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Abstract Support vector machines with ramp loss (dubbed as Lr-SVM) have
attracted wide attention due to the boundedness of ramp loss. However, the
corresponding optimization problem is non-convex and the given Karush-
Kuhn-Tucker (KKT) conditions are only the necessary conditions. To enrich
the optimality theory of Lr-SVM and go deep into its statistical nature, we first
introduce and analyze the proximal operator for ramp loss, and then estab-
lish a stronger optimality conditions: P-stationarity, which is proved to be the
first-order necessary and sufficient conditions for local minimizer of Lr-SVM.
Finally, we define the Lr support vectors based on the concept of P-stationary
point, and show that all Lr support vectors fall into the support hyperplanes,
which possesses the same feature as the one of hard margin SVM.

Keywords Ramp loss SVM · proximal operator · minimizer · P-stationary
point · support vectors

1 Introduction

Support vector machines (SVM) were first introduced by Vapnik and Cortes
[6] and have been widely applied into many fields, including text and image
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classification [12, 25], disease detection [8, 16], etc. The decision hyperplane of
SVM classifier, 〈w,x〉 + b = 0 with w ∈ R

n and b ∈ R, is trained from data
set {(xi, yi), i ∈ Nm} where xi ∈ R

n, yi ∈ {−1, 1} and Nm := {1, 2, · · · ,m} by
optimizing the following problem

min
w∈Rn,b∈R

1

2
‖w‖2 + C

m∑

i=1

ℓh(1− yi(〈w,xi〉+ b)), (1)

where C > 0 is a penalty parameter and ℓh(t) = max{t, 0} is the hinge loss,
which has no cost for t < 0, but pays linear cost for t ≥ 0. The cost given
to the outliers by the hinge loss is quite huge since it is unbounded function
[9–11, 14, 15, 20]. To remove the impact of outliers, one method for increasing
the robustness of SVM is to use the ramp loss [18] (see Fig. 1 (a)). The ramp
loss is defined as follows,

ℓr(t) =





1, t ≥ 1,

t, 0 ≤ t < 1,

0, t < 0,

(2)

which is also called truncated hinge loss in [22]. It has no cost for t < 0, but
it pays linear cost for 0 ≤ t < 1 and a fixed cost at 1 for t ≥ 1. Authors in
[4, 5] also extended and studied ramp loss by replacing all constant 1 in (2) by
adjustable parameter µ (µ > 0). Since the theoretical results have no essential
difference between the fixed 1 and parameter µ for ramp loss, for simplicity of
the proof, we use formula (2) directly. Bartlett et al. [1] investigated some of
the theoretical properties of the ramp loss, while SVM with ramp loss (dubbed
as Lr-SVM) was first proposed by Shen et al. [18]. Replacing ℓh(·) by ℓr(·) in
(1), the optimization problem of Lr-SVM is

min
w∈Rn,b∈R

fr(w; b) :=
1

2
‖w‖2 + CLr(1−Aw − by), (3)

whereA := [y1x1 y2x2 · · · ymxm]⊤ ∈ R
m×n,y := (y1, y2, · · · , ym)⊤ ∈ R

m,1 :=
(1, 1, · · · , 1)⊤ ∈ R

m, Lr(u) :=
∑m

i=1 ℓr(ui) with u := (u1, u2, · · · , um)⊤ =
1−Aw−by ∈ R

m, which computes the sum of positive elements for all ui < 1
and the number of elements for all ui ≥ 1 in u. Due to the non-convexity
of ramp loss, the Lr-SVM (3) is a non-differentiable non-convex optimization
problem. Thus, to find a satisfying solution, scholars have paid many efforts
in optimality conditions and algorithms for Lr-SVM.

In recent decades, on the one hand, some approaches such as convex relax-
ation and equivalent reformulation as mixed integer nonlinear programming
(MINP) problem were proposed for dealing with Lr-SVM. Xu et al. [23] refor-
mulated Lr-SVM as a semidefinite programming problem by convex relaxation
which was solved by the MATLAB software package SDPT3. Brooks [2] trans-
formed Lr-SVM into a MINP problem, and then proposed a branch and bound
algorithm to solve it. Carrizos et al. [3] developed heuristic method to handle
the MINP problem of Lr-SVM on large datasets.
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On the other hand, Collobert et al. [4] translated Lr-SVM (3) into an
equivalent difference of convex functions (DC) programming and took the
subdifferential of fr(w; b) to establish the first-order necessary conditions:
Karush-Kuhn-Tucker (KKT) conditions, and used the concave-convex pro-
cedure (CCCP) [24] for solving the DC programming. To improve the com-
putational speed, Wang et al. [21] designed an efficient working set selection
strategy based on KKT conditions and then used the CCCP with working set
for solving the DC programming. Since the KKT conditions provided effective
characterization of optimal solution to Lr-SVM (3), this class of approaches
continued to be widely studied in theory as well as algorithms. For more de-
tails, see, e.g., [7, 13, 17, 19] and references therein.

A natural question arises. Is there stronger first-order optimality conditions
of Lr-SVM (3) to provide more effective characterization of optimal solution?
It is this question that motivates the work in our paper. The main results of
this paper are summarized as follow: (i) We derive the explicit expression of
proximal operator of ramp loss. (ii) We introduce a novel optimality conditions:
P-stationarity, which is proved to be the necessary and sufficient conditions for
local minimizer of Lr-SVM. (iii) We prove that the set of the support vectors
defined by P-stationary point fall into the support hyperplanes.

This paper is organized as follows. In Section 2, we derive the explicit
expression of proximal operator of ramp loss. In Section 3, we introduce a
concept of P-stationary point, and reveal the relationship between P-stationary
point and local/global minimizer of Lr-SVM. In Section 4, we introduce Lr

support vectors based on the P-stationary point and discuss its properties.
Conclusions are made in Section 5.

2 Proximal operator for ramp loss

In this section, we derive the explicit expression of proximal operator of ramp
loss, which will be used to study the new first-order optimality conditions of
Lr-SVM in the next section.

2.1 ℓr proximal operator

We first give the definition of ℓr proximal operator in one-dimensional case.

Definition 1 (ℓr proximal operator) For any given γ, C > 0 and s ∈ R, the
proximal operator of ℓr(v) (dubbed as ℓr proximal operator) is defined as

proxγCℓr
(s) = argmin

v∈R

Cℓr(v) +
1

2γ
(v − s)2. (4)

The following two propositions state that the ℓr proximal operator admits
a closed form solution for 0 < γC < 2 or γC ≥ 2.
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Proposition 1 (Solution to ℓr proximal operator for 0 < γC < 2) For any
given γ, C > 0 and 0 < γC < 2, the solution to ℓr proximal operator at s ∈ R

is given as

proxγCℓr
(s) :=





s, s > 1 + γC
2 ,

s or s− γC, s = 1 + γC
2 ,

s− γC, γC ≤ s < 1 + γC
2 ,

0, 0 < s < γC,

s, s ≤ 0.

(5)

Proposition 2 (Solution to ℓr proximal operator for γC ≥ 2) For any given
γ, C > 0 and γC ≥ 2, the solution to ℓr proximal operator at s ∈ R is given
as

proxγCℓr
(s) :=





s, s >
√
2γC,

s or 0, s =
√
2γC,

0, 0 < s <
√
2γC,

s, s ≤ 0.

(6)

2.2 Lr proximal operator

Based on separate property of Lr(·), we extend (5) and (6) to multi-
dimensional case.

Definition 2 (Lr proximal operator) For any given γ, C > 0, the proximal
operator of Lr(v) (dubbed as Lr proximal operator) at s = (s1, s2, · · · , sm)⊤ ∈
R

m is defined as

proxγCLr

(s) = arg min
v∈Rm

CLr(v) +
1

2γ
‖v − s‖2. (7)

The following proposition states that the Lr proximal operator admits a
closed form solution for two cases: 0 < γC < 2 or γC ≥ 2.

Proposition 3 (Solution to Lr proximal operator) For a given γ, C > 0, the
solution to Lr proximal operator at s = (s1, s2, · · · , sm)⊤ ∈ R

m is given as

proxγCLr

(s) :=



proxγCℓr

(s1)
...

proxγCℓr
(sm)


 , (8)

where proxγCℓr
(si) takes formula (5) as 0 < γC < 2 or (6) as γC ≥ 2.

Proof It follows from (7) that [proxγCLr

(s)]i = proxγCℓr
(si), where

proxγCℓr
(si) = argmin

v∈R

Cℓr(v) +
1

2γ
(v − si)

2, i ∈ Nm.

Using (5) or (6) completes the proof. �
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3 First-order optimality conditions

In this section, we develop a first-order necessary and sufficient optimality con-
ditions for (3). To proceed this, we introduce a variable u ∈ R

m to equivalently
reformulate (3) as

min
w∈Rn,b∈R,u∈Rm

1

2
‖w‖2 + CLr(u) (9)

s.t. u+Aw + by = 1.

Now let us define some notation

B := [A y] ∈ R
m×(n+1), H :=

[
In×n 0
0 0

]
B†, (10)

where B† ∈ R
(n+1)×m is the generalized inverse of B and In×n is the identity

matrix with order n. Denote λH := λmax(H
⊤H) where λmax(H

⊤H) is the
maximum eigenvalue of H⊤H.

Definition 3 (P-stationary point of (9)) For a givenC > 0, we call (w∗; b∗;u∗)
is a proximal stationary (P-stationary) point of (9) if there exists a Lagrangian
multiplier vector λ∗ ∈ R

m and a constant γ > 0 such that





w∗ +A⊤
λ
∗ = 0,

〈y,λ∗〉 = 0,
u∗ +Aw∗ + b∗y = 1,

proxγCLr

(u∗ − γλ∗) ∋ u∗.

(11)

Based on the above definition, we obtain the desired result in this section.

Theorem 1 (First-order necessary optimality conditions). Let B be full col-
umn rank. For a given C > 0, if (w∗; b∗;u∗) is a global minimizer of (9), then
it is a P-stationary point with 0 < γ < 1/λH .

Theorem 2 (First-order sufficient optimality conditions). For a given C > 0,
if (w∗; b∗;u∗) with λ

∗ ∈ R
m and γ > 0 is a P-stationary point, then it is a

local minimizer of (9).

At the end of this section, we analyze the following relationship between
the P-stationary point and the KKT point given by [4]. Based on the problem
of (9) and the necessary conditions results in [4], if (w; b;u) is a local minimizer
of (9), then we have the following KKT conditions,





w+A⊤
λ = 0,

〈y,λ〉 = 0,

u+Aw + by = 1,

C∂Lr(u) + λ ∋ 0,

(12)
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where λ ∈ R
m is a multiplier vector, (w; b;u) is called the KKT point of (9),

and ∂Lr(u) = (∂ℓr(u1), ∂ℓr(u2), · · · , ∂ℓr(um))⊤ ∈ R
m is the subdifferential of

Lr(u) with

∂ℓr(ui)





∈ [0, 1], ui ∈ {0, 1},
= 1, ui ∈ (0, 1),

= 0, ui < 0 or ui > 1,

i ∈ Nm.

Furthermore, from the above formula and last formula of (12), we have

0 ∈ C∂Lr(u) + λ ⇔




λ ∈ R

m : λi





∈ [−C, 0], ui ∈ {0, 1},
= −C, ui ∈ (0, 1),

= 0, ui < 0 or ui > 1.

(13)

Theorem 3 For a given C > 0, if (w∗; b∗;u∗) with λ
∗ ∈ R

m and γ > 0 is a
P-stationary point of (9), then it is also a KKT point of (9), but the converse
does not hold.

Proof The former conclusion is obvious since the P-stationary point is the
local minimizer of (9). The latter conclusion is from the following counterex-
ample. Consider the training set with the positive vectors x1 = (3, 3)⊤, x2 =
(6,−2)⊤ and negative vector x3 = (1, 1)⊤. Namely,

A := [y1x1 y2x2 y3x3]
⊤ =

[
3 6 −1
3 −2 −1

]⊤
, y =

[
1, 1, −1

]⊤
.

For a given C = 0.25, we can verify that

w = (0.5, 0.5)⊤, b = −2, u = (0, 1, 0)⊤,

λ = (−0.25, 0,−0.25)⊤, ∂Lr(u) = (1, 0, 1)⊤

satisfy (12). This means (w; b;u) with λ is a KKT point of (9). Particularly,
for i = 2, we have u2 = 1 and λ2 = 0. However, for 0 < γ < 8 and C =
0.25, i.e., 0 < γC < 2, from (5) and u2 − γλ2 ∈ (0, 1 + γC

2 ), we obtain

proxγCℓr
(u2 − γλ2) = 0 or u2 − γC but the both does not equal u2. For γ ≥ 8

and C = 0.25, i.e., γC ≥ 2, from (6) and u2 − γλ2 ∈ (0,
√
2γC), we get

proxγCℓr
(u2 − γλ2) = 0 6= u2. To sum up, we have u2 /∈ proxγCℓr

(u2 − γλ2),

which means (w; b;u) is not a P-stationary point of (9). �

4 Lr support vectors

In this section, we define the support vectors for Lr-SVM by P-stationary
point of (9), which are named as Lr support vectors since they are selected by
the Lr proximal operator. Before proceeding, we first review the definitions
of support vectors of hard margin SVM, hinge loss SVM and ramp loss SVM,
respectively.
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i) Support vectors of hard margin SVM[6]: Let (w̃; b̃) be a global
minimizer of hard margin SVM and α̃ = (α̃1, α̃2, · · · , α̃m)⊤ with α̃i ≥ 0 be a
solution of its dual problem. Then the global minimizer w̃ satisfies

w̃ =
∑

i∈J̃∗

α̃iyixi,

where J̃∗ := {i ∈ Nm : α̃i > 0}. The training vectors {xi, i ∈ J̃∗} are called

support vectors. For any i ∈ J̃∗, we have

yi(〈w̃,xi〉+ b̃) = 1.

ii) Support vectors of hinge loss SVM[6]: Let (ŵ; b̂) be a global
minimizer of hinge loss SVM and α̂ = (α̂1, α̂2, · · · , α̂m)⊤ with α̂i ∈ [0, C] be
a solution of its dual problem. Then the global minimizer ŵ satisfies

ŵ =
∑

i∈Ĵ∗

α̂iyixi,

where Ĵ∗ := {i ∈ Nm : α̂i ∈ (0, C]}. The training vectors {xi, i ∈ Ĵ∗} are

called support vectors. For any i ∈ Ĵ∗, we have
{

yi(〈ŵ,xi〉+ b̂) = 1, i ∈ {i ∈ Nm : α̂i ∈ (0, C)},
yi(〈ŵ,xi〉+ b̂) ≤ 1, i ∈ {i ∈ Nm : α̂i = C}.

iii) Support vectors of ramp loss SVM[4]: Let (w; b;u) and λ ∈ R
m

with λi ∈ [−C, 0] satisfy KKT conditions. From (13) and the first equation of
(12), the KKT point w satisfies

w = −
∑

i∈J
∗

λiyixi,

where J
∗
:= {i ∈ Nm : λi ∈ [−C, 0). The training vectors {xi, i ∈ J

∗} are

called support vectors. For any i ∈ J
∗
, from (13) and the third equation of

(12), we have
{

yi(〈w,xi〉+ b) ∈ {0, 1}, i ∈ {i ∈ Nm : λi ∈ (−C, 0)},
yi(〈w,xi〉+ b) ∈ [0, 1], i ∈ {i ∈ Nm : λi = −C}.

The above results show that the hard margin SVM and hinge loss SVM
define the support vectors at their global minimizer. However, authors in [4]
define the support vectors at the KKT point of Lr-SVM. In the following, we
define the Lr support vectors for Lr-SVM at the P-stationary point, which is
also the local minimizer of Lr-SVM.

Summarizing the above analysis, we obtain the following interesting result.

Theorem 4 Let (w∗; b∗;u∗) with λ
∗ ∈ R

m and γ > 0 be a P-stationary
point of (9) for γC ≥ 2. Then all Lr support vectors must fall into the support
hyperplanes 〈w∗,x〉 + b∗ = ±1, which possesses the same feature as the one
of hard margin SVM.
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5 Conclusions

In this paper, with the help of explicit expression of proximal operator for ramp
loss, we have introduced and characterized a novel first-order necessary and
sufficient optimality conditions of Lr-SVM. We have defined the Lr support
vectors based on the concept of P-stationary point and showed that all Lr

support vectors fall into the support hyperplanes for γC ≥ 2. Based on the
advance of P-stationarity, could we design an efficient algorithm for Lr-SVM?
We leave this topic to be investigated in the future.
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