. Then
the general Lasso problem can be written as follows [10]:

min
x

1
2‖y −Bx‖

2 + λ1‖x‖1 + λ2

n∑
j=2

|xj − xj−1|, s.t. Ax = b, and Cx ≤ d,

where λ1, λ2 ≥ 0 are the tuning parameters. The constrained Lasso problem above is a special
case of problem (1) by defining fi(x) = 1

2m‖Bix − yi‖2 + λ1
m ‖x‖1 + λ2

m

∑n
j=2 |xj − xj−1|, where

B = [BT
1 , . . . , B

T
m]T and y = [yT1 , . . . , y

T
m]T . The constraint can be written as

[
Ai
Ci

]
x−

[
bi
di

]
∈ −K,

where Ai ∈ Rpi×n, Ci ∈ Rqi×n, pi + qi = d, K = {0pi} × Rqi+ and {0pi} ∈ Rpi .
Related work. One of the main approaches to solve problem (1), when the projection is cheap, is
using the Projected Incremental Gradient (PIG) scheme [16] where the (sub)gradient of the function
is approximated in a deterministic manner and cyclic order. Let C , {x ∈ X | Ax − b ∈ −K}
denote the constraint set in (1), then each iteration of PIG has the following main steps:
for i = 1, . . . ,m

1. Set xk,1 = xk and pick stepsize γk;

2. xk,i+1 = ΠC(xk,i − γkgk,i);
3. Set xk+1 = xk,m+1,

end
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where gk,i ∈ ∂fi(xk,i), and ∂fi(x) denotes subdifferential of function fi(x), for all i ∈ {1, . . . ,m}.
When the problem is nonsmooth and convex, the convergence rate of O(1/

√
k) has been shown

for PIG. The accelerated variant of Incremental Gradient (IG) scheme is studied in [5, 8, 11, 15].
These methods require storing a variable of size O(mn) at each iteration, hence, are impractical
for large-scale problems and/or when the projection is hard to compute. One avenue to handle
the constraints is by leveraging iterative regularization schemes [1, 19]. Recently in [14], authors
introduced averaged iteratively regularized IG method that does not involve any hard-to-project
computation to solve and require storing a variable of size O(n). However, their suboptimality
and infeasibility rates are O(1/k0.5−b) and O(1/kb), respectively, for some b ∈ (0, 0.5). In contrast
to the existing methods, in this paper, we address the challenge of projection by introducing a
primal-dual scheme requiring memory of O(n + d/m). Moreover, our new primal-dual IG scheme
improves the rate results to O(1/

√
k) in terms of suboptimality and infeasibility.

Convex constrained optimization problems can be viewed as a special case of saddle point
problems using Lagrangian duality. Different primal-dual methods have been introduced to solve
such problems. Consider a saddle point problem of the form minx∈X maxy∈Y f(x)+φ(x, y)−gi(yi),
where φ(x, y) =

∑m
i=1〈Aix − bi, yi〉. When the objective function is strongly-convex strongly-

concave and smooth, a linear convergence rate has been shown in [20, 21, 22] using stochastic
methods by randomly selecting the dual and/or primal coordinates. Assuming a merely convex-
concave setting, the convergence rate of O(1/k) has been shown in [6, 17]. Moreover, Xu [18]
considered problem (1) with nonlinear constraint hi ≤ 0 where hi is convex, and bounded function
and ∂hi is bounded. They proposed a stochastic augmented Lagrangian scheme with convergence
rate of O(1/

√
k). In this paper, we aim to recover the rate of O(1/

√
k) by approximating the

subgradient in a deterministic manner and considering weaker assumptions. Finally, in our recent
work [13], we considered minx maxy

∑m
i=1 fi(xi)+

∑p
j=1 φj(x, y)−

∑n
`=1 h`(y`) where fi, h` are convex

and nonsmooth with efficiently computable proximal map and φ(x, y) is a smooth convex-concave
function. The convergence rate of O(log(k)/k) is obtained for merely convex setting by sampling
the component functions using an increasing sample size. However, in this paper, we introduce a
deterministic method to solve a nonsmooth optimization problem with a conic constraint.

Contribution. In this paper, we consider a nonsmooth minimization with a conic constraint.
Considering the equivalent saddle point formulation, we propose a novel primal-dual incremental
gradient (PDIG) scheme. In particular, the proposed method comprises a deterministic cycle
in which only two constraints, and one objective function component, fi, are utilized to update
the iterates. This new approach significantly improves the previous state-of-the-art incremental
gradient method for constrained minimization problems [14] from O(1/k

1
4 ) to O(1/

√
k) in terms

of suboptimality/infeasibility. Moreover, the proposed scheme guarantees a convergence rate in a
deterministic manner, in contrast to randomized methods [18] where the convergence rate is in the
expectation sense.

In Section 2, we provide the main assumptions and definitions, required for the convergence
analysis. Next, in Section 3, we introduce PDIG method and show the convergence rate of O(1/

√
k)

for both suboptimality and infeasibility. Finally, in Section 4 we implemented the proposed algo-
rithm to solve the constrained Lasso problem and compare it with other competitive methods.
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2 Assumptions and definitions

In this section, we outline some important notations, definitions and the required assumptions that
we consider for the analysis of the method.

Notation. Throughout the paper, ‖.‖ denotes the Euclidean norm and relint(X) denotes the
relative interior of the set X. We define distK(u) , ‖ΠK(u)− u‖ = ‖|Π−K∗(u)‖. Also, Id denotes
d× d identity matrix.

Definition 1. Define Ui ∈ Rd×di for i ∈ {1, . . . ,m} such that Id = [U1, . . . , Um].

We impose the following requirements on problem (1).

Assumption 1. For all i ∈ {1, . . . ,m}, the following hold:
(a) A primal-dual solution, (x∗, y∗), of problem (1) exists.
(b) Function fi is convex and nonsmooth.
(c) fi is Lipschitz continuous with constant L.
(d) X is a compact and convex set, i.e., ∃D > 0 s.t. ‖x‖ ≤ D, ∀x ∈ X.
(e) There exists a constant B > 0 such that ‖y∗‖ ≤ B.

Assumption 1(c) is a common assumption for nonsmooth problems and it implies that f at
every point x admits a subgradient g(x) such that ‖g(x)‖ ≤ L. We assume that this small norm
subgradient g(x) is exactly the one reported by the first-order oracle as called with input x and
this is not a severe restriction, since at least in the interior of the domain all subgradients of f are
“small” in the outlined sense (see section 5.3 in [3] for more details). The following lemma states
an important relation required for our convergence results.

Lemma 1. Suppose a convex function f : Rn → R is Lipschitz continuous with constant L. Then
f(x) ≤ f(y)+g(y)T (x−y)+2L‖x−y‖ holds for any x, y ∈ Rn, where g is a subgradient of function
f .

Proof. Using convexity of function f , Cauchy-Schwarz inequality, and boundedness of the subgra-
dient, we can show the desired result as follows:

〈g(y), y − x〉 = 〈g(y)− g(x), y − x〉+ 〈g(x), y − x〉
≤ ‖g(y)− g(x)‖‖x− y‖+ f(y)− f(x) ≤ 2L‖x− y‖+ f(y)− f(x).

In addition, note that the dual bound B in Assumption 1(e) can be computed efficiently if a
slater point of (1) is available using the following lemma.

Lemma 2. [12] Let x̂ be a slater point of (1), i.e. x̂ ∈ relint(dom(f)) such that Ax−b ∈ int(−K),
and h : Rd → R ∪ {−∞} denote the dual function, i.e.,

h(y) =

{
infx f(x) + 〈Ax− b, y〉, y ∈ K∗

−∞, o.w.

For any ŷ ∈ dom(h), let Qŷ = {y ∈ dom(h) : h(y) ≥ h(ŷ)} ⊂ K∗ denotes the corresponding

superlevel set. Then for all ŷ ∈ dom(h), Qŷ can be bounded as ‖y‖ ≤ f(x̂)−h(ŷ)
r∗ , ∀y ∈ Qŷ where

0 < r∗ , minu{−〈Ax̂− y, u〉 : ‖u‖ = 1, u ∈ K∗}.
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3 Convergence analysis

In this section, we propose the Primal-Dual Incremental Gradient (PDIG) method, displayed in
Algorithm 1 to solve problem (2).

Algorithm 1 Primal-Dual Incremental Gradient (PDIG) method

input: x1 ∈ Rn, y1 ∈ Rd, positive sequences {γk}k and {ηk}k, and let x1,0 ← x1
for k = 1 . . .K do

(xk,1, yk,1)← (xk, yk);
for i = 1, . . . ,m do
A0 ← Am and U0 ← Um;
yk,i+1 ← ΠY ∩K∗ (yk,i + ηkUi(Aixk,i − bi) + ηkUi−1Ai−1(xk,i − xk,i−1));
xk,i+1 ← ΠX

(
xk,i − γk(gi(xk,i) +ATi U

T
i yk,i+1)

)
, where gi(x) ∈ ∂fi(x);

end for
xk+1,0 ← xk,m, (xk+1, yk+1)← (xk,m+1, yk,m+1);

end for

In the following theorem, we state our main result which is the convergence rate of PDIG in
terms of suboptimality and infeasibility.

Theorem 1. Suppose Assumption 1 holds. Let {xk, yk}k≥1 be the iterates generated by Algorithm
1, with the step-sizes chosen as ηk = 1

amax

√
k

and γk = 1
amax+

√
k

for all k ≥ 1, where amax =

max1≤i≤m{‖Ai‖}. Then the following result holds

max {|f(x̄K)− f(x∗)|,dist−K(Ax̄K − b)} ≤ φ(x̄K , ỹ)− φ(x∗, ȳK) ≤ O(1/
√
K),

where ỹ , (‖y∗‖+ 1)ΠK∗(Ax̄K − b)‖ΠK∗(Ax̄K − b)‖−1 and (x̄K , ȳK) , 1
K

∑K
k=1(xk, yk).

Before proving Theorem 1, we state a technical lemma for projection mappings and then provide
a one-step analysis of the algorithm in Lemma 4.

Lemma 3. [4] Let X ⊆ Rn be a nonempty closed and convex set. Then the following hold: (a)
‖ΠX [u]−ΠX [v]‖ ≤ ‖u− v‖ for all u, v ∈ Rn; (b) (ΠX [u]− u)T (x−ΠX [u]) ≥ 0 for all u ∈ Rn and
x ∈ X.

Lemma 4. Suppose Assumption 1 holds. Let {xk, yk}k≥1 be the iterates generated by Algorithm
1, with the step-sizes chosen as ηk = 1

amax

√
k

and γk = 1
amax+

√
k

for all k ≥ 1, where amax =

max1≤i≤m{‖Ai‖}. Then the following holds for any y ∈ Y ∩ K∗.

φ(x̄k, y)− φ(x∗, ȳk) ≤ 1
K

(
1

amax+1 + 2
√
K
)

(C̃3 + C̃1) + 1
K

(
1

amax
+
√
K

amax

)
C̃2

+ 2mL2

K
√
K

+ 2(B+1)2amax

√
K

K + 2D2(amax+
√
K)

K

+ 4D2
(
amax+

√
K

2K −
√
K
K

)
≤ O(1/

√
K),

for some constants C̃1, C̃2, C̃3 ≥ 0 where (x̄K , ȳK) , 1
K

∑K
k=1(xk, yk).
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Proof. For any k ≥ 1, we have the following for any y ∈ Rd,

‖yk,i+1 − y‖2 = ‖yk,i+1 − yk,i‖2 + ‖yk,i − y‖2 + 2〈yk,i+1 − yk,i, yk,i − y ± yk,i+1〉
= ‖yk,i+1 − yk,i‖2 + ‖yk,i − y‖2 − 2‖yk,i+1 − yk,i‖2

+ 2〈yk,i+1 − yk,i, yk,i+1 − y〉
= ‖yk,i − y‖2 − ‖yk,i+1 − yk,i‖2 + 2〈yk,i+1 − yk,i, yk,i+1 − y〉︸ ︷︷ ︸

Term (a)

From the definition of yk,i+1 and Lemma 3(b) the following holds:

0 ≤ (yk,i+1 − (yk,i + ηkUi(Aixk,i − bi) + ηkUi−1Ai−1(xk,i − xk,i−1))T (y − yk,i+1)

= (yk,i+1 − yk,i)T (y − yk,i+1) + (ηkUi(Aixk,i − bi) + ηkUi−1Ai−1(xk,i − xk,i−1))T (yk,i+1 − y).
(3)

Therefore, term (a) can be written as

2〈yk,i+1 − yk,i, yk,i+1 − y〉 ≤ 2(ηkUi(Aixk,i − bi) + ηkUi−1Ai−1(xk,i − xk,i−1))T (yk,i+1 − y).

Hence, we have the following:

‖yk,i+1 − y‖2

≤ ‖yk,i − y‖2 − ‖yk,i+1 − yk,i‖2 + 2
(
ηkUi(Aixk,i − bi)

+ ηkUi−1Ai−1(xk,i − xk,i−1)± ηkUiAixk,i+1)
)T

(yk,i+1 − y)

= ‖yk,i − y‖2 − ‖yk,i+1 − yk,i‖2 + 2ηk(yk,i+1 − y)TUi(Aixk,i+1 − bi)
+ 2ηk(yk,i+1 − y ± yk,i)TUi−1(Ai−1(xk,i − xk,i−1))
− 2ηk(yk,i+1 − y)TUi(Ai(xk,i+1 − xk,i))

= ‖yk,i − y‖2 − ‖yk,i+1 − yk,i‖2 + 2ηk(yk,i+1 − y)TUi(Aixk,i+1 − bi)
+ 2ηk(yk,i − y)TUi−1(Ai−1(xk,i − xk,i−1))
+ 2ηk(yk,i+1 − yk,i)TUi−1(Ai−1(xk,i − xk,i−1))
− 2ηk(yk,i+1 − y)TUi(Ai(xk,i+1 − xk,i)),

Now using Young’s inequality, i.e., aT b ≤ 1
2αk
‖a‖2 + αk

2 ‖b‖
2, for any a, b ∈ Rd and αk > 0, we

conclude that

‖yk,i+1 − y‖2 ≤ ‖yk,i − y‖2 + ( ηkαk
− 1)‖yk,i+1 − yk,i‖2 (4)

+ 2ηk(yk,i+1 − y)TUi(Aixk,i+1 − bi)
+ 2ηk(yk,i − y)TUi−1(Ai−1(xk,i − xk,i−1))
+ ηkαk‖Ui−1Ai−1(xk,i − xk,i−1)‖2 − 2ηk(yk,i+1 − y)TUi(Ai(xk,i+1 − xk,i)).

Similar to (3), from the update of xk,i+1 and Lemma 3(b) the following holds:

(xk,i+1 − xk,i)T (xk,i+1 − x∗) ≤
(
γk(gi(xk,i) +ATi U

T
i yk,i+1)

)T
(x∗ − xk,i+1).
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Therefore, one can conclude that

‖xk,i+1 − x∗‖2 = ‖xk,i+1 − xk,i‖2 + ‖xk,i − x∗‖2 + 2〈xk,i+1 − xk,i, xk,i − x∗ ± xk,i+1〉
= ‖xk,i − x∗‖2 − ‖xk,i+1 − xk,i‖2 + 2〈xk,i+1 − xk,i, xk,i+1 − x∗〉

≤ ‖xk,i − x∗‖2 − ‖xk,i+1 − xk,i‖2 + 2
(
γk(gi(xk,i) +ATi U

T
i yk,i+1)

)T
(x∗ − xk,i+1)︸ ︷︷ ︸

Term (b)

Indeed, adding and subtracting xk,i to term (b) leads to

‖xk,i+1 − x∗‖2 ≤ ‖xk,i − x∗‖2 − ‖xk,i − xk,i+1‖2 − 2γk(xk,i+1 − xk,i)T (gi(xk,i) +ATi U
T
i yk,i+1)

− 2γk(xk,i − x∗)(gi(xk,i) +ATi U
T
i yk,i+1). (5)

From Assumption 1(b), one can easily show that−2γk(xk,i−x∗)T gi(xk,i) ≤ −2γk(xk,i−x∗)T (fi(xk,i)−
fi(x

∗)) and from Assumption 1(c) and Lemma 1, we have that −2γk(xk,i+1 − xTk,i)gi(xk,i) ≤
2γk(fi(xk,i)−fi(xk,i+1))+4γkL‖xk,i+1−xk,i‖. Moreover, for some βk > 0 we know that 4γkL‖xk,i+1−
xk,i‖ ≤ 2γkL

2

βk
+ 2γkβk‖xk,i+1 − xk,i‖2, hence, (5) can be written as follows.

‖xk,i+1 − x∗‖2 ≤ ‖xk,i − x∗‖2 − ‖xk,i − xk,i+1‖2

+ 2γk(f(xk,i)− fi(xk,i+1)) + 2γkL
2

βk
+ 2γkβk‖xk,i+1 − xk,i‖2

− 2γk(xk,i+1 − x∗)TATi UTi yk,i+1 − 2γk(fi(xk,i)− fi(x∗))
= ‖xk,i − x∗‖2 − (2γkβk − 1)‖xk,i − xk,i+1‖2 + 2γk(fi(x

∗)− fi(xk,i+1))

+ 2γkL
2

βk
− 2γk(xk,i+1 − x∗)TATi UTi yk,i+1. (6)

Multiplying (4) by 1
2ηk

, (6) by 1
2γk

and summing up the result leads to

fi(xk,i+1)− fi(x∗)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)− (x∗ − xk,i+1)
TATi U

T
i yk,i+1

≤ 1
2ηk
‖yk,i − y‖2 − 1

2ηk
‖yk,i+1 − y‖2

+
(

1
2αk
− 1

2ηk

)
‖yk,i+1 − yk,i‖2 + 1

2γk
‖xk,i − x∗‖2 − 1

2γk
‖xk,i+1 − x∗‖2

+
(
βk − 1

2γk

)
‖xk,,i − xk,i+1‖2 + (yk,i − y)TUi−1 [Ai−1(xk,i − xk,i−1)]

+ αk
2 ‖Ui−1Ai−1(xk,i − xk,i−1)‖

2 − (yk,i+1 − y)T [UiAi(xk,i+1 − xk,i)] + L2

βk
.

Next, by selecting ηk and γk such that 1
2αk
− 1

2ηk
≤ 0 and αk

2 ‖Ui−1Ai−1‖
2 ≤ 1

2γk
− βk, one can drop(

1
2αk
− 1

2ηk

)
‖yk,i+1 − yk,i‖2 in the above inequality to obtain the following result

fi(xk,i+1)− fi(x∗)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)− (x∗ − xk,i+1)
TATi U

T
i yk,i+1

≤ 1
2ηk

(
‖yk,i − y‖2 − ‖yk,i+1 − y‖2

)
+ 1

2γk

(
‖xk,i − x∗‖2 − ‖xk,i+1 − x∗‖2

)
+ (yk,i − y)T [Ui−1Ai−1(xk,i − xk,i−1)]− (yk,i+1 − y)T [UiAi(xk,i+1 − xk,i)]

+
(
βk − 1

2γk

) (
‖xk,i − xk,i+1‖2 − ‖xk,i−1 − xk,i‖2

)
+ L2

βk
.
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Summing the result over i from 1 to m we conclude that

m∑
i=1

(
fi(xk,i+1)− fi(x∗)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)

)
− (x∗ − xk,i+1)

TATi U
T
i yk,i+1

≤ 1
2ηk

(
‖yk,1 − y‖2 − ‖yk,m+1 − y‖2

)
+ 1

2γk

(
‖xk,1 − x∗‖2 − ‖xk,m+1 − x∗‖2

)
+ (yk,1 − y)T [U0A0(xk,1 − xk,0)]− (yk,m+1 − y)T [UmAm(xk,m+1 − xk,m)]

+
(
βk − 1

2γk

) (
‖xk,m − xk,m+1‖2 − ‖xk,0 − xk,1‖2

)
+ mL2

βk
. (7)

Now we proceed by providing a lower bound for the left hand side of (7). In particular, using
Lemma 3(a) the following holds:

‖xk,2 − xk‖ = ‖ΠX(xk,1 − γk(g1(xk,1) +AT1 U
T
1 yk,3))−ΠX(xk)‖

≤ γk(‖g1(xk,1)‖+ ‖A1‖‖UT1 yk,3‖) ≤ γk(L+ (B + 1)‖A1‖).
⇒ ‖xk,3 − xk‖ = ‖ΠX(xk,2 − γk(g2(xk,2) +AT2 U

T
2 yk,4))−ΠX(xk)‖

≤ ‖xk,2 − xk‖+ γk(‖g2(xk,2)‖+ ‖A2‖‖UT2 yk,4‖)
≤ γk(2L+ (B + 1)(‖A1‖+ ‖A2‖)).

Therefore, continuing this procedure for any i ≥ 1, we conclude that

‖xk,i − xk‖ ≤ γk

(
iL+ (B + 1)

i∑
`=1

‖A`‖

)
≤ γki (L+ (B + 1)amax) , (8)

where amax = max1≤i≤m{‖Ai‖}. Let bmax = max1≤i≤m{‖bi‖}, then similar to (8) one can also
obtain the following for the dual iterates

‖yk,i − yk‖ ≤ ηki(3Damax + bmax). (9)

Now, we can obtain a lower bound for the left hand side of (7).

m∑
i=1

(
fi(xk,i+1)− fi(x∗)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)

)
− (x∗ − xk,i+1)

TATi U
T
i yk,i+1

= f(xk)− f(x∗) +
m∑
i=1

(
fi(xk,i+1)− fi(xk)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)

)
− (x∗ − xk,i+1)

TATi U
T
i yk,i+1

≥ f(xk)− f(x∗) +
m∑
i=1

L‖xk,i+1 − xk‖+
m∑
i=1

[
(y − yk,i+1)

TUi(Aixk,i+1 − bi)

− (x∗ − xk,i+1)
TATi U

T
i yk,i+1

]
± [(y − yk)T (Axk − b)− yTk A(x∗ − xk)], (10)

where in the last inequality we used Assumption 1(c). Also, using (8) and (9), we can obtain the
following bound for any y ∈ Y ∩ K∗,∣∣∣ m∑

i=1

[
(y − yk,i+1)

TUi(Aixk,i+1 − bi)
]
− (y − yk)T (Axk − b)
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+

m∑
i=1

[
yTk,i+1UiAi(xk,i+1 − x∗)

]
− yTk A(xk − x∗)

∣∣∣
=
∣∣∣ m∑
i=1

[
yTUi(Aixk,i+1 − bi) + yTk,i+1Uibi

]
− yT (Axk − b)− yTk b

−
m∑
i=1

[
yTk,i+1UiAix

∗]+ yTk Ax
∗
∣∣∣

=
∣∣∣ m∑
i=1

[
yTUi(Aixk,i+1 − bi)

]
− yT (Axk − b)

−
m∑
i=1

[
yTk,i+1U

T
i (Aix

∗ − bi)
]

+ yTk (Ax∗ − b)
∣∣∣

≤

∣∣∣∣∣yT
(

m∑
i=1

UiAi(xk,i+1 − xk)

)
−

(
m∑
i=1

(yk,i+1 − yk)TUi(Aix∗ − bi)

)∣∣∣∣∣
≤

m∑
i=1

(B + 1)‖Ai‖‖xk,i+1 − xk‖+
m∑
i=1

‖yk,i+1 − yk‖‖Ui(Aix∗ − bi)‖

≤ γk
m(m+ 3)

2
‖y‖amax(L+ amax(B + 1)) (11)

+ ηk
m(m+ 3)

2
(amax‖x∗‖+ bmax)(3Damax + bmax) = γkC̃1 + ηkC̃2,

where we used the fact that y ∈ Y , i.e. ‖y‖ ≤ B + 1, and we let C̃1 , m(m+3)
2 (B + 1)amax(L +

amax(B + 1)) and C̃2 ,
m(m+3)

2 (amax‖x∗‖+ bmax)(3Damax + bmax). Using (11) within (10) one can
conclude the following for any y ∈ Y ∩ K∗,

m∑
i=1

(
fi(xk,i+1)− fi(x∗)− (yk,i+1 − y)TUi(Aixk,i+1 − bi)

)
− (x∗ − xk,i+1)

TATi U
T
i yk,i+1

≥ φ(xk, y)− φ(x∗, yk)− m(m+1)
2 γkL(L+ amax(B + 1))− γkC̃1 − ηkC̃2.

Therefore, the inequality (7) can be rewritten as follows for any y ∈ Y ∩ K∗,

φ(xk, y)− φ(x∗, yk)

≤ γkC̃3 + γkC̃1 + ηkC̃2 + 1
2ηk

(
‖yk,1 − y‖2 − ‖yk+1,1 − y‖2

)
+ 1

2γk

(
‖xk,1 − x∗‖2 − ‖xk+1,1 − x∗‖2

)
+ (yk,1 − y)T [UmAm(xk,1 − xk,0)]

− (yk+1,1 − y)T [UmAm(xk+1,1 − xk+1,0)]

+
(
βk − 1

2γk

) (
‖xk+1,0 − xk+1,1‖2 − ‖xk,0 − xk,1‖2

)
+ mL2

βk
, (12)

where C̃3 ,
m(m+1)

2 L(L+amax(B+1)) and we used yk,m+1 = yk+1,1, xk,m+1 = xk+1,1, xk,m = xk+1,0,
A0 = Am, and U0 = Um. Before summing (12) over k, we state some helpful inequalities on the
consecutive terms involved in (12).

K∑
k=1

1
2γk

(‖xk,1 − x∗‖2 − ‖xk+1,1 − x∗‖2)
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= 1
2γ1
‖x1,1 − x∗‖2 +

[ K∑
k=2

( 1
2γk
− 1

2γk−1
)4D2

]
− 1

2γK
‖xK+1,1 − x∗‖2

≤ 1
2γK

(4D2 − ‖xK+1,1 − x∗‖2), (13)

where we used Assumption 1(d) and {γk}k is a decreasing sequence. Similarly,

K∑
k=1

1
2ηk

(‖yk,1 − y‖2 − ‖yk+1,1 − y‖2) ≤ 1
2ηK

(4(B + 1)2 − ‖yK+1,1 − y‖2). (14)

Summing both sides of (12) over k from 1 to K and using (13) and (14) we conclude that for any
y ∈ Y ∩ K∗,

K∑
k=1

φ(xk, y)− φ(x∗, yk)

≤
K∑
k=1

(
γk(C̃3 + C̃1) + ηkC̃2 + mL2

βk

)
+ 1

2ηK
(4(B + 1)2 − ‖yK+1,1 − y‖2)

+ 1
2γK

(4D2 − ‖xK+1,1 − x∗‖2)− (yK,m+1 − y)T (UmAm(xK,m+1 − xK,m))

+
(

1
2γK
− βK

) (
4D2 − ‖xK+1,0 − xK+1,1‖2

)
≤

K∑
k=1

(
γk(C̃3 + C̃1) + ηkC̃2 + mL2

βk

)
+ 1

2ηK
(4(B + 1)2 − ‖yK+1,1 − y‖2)

+ 1
2γK

(4D2 − ‖xK+1,1 − x∗‖2) + 1
2αK
‖yK,m+1 − y‖2

+ αK
2 ‖UmAm(xK,m+1 − xK,m)‖2 +

(
1

2γK
− βK

) (
4D2 − ‖xK+1,0 − xK+1,1‖2

)
.

Now using the fact that αK
2 ‖UmAm‖

2 ≤ 1
2γK
− βK , xk,m+1 = xk+1,1, xk,m = xk+1,0 and choosing

ηk = αk, one can simplify the above inequality as follows

K∑
k=1

φ(xk, y)− φ(x∗, yk) ≤
K∑
k=1

(
γk(C̃3 + C̃1) + ηkC̃2 + mL2

βk

)
+ 2(B+1)2

ηK
+ 2D2

γK
+ 4D2

(
1

2γK
− βK

)
.

Choosing ηk = αk = 1
amax

√
k
, βk = 1

2

√
k, γk = 1

amax+
√
k

and using the fact that
∑K

k=1
1√
k
≤

1 +
∫K
x=1

1√
x
dx ≤ 1 +

√
K and similarly

∑K
k=1

1
amax+

√
k
≤ 1

amax+1 + 2
√
K, the desired result can be

obtained.

Now we are ready to prove the main result of the paper.

Proof of Theorem 1. Let (x∗, y∗) be an arbitrary saddle point of (2). Using the fact that for
any u ∈ Rd, u = Π−K(u) + ΠK∗(u) and 〈Π−K(u),ΠK∗(u)〉 = 0, one can show that 〈Ax̄K − b, ỹ〉 =
(‖y∗‖+ 1)dist−K(Ax̄K − b). Therefore, φ(x̄K , ỹ) = f(x̄K) + (‖y∗‖+ 1)dist−K(Ax̄K − b). Moreover,
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since (x∗, y∗) is a saddle point of (2) one can conclude that f(x∗) = φ(x∗, y∗) ≥ φ(x∗, ȳK) and by
Lemma 4 at y = ỹ ∈ Y ∩ K∗,

f(x̄K)− f(x∗) + (‖y∗‖+ 1)dist−K(Ax̄K − b) ≤ φ(x̄K , ỹ)− φ(x∗, ȳK) ≤ O(1/
√
K). (15)

In addition, using the fact that for any y ∈ Rd, 〈y∗, y〉 ≤ 〈y∗,ΠK∗(y)〉 ≤ ‖y∗‖dist−K(y), the
following can be obtain:

0 ≤ φ(x̄K , y
∗)− φ(x∗, y∗) = f(x̄K)− f(x∗) + 〈Ax̄K − b, y∗〉

≤ f(x̄K)− f(x∗) + ‖y∗‖dist−K(Ax̄K − b). (16)

Combining (15) and (16) gives the desired result.

4 Numerical results

In this section, we compare the performance of PDIG with aIR-IG [14] and PDSG [18] to solve the
following constrained Lasso problem.

min
x∈[−10,10]

1
2

m∑
i=1

‖Cix− di‖2 + λ
m

m∑
i=1

‖x‖1, s.t. Bx ≤ 0, (17)

where matrix C = [Ci]
m
i=1 ∈ Rpm×n, d = [di]

m
i=1 ∈ Rpm, and B ∈ Rn−1×n. We set m = 1000,

n = 40, p = n+5, and λ = 0.1. (17) is a special case of (1), if we set fi(x) = 1
2‖Cix−di‖

2 + λ
m‖x‖1,

Ai = Bi for 1 ≤ i ≤ n − 1 and Ai = 0 for n ≤ i ≤ m, bi = 0, and Ki = R+ for all i ∈ {1, . . . ,m}.
The problem data is generated as follows. First, we generate a vector x̄ ∈ Rn whose first 10 and
last 10 components are sampled from [−10, 0] and [0, 10] uniformly at random in ascending order,
respectively, and the other 20 middle components are set to zero. Next, we set d = Cx̄+ η, where
η ∈ Rpm is a random vector with i.i.d. components with Gaussian distribution with mean zero
and standard deviation 10−1. We choose the stepsizes of PDIG as suggested in Theorem 1. For
aIR-IG, according to [14], the stepsize is set to 1/(1 +

√
k) and the regularizer is 10/(1 + k)0.25 and

for PDSG, as suggested in [18], the primal and dual step sizes are set to 1/(log(k + 1)
√
k + 1).

Figure 1: Comparing suboptimality (left) and infeasibility (right) of PDIG, aIR-IG and PDSG.

In Figure 1, we compared the suboptimality and infeasibility of three methods. We observe
that PDIG outperforms aIR-IG which matches with the faster convergence rate of PDIG. Also, the
rate of O(1/

√
k) for our proposed method is deterministic and our step-sizes diminish periodically,

in contrast with PDSG where the step-sizes diminish with iteration counter.
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5 Concluding remarks

Motivated by the finite sum constrained problems arising in machine learning and wireless sensor
networks, we introduced a novel primal-dual incremental gradient scheme to solve nonsmooth and
convex problems with linear conic constraints. We improved the existing rate results of the incre-
mental gradient approach for this setting to O(1/

√
k) in terms of suboptimality and infeasibility

in a deterministic manner.
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