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Abstract
Various Nash equilibrium results for a broad class of aggregative games are presented.
The main ones concern equilibrium uniqueness. The setting presupposes that each
player has R+ as strategy set, makes smoothness assumptions but allows for a dis-
continuity of stand-alone payoff functions at 0; this possibility is especially important
for various contest and oligopolistic games. Conditions are completely in terms of
marginal reductions which may be considered as primitives of the game. For many
games in the literature they can easily be checked. They automatically imply that con-
ditional payoff functions are strictly quasi-concave. The results are proved by means
of the Szidarovszky variant of the Selten–Szidarovszky technique. Their power is
illustrated by reproducing quickly and improving upon various results for economic
games.

Keywords Aggregative game · Contest game · Equilibrium (semi-)uniqueness ·
Nikaido–Isoda theorem · Pseudo-concavity · Selten–Szidarovszky technique

1 Introduction

The present article deals with equilibrium uniqueness for games in strategic form
with an aggregative structure. Equilibrium uniqueness comes down to equilibrium
existence together with equilibrium semi-uniqueness, i.e. that there exists at most
one equilibrium. Although equilibrium existence has been extensively studied in the
literature, practical strong equilibrium (semi-)uniqueness results are lacking.
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A milestone is (the following variant of) a result in [24] of Nikaido and Isoda (e.g.
see Theorem 1 in [10]) for games in strategic form stating that for the existence of a
Nash equilibrium, it is sufficient that strategy sets are convex compact subsets of an
Euclidean vector space, payoff functions are continuous and conditional payoff func-
tions are quasiconcave. We further refer to this result as the Nikaido–Isoda theorem.1

The Nikaido–Isoda theorem applies to many classes of economic games, especially
to games with an aggregative structure like oligopolistic, public good, cost-sharing,
common resource and contest games (e.g. see [6,17]). However, it does not address
equilibrium semi-uniqueness and does not apply to games with a discontinuity at
the origin, which especially occurs in contest games and oligopolistic games (see, e.g.
[16,34,41,47]).2 In addition, for various concrete games it may not be so clear whether
its quasi-concavity assumption holds. So it would be useful to have a result that, for
a setting similar to that for the Nikaido–Isoda theorem, also addresses equilibrium
semi-uniqueness, allows for a discontinuity at the origin and is subject to conditions,
in particular one concerning quasi-concavity, that for concrete games are easy to check
in terms of the primitives of the game.3

The goal of the paper [6] of Cornes and Hartley was to present such a follow-up
to the Nikaido–Isoda theorem for aggregative games. However, their paper was not
able to be finished due to the death of Richard Cornes. The present study, finally,
provides the intended follow-up; the games we deal with are referred to as ‘smooth
aggregative games’. As primitives, we use what we call ‘marginal reductions’. These
very useful objects were first introduced in [3] by Corchón. Our main results are
summarized in four theorems, i.e. Theorems 1–4 in Sect. 3. These theorems are stated
completely in terms of four assumptions; certainly the most interesting (and powerful)
is Assumption A2 (see Sect. 3). The proofs of these theorems are by means of the
Szidarovszky variant of the Selten–Szidarovszky technique using backward response
and share functions. Theorem 1 presents results on whether equilibria are active or
inactive, Theorem 2 deals with equilibrium semi-uniqueness, and Theorems 3 and 4
with equilibrium uniqueness.

The origin of the Selten–Szidarovszky technique can be found in the article [31]
of Selten dealing with aggregative games and in the articles [33,35] of Szidarovszky
dealing with homogeneous Cournot oligopolies. With it one can study the Nash equi-
librium set for a broad class of games in strategic formwith an aggregative structure; it
also is very handy for performing comparative statics ( [1]). The power of the technique
lies in the fact that it transforms the fixed point problem for the joint best response
correspondence into a lower dimensional, usually 1-dimensional, fixed point problem
for the aggregate backward response correspondence, which is much easier to handle

1 [24] deals with concave conditional payoff functions. Also variants of the Nikaido–Isoda theorem with
the compactness of strategy sets replaced by some ‘effective compactness’ condition should be mentioned
here as they allow for situations with unbounded strategy sets.
2 Interestingly enough, as far as we know, equilibrium existence in the case of this discontinuity does not
follow from the arsenal of well-known existence results for games with discontinuous payoff functions (e.g.
[22,37]).
3 We will not try to define precisely what we mean by ‘primitives’. Just this: for homogeneous Cournot
oligopolies, for example, the primitives are the price and cost functions. Objects like best response corre-
spondences should not be considered as primitives.

123



Equilibrium uniqueness in aggregative games: very… 2035

and does not require deep theorems like Brouwer’s fixed point theorem. As a bonus,
this approach provides an algorithm for the determination of the Nash equilibrium set.
Section 4 also contains a short discussion of the Selten–Szidarovszky technique.4

Although the idea of how the Selten–Szidarovszky method works is simple and
elegant, its implementation may be, as in the present article, subtle and technical. The
technicalities are mainly due to the possible discontinuity at the origin, to the non-
excluding of inactive players and to the proper handling of boundary issues. These
technicalities are handled by further developing ideas in [6] (dealing with aggrega-
tive games and share functions), [46] (dealing with aggregative games and backward
response functions) and [45] (dealing with Cournot oligopolies and share functions).

The further structure of the article is as follows. Section 2 presents the overall
setting and defines the notion of ‘smooth aggregative game’. Proofs are in Sect. 4. The
power of Theorems 1 – 4 is illustrated with two examples in Sect. 5 by reproducing
quickly and improving upon various results for economic games. The first example
deals with a homogeneous Cournot oligopoly with an industry revenue function that
is possibly discontinuous at 0 and the second example with a class of games appearing
in the managerial theory of the firm.

2 Setting

In this sectionwe fix the setting for the games, referred to as almost smooth aggregative
games, dealt with in the present article.

First of all we deal with a game in strategic form. We denote its player set by
N := {1, . . . , n}, the strategy set of player i by Xi and his payoff function by fi .
We denote X := X1 × · · · × Xn , Xı̂ := X1 × · · · × Xi−1 × Xi+1 × · · · × Xn ,
identify X with Xi × Xı̂ , and accordingly write x ∈ X as x = (xi ; xı̂ ). For i ∈ N
and z ∈ Xı̂ , the conditional payoff function f (z)

i is the function Xi → R defined by

f (z)
i (xi ) = fi (xi ; z). Let

Δ := {(x, y) ∈ R
2+ | x ≤ y} and Δ+ := Δ \ {(0, 0)}. (1)

Definition 1 An almost smooth aggregative game is a game in strategic form with
n ≥ 2 and Xi = R+ (i ∈ N ), and that satisfies the following assumptions.

a. For every i ∈ N :

– each function f (z)
i with z �= 0 is twice differentiable; the function f (0)

i is twice
differentiable on R++ and its derivative at 0 exists in R ∪ {+∞};

– there exists a function ti : Δ → R∪{+∞} such that for all z ∈ Xı̂ and xi ∈ Xi

D f (z)
i (xi ) = ti

(
xi , xi +

∑
l

zl

)
. (2)

4 For necessary uniqueness conditions see [11,12,19,28] for Cournot oligopoly games and [46] for the
more general class of aggregative games.
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b. For every i ∈ N

– ti is on Δ+ continuous and

lim
y↓0 ti (0, y) = ti (0, 0); (3)

– ti is on Δ+ partially differentiable and ti is differentiable on the interior of its
domain.

c. For every i ∈ N and for every xi ∈ Xi and z ∈ Xı̂ with
5 xi + ∑

l zl �= 0

D2 f (z)
i (xi ) = (D1 + D2)ti (xi , xi +

∑
l

zl). 
 (4)

Assumption a features the aggregative structure.6 We refer to the conditional payoff
function f (0)

i as the stand-alone payoff function of player i . Note that at 0 discontinu-
ous stand-alone payoff functions are allowed (which explains the ‘almost’ in ‘almost
smooth’). Also note that we only suppose that ti is differentiable (instead of, as usual,
twice continuous differentiability) on the interior of its domain. The function ti is
uniquely determined and is referred to as marginal reduction for player i .7 The next
assumption concerns additional smoothness.

As has become clear from articles like [28,36,39], smoothness assumptions play
a very important role when one is looking for sufficient conditions for equilibrium
semi-uniqueness. Assumptions b and c concern our further smoothness assumptions.
The smoothness assumptions used are not independent. However, the way in which
we state them is convenient for the presentation.8 Note that ti may take the value +∞
only at (0, 0) and that

ti (0, 0) �= +∞ ⇔ f (0)
i is differentiable ⇒ f (0)

i is continuous. (5)

But if f (0)
i is continuous at 0, then ti (0, 0) = +∞ may hold. Also note that9

f (0)
i is lower semi-continuous. (6)

Many economic games in strategic form that the literature deals with are almost
smooth aggregative games.

5 Using Euler’s notation D for derivatives and Di for partial derivatives with respect to the i-th variable.
6 So we let the aggregative structure come in by referring to D f (z)

i instead of referring to fi . Of course, if
the payoff function fi of player i only depends on his own strategy and the sum of all strategies, then (2)
holds under a suitable smoothness assumption.
7 We note that, contrary to the definition of ti in [3] of Corchón and in various other articles like [4,17,46],
ti (xi , y) is not defined (as it is superfluous and very much hinders obtaining stronger results) for y > xi .
8 Note that (4) does not follow from (2) as the set Δ is not open.
9 If ti (0, 0) �= +∞, this holds by (5) and if ti (0, 0) = +∞, it holds as f (0)

i is continuous on R++ and

D f (0)
i (0) = +∞.
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3 Main results

Our main results, i.e. Theorems 1–4 below, can be stated completely in terms of some
of the following additional assumptions A1, A2, A2’ and B for an almost smooth
aggregative game. These assumptions are in terms of the marginal reductions ti :
{(xi , y) ∈ R

2+ | xi ≤ y} → R ∪ {+∞} and use

Ñ := {i ∈ N | ti (0, y) > 0 for some y > 0}.

A1. For all i ∈ N and y > 0: [0 ≤ xi ≤ y ∧ ti (xi , y) = 0] ⇒ D1ti (xi , y) < 0.
A2. For all i ∈ Ñ and y > 0: [0 < xi ≤ y ∧ ti (xi , y) = 0] ⇒ (xi D1 +

y D2)ti (xi , y) < 0;
A2’. For all i ∈ Ñ and 0 ≤ y < y′: ti (0, y) ≤ 0 ⇒ ti (0, y′) ≤ 0;
B. For all i ∈ Ñ , there exists xi > 0 such that ti (xi , y) < 0 for every xi , y with

xi < xi ≤ y.

The next section contains additional results, which also may be interesting in them-
selves, where the following additional assumption is also used:

C. For all i ∈ Ñ and xi > 0: ti (xi , xi ) = 0 ⇒ (D1 + D2)ti (xi , xi ).

Below we also consider situations where such an assumption just holds for a specific
player i ; then we add [i] to the assumption; for example, A1[i], in Lemma 1. Of course,
Assumption C[i] holds if Assumption A2[i] holds.

Assumptions A1 and A2 are sophisticated variants of what are called (generalised)
Fisher-Hahn conditions in [27].10 Assumption A2, as it is a new one, certainly is the
most interesting. Strategy sets are not compact; Assumption B deals with ‘essential
compactness’ in the sense that it provides the appropriate compactness for our results
dealing with equilibrium existence.

The simple Assumption A2’ in fact represents what we want to have in A2 by
allowing there xi = 0. The reason for splitting up these assumptions is that it is from
a theoretical point interesting to see what implies what.

In the theorems below also the set

N> := {i ∈ N | ti (0, 0) > 0}

appears. Note that (3) implies

N> ⊆ Ñ .

The sets Ñ and N> play an important role for a proper handling of boundary issues.

10 The generalized Fisher-Hahn conditions are the global conditions D1ti < 0 and D2ti ≤ 0 of Corchón
in [4]. Note that in A1 and A2 there is a ‘ti (xi , y) = 0’ which makes these conditions local. (In [17]
Assumption A1 is called ‘the uniform local solvability condition’.) The first equilibrium (semi-)uniqueness
result dealing with Fisher-Hahn conditions is in the context of Cournot oligopolies in [26]. The proof in
[26] is not elementary as it relies on the Gale-Nikaido theorem. Later, in [4], a short simple elementary
beautiful proof was provided by using marginal reductions ti .
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Remarks 1. Sufficient for Assumption A2’[i] to hold is that the function ti (0, ·) is
decreasing.

2. If Assumption A2’[i] holds (so i ∈ Ñ ), then i ∈ N>. So if Assumption A2’
holds, then N> = Ñ .

3. Proposition 1(3) below shows that Assumptions A1, A2 and A2’ guarantee that
each conditional payoff function is strictly quasi-concave and therefore that each Nash
equilibrium is then strict.

The following theorems present our main results for the Nash equilibrium set E .
Proofs are in Sect. 4.11

Our first theorem presents some results concerning active/inactive12 and strict equi-
libria.

Theorem 1 Consider an almost smooth aggregative game.

1. If N> �= ∅, then each Nash equilibrium is active.
2. (a) Suppose Assumption A1 holds. In any equilibrium, each player from N \ Ñ is

inactive.
(b) Suppose Assumption A1 holds. If Ñ = ∅, then E = {0}.

3. If Assumptions A1 and A2’ hold, then 0 ∈ E ⇒ E = {0}. 

Remark 4. Theorem 1 implies: if Assumptions A1 and A2’ hold, then #E ≥ 2 ⇒
0 /∈ E .

The next theorem deals with equilibrium semi-uniqueness.

Theorem 2 Consider an almost smooth aggregative game. If Assumptions A1, A2 and
A2’ hold, then #E ≤ 1. 


Remark 3 implies that in Theorem 2 conditional payoff functions are strictly quasi-
concave. As in this theorem stand-alone payoff functions may be discontinuous at
0, adding some effective compactness condition, like Assumption B, does not lead
to equilibrium existence by means of a Nikaido–Isoda like theorem. However, by
also adding some information about the type of discontinuity, as Theorem 3 shows,
equilibrium existence follows.

Many types of discontinuities at 0 for stand-alone payoff functions f (0)
i are possible.

Concerning this, define for i ∈ N the function t i : R++ → R by

t i (xi ) := ti (xi , xi ) = D f (0)
i (xi ). (7)

and call13 player i ∈ Ñ

– of class I if t i (xi ) > 0 for xi > 0 small enough;
– of class II if t i (xi ) < 0 for xi > 0 small enough.

11 The proof of Theorem 1(1) is very simple and will already be given here: fix i ∈ N>. As D f (0)
i (0) =

ti (0, 0) > 0, it follows that f (0)
i does not have 0 as maximiser.

12 Given a strategy profile x, player i is called ‘active’ (in x) if xi �= 0 and ‘inactive’ (in x) if xi = 0. And
x is called ‘active’ if at least one player is active in x; otherwise said if x �= 0.
13 With this terminology we follow [6].
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Before continuing, it may be useful to illustrate these types of discontinuity by
means of a homogeneous Cournot oligopoly. So consider such an oligopoly with at
least two firms where each firm i has strategy set R+ and payoff function

fi (x) = p

(∑
l

xl

)
xi − ci (xi ). (8)

Here ci is the cost function of firm i and p a price function with a positive proper
price function14 p̃(y). In order to guarantee that the game is a smooth aggregative
game, we further suppose that p̃ is decreasing and twice differentiable and that every
ci is twice differentiable. Let p(0) := limy↓0 p̃(y) ∈]0,+∞]. We have f (z)

i (xi ) =
p(xi + ∑

l zl)xi − ci (xi ) and see that the marginal reductions ti : Δ → R ∪ {+∞}
are well-defined and given by

ti (xi , y) =
{

D p̃(y)xi + p̃(y) − Dci (xi ) if (xi , y) �= (0, 0),
p(0) − Dci (0) if (xi , y) = (0, 0).

(9)

Thus the game is a smooth aggregative game. Note that the stand-alone payoff function
is discontinuous at 0 if and only if, denoting with rp := p · Id the industry revenue
function, rp is discontinuous at 0. As p̃ is decreasing, Assumption A2’ holds and
therefore, by Remark 2, N> = Ñ . Also N> = {i ∈ N | p(0) > Dci (0)}. With
ε p̃ the price flexibility of p̃, i.e. with ε p̃(xi ) := xi D p̃(xi )/ p̃(xi ), we have t i (xi ) =
p̃(xi )(ε p̃(xi ) + 1) − Dci (xi ). For the case where p̃(y) = y−α , where α > 0, this
becomes t i (xi ) = x−α

i (1−α)−Dci (xi ). So ifα > 1, then i is of class II, if 0 < α < 1,
then i is of class I and if α = 1 and Dci (xi ) > 0 (xi > 0), then i is of class II. Also rp

is discontinuous at 0 if and only if α ≥ 1. (We continue with this example in Sect. 5.)

Theorem 3 Consider an almost smooth aggregative game. Suppose Assumptions A1,
A2, A2’ and B hold. If Ñ contains at least one player of class I, then the game has a
unique equilibrium. This equilibrium is active. 


Note that both Theorem 2 and 3 deal with equilibrium semi-uniqueness while the
Nikaido–Isoda theoremonly addresses equilibrium existence. Proposition 11 in Sect. 4
provides a Nikaido–Isoda like result for smooth aggregative games which is derived
by the Selten–Szidarovszky technique.

Theorem 4 deals with Theorem 3 in the case that Ñ does not contain a player of class
I; Proposition 8(1) below shows that this is equivalent to that all players in Ñ being
of class II. The equilibrium uniqueness result in part 3 of this theorem is less explicit
than that in Theorem 3. But the fundamental result in its part 2 about the existence of
limy↓0 b̂i (y)/y, makes that this limit in various cases (as illustrated in Examples 1 and
2 in the next section) can be calculated; its part 3 then gives a sufficient and necessary
condition for equilibrium uniqueness.

Theorem 4 Consider an almost smooth aggregative game. Suppose Assumptions A1,
A2, A2’ and B hold and all players in Ñ are of class II.

14 The proper price function p̃ is the restriction of p : R+ → R to R++. It is important to note that fi
does not depend on the value p(0) of the price function p at 0, so neither does the equilibrium set.
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1. For all i ∈ Ñ and y > 0 small enough, there exists a unique b̂i (y) ∈]0, y [ with
ti (b̂i (y), y) = 0.

2. For every i ∈ Ñ the limit si := limy↓0 b̂i (y)
y exists and si ∈]0, 1].

3.
∑

i∈Ñ si > 1 ⇔ [ #E = 1 and the unique equilibrium is active]. 

Remark 5. b̂i in Theorem 4 is the virtual backward response function of player i

(see Definition 3 below).
Besides the above theorems, other interesting results can be observed. They can be

found in the next section and are presented as propositions. Among other things, there
is a result (i.e. Propositions 2 together with 4) that leads to the Selten–Szidarovszky
technique in fact providing an algorithm for determining the equilibrium set.

The assumptions made in the above theorems may look technical at first sight.
However, they can easily be checked for many games in the literature; we illustrate
this in Sect. 5.

4 The Selten–Szidarovzsky technique

In this section we shall prove the statements of the four theorems in Sect. 3 by means
of the Szidarovszky variant of the Selten–Szidarovzsky technique. Section 4.1 briefly
discusses these variants. Sects. 4.2 and 4.3 deal with the transformation of the n-
dimensional fixed point problem of the joint best response correspondence into a 1-
dimensional fixed point problem for the aggregate virtual backward response function.
In doing so,we have the opportunity to show, as this is theoretically interesting, how the
Nash equilibrium problem relates to a specific nonlinear complementarity problem.
Section 4.4 proves the four theorems by analysing the aggregate virtual backward
response.

4.1 Two variants

As already mentioned in the introduction, the origin of the Selten–Szidarovszky tech-
nique can be found in the article [31] of Selten dealing with aggregative games and in
the articles [33,35] of Szidarovszky dealing with homogeneous Cournot oligopolies.15

Although there are various implementations of this technique, one can distinguish
between two main variants: the ‘Selten variant’ and the ‘Szidarovszky variant’.

The ‘Selten variant’ is more general as it does neither require that strategy sets are
real intervals nor a certain degree of smoothness of payoff functions. The Szidarovszky
nicely exploits and handles the smoothness structure of the game. The main objects
in both variants are backward response correspondences. In the Selten variant these
correspondences are derived from the usual best response correspondences. In the
Szidarovszky variant, best response correspondences are only implicitly present. In
this variant, the (virtual) backward response correspondence for player i is derived
from his marginal reduction ti . In doing so, necessary (and perhaps sufficient) first
order conditions are handled in a clever way.

15 However, it may be good to mention here also [23].
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Marginal reductions were first introduced in [3] by Corchón; in the present article a
more sophisticated variant is used (also see footnote 7). In [9], left and right marginal
reductions were introduced that can handle settings with weaker smoothness condi-
tions (i.e. semi-differentiability).16 And [8] shows that marginal reductions also may
make sense when one is dealing with higher dimensional strategy sets.

Both variants are very powerful and may be divided into a transformation part and
an analysis part. The transformation part transforms the n-dimensional fixed point
problem for the joint best response correspondence into a lower dimensional fixed
point problem for the aggregate backward response correspondence. The analysis part
analyses this fixed point problem. If the fixed point problem (as often is the case like
in the present article) is 1-dimensional, equilibrium existence is guaranteed by a 1-
dimensional fixed point theorem (may be the intermediate value theorem). As shown
in [40] for the Selten variant, the transformation part allows for a purely algebraic
setting, which is not necessarily a game theoretic one. Although there are various
articles dealing with a systematic treatment of the Selten variant (e.g. [1,21,44]), such
literature for the Szidarovszky variant is lacking; we are aware only of [46].

As we deal with smooth aggregative games, we shall use the Szidarovszky variant
for proving these results. In fact, the present article concerns a major improvement of
the implementation of this variant in [46].

4.2 The transformation part: nonlinear complementarity problem

In this subsection we always consider a smooth aggregative game.
Remember that each strategy set Xi is equal to R+ and therefore that X = R

n+.
Denote for x ∈ X, xN := ∑

l xl . Suppose e ∈ E , i.e. e is a Nash equilibrium. Then
Fermat’s theorem together with (2) imply for every i ∈ N

ei > 0 ⇒ ti (ei , eN ) = 0 and ei = 0 ⇒ ti (ei , eN ) ≤ 0.

This leads us to consider the following problem: find x ∈ X such that for every i ∈ N

xi ti (xi , xN ) = 0 ∧ ti (xi , xN ) ≤ 0.

Denoting its set of solutions by T�, we thus have

E ⊆ T�. (10)

A fundamental observation is that x ∈ T� if and only if, writing τ (x) :=
(t1(x1, xN ), . . . , tn(xn, xN )), x is a solution of the (well-defined17) nonlinear com-
plementarity problem

x · τ (x) = 0 ∧ τ (x) ≤ 0.

16 Also see [36].
17 Defining as usual 0 · +∞ = 0 and noting that operations like −∞ + ∞ will not occur.
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As far as we know, the literature on existence and uniqueness of solutions of nonlinear
complementarity problems—and more generally on variational inequality problems
(like the book [2] that, as a special case, considers equilibria of games in strategic
form)—does not contain results that guarantee the equilibrium semi-uniqueness result
ofTheorem2and the equilibriumuniqueness results ofTheorems3 and4.18 The reason
is that this literature does not consider the effects of an aggregative structure. We shall
approach the nonlinear complementarity problem through the Szidarovszky variant of
the Selten–Szidarovszky technique, which takes this structure fully into account.

Proposition 2 shows a further relation between T� and the equilibrium set E . In
order to prove this proposition, we need some lemmas and introduce a general notion
which also will be very useful for the remainder.

Definition 2 Let I be a subset of R and g : I → R a function. We say that g has the
AMSCFA-property (‘At Most Single Crossing From Above’) if the following holds: if
m is a zero of g, then g(x) > 0 (x < m) and g(x) < 0 (x > m). 

Remark 6. If either of the following conditions hold, then g : I → Rhas theAMSCFA-
property:

(a) g is strictly decreasing;
(b) I is a proper real interval, g is continuous and at every x ∈ I with g(x) = 0

differentiable with Dg(x) < 0;
(c) I is a proper real interval and g is the derivative of a strictly pseudo-concave

function.19

Lemma 1 Suppose Assumption A1[i] holds. Let (xi , y) ∈ Δ+.

1. ti (xi , y) = 0 ⇒ [ti (x ′
i , y) > 0 (0 ≤ x ′

i < xi ) ∧ ti (x ′
i , y) < 0 (xi < x ′

i ≤ y)].
2. ti (xi , y) ≤ 0 ⇒ ti (x ′

i , y) < 0 (xi < x ′
i ≤ y).

3. ti (xi , y) ≥ 0 ⇒ ti (x ′
i , y) > 0 (0 ≤ x ′

i < xi ). 

Proof 1. As Ass. A1[i] holds, the function ti (·, y) has the above property b. Thus this

function has the AMSCFA-property and the desired result follows.
2. By part 1wemay assume ti (xi , y) < 0. By contradiction, suppose ti (x ′

i , y) ≥ 0 for
some x ′

i > xi . As ti (·, y) is continuous, there exists x ′′
i ∈]xi , x ′

i ]with ti (x ′′
i , y) = 0.

By part 1, ti (xi , y) > 0, a contradiction.
3. Analogous to part 2. �� ��
Further on we shall use the following notation:

X⊕
i := Xi \ {0} = R++.

18 However, [25], using the framework of non-linear complementarity problems, obtains a specific result
in the context of a Cournot oligopoly.
19 We recall the definition of pseudo-concavity for a differentiable real-valued function h with domain a
proper real interval I . h is said to be (strictly) pseudo-concave if for all x, y ∈ I with x �= y: Dh(x)(y −
x) ≤ 0 ⇒ h(y) (<) ≤ h(x). We note that for a strictly pseudo-concave h, its derivative Dh has the
AMSCFA-property (see Definition 2). Also important for us is Theorem 3.1 in [13]), which states for a
twice differentiable h: if for all x ∈ I the implication Dh(x) = 0 ⇒ D2h(x) < 0 holds, then h is strictly
pseudo-concave. (Note that here I may be closed and h may not be twice continuously differentiable.)
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Lemma 2 Suppose i ∈ N \ Ñ and Assumption A1[i] holds.

1. ti (0, y) ≤ 0 (y ≥ 0) and ti (xi , y) < 0 (0 < xi ≤ y).
2. If e ∈ T�, then ei = 0.
3. Each conditional payoff function f (z)

i is differentiable and strictly decreasing. 

Proof 1. By definition of Ñ , ti (0, y) ≤ 0 (y > 0). As i /∈ N>, we also have

ti (0, 0) ≤ 0. Lemma 1(2) implies ti (xi , y) < 0 (0 < xi ≤ y).
2. Suppose e ∈ T�. This implies ei ti (ei , eN ) = 0 and ti (ei , eN ) ≤ 0. If ei �= 0, then

ti (ei , eN ) = 0 and Ass. A1[i] implies ti (0, eN ) > 0. As eN > 0, this contradicts
i /∈ N\Ñ . Thus ei = 0.

3. Fix z ∈ Xı̂ . By part 1, we have for every xi > 0 that D f (z)
i (xi ) = ti (xi , xi +∑

l zl) < 0 implying that f (z)
i is strictly decreasing on X⊕

i . Next note that f (z)
i is

differentiable. Indeed: for z �= 0 this is clear and if z = 0, then this follows from
i /∈ N> and (5). Now, the continuity of f (z)

i implies its strict decreasingness. ��
Lemma 3 Sufficient for E \ {0} = T� \ {0} to hold is that the following conditions
hold.

i. For every i ∈ N \ Ñ Assumption A1[i] holds.
ii. For every i ∈ Ñ Assumption A2’[i] holds.
iii. For every i ∈ Ñ the conditional payoff functions f (z)

i (z �= 0) are pseudo-concave.

iv. For every i ∈ Ñ the stand-alone payoff function f (0)
i is pseudo-concave on X⊕

i . 

Proof By (10), it is sufficient to prove that T� \ {0} ⊆ E . Suppose e ∈ T� \ {0}. In
order to prove that e ∈ E , we fix i ∈ N and show that ei is a maximizer of f (eı̂ )

i .
First suppose i ∈ N \ Ñ . Then ei = 0 by Lemma 2(2). NowLemma 2(3) guarantees

that ei is amaximiser of f (eı̂ )

i . Next suppose i ∈ Ñ .We distinguish between four cases.

Case ei = 0 and eN − ei �= 0: as eı̂ �= 0, the function f (eı̂ )

i is pseudo-concave. As

D f (eı̂ )

i (ei ) = ti (ei , eN ) = ti (0, eN ) ≤ 0 and ei = 0, it follows that 0 is a maximiser

of f (eı̂ )

i .
Case ei = 0 and eN − ei = 0: this case cannot happen as e �= 0.
Case ei �= 0 and eN − ei �= 0: as eı̂ �= 0, the function f (eı̂ )

i is pseudo-concave. As

D f (eı̂ )

i (ei ) = ti (ei , eN ) = 0, it follows that 0 is a maximiser of f (eı̂ )

i .

Case ei �= 0 and eN − ei = 0: D f (eı̂ )

i (ei ) = ti (ei , eN ) = 0, i.e. D f (0)
i (ei ) =

ti (ei , ei ) = 0. As f (0)
i is pseudo-concave on X⊕

i , ei is a maximizer of the function

f (0)
i : X⊕

i → R. By contradiction we now prove that ei also is a maximizer of

f (0)
i . So suppose there exists ai ∈ Xi with f (0)

i (ai ) > f (0)
i (ei ). It then follows that

ai = 0 and therefore that f (0)
i (0) > f (0)

i (ei ). Now 0 is a maximizer of f (0)
i . This

implies ti (0, 0) = D f (0)
i (0) ≤ 0. Thus i /∈ N>. By Remark 2, we have i ∈ N>. A

contradiction. ��
Lemma 3 clearly shows the importance of pseudo-concavity of the conditional

payoff functions. Now we are going to study how this property relates to Assumptions
A1, A2, A2’ and C.

123



2044 J. Itaya, P. von Mouche

For the proof of the next proposition it is crucial to realise that for all (xi , y) ∈ Δ+

(D1 + D2)ti (xi , y) =
( xi D1 + y D2

y
+ y − xi

y
D1

)
ti (xi , y). (11)

Proposition 1 1. Suppose i ∈ Ñ . If Assumptions A1[i], A2[i] and A2’[i] hold, then
the functions f (z)

i with z �= 0 are strictly pseudo-concave.

2. Suppose i ∈ Ñ . If Assumption C[i] holds, then f (0)
i is on X⊕

i strictly pseudo-
concave.

3. If Assumptions A1, A2 and A2’ hold, then each function f (z)
i is strictly quasi-

concave. 

Proof 1. Suppose Assumptions A1[i] and A2[i] hold and fix z �= 0. By the result in

footnote 19, the proof is complete if for every xi ∈ Xi the implication D f (z)
i (xi ) =

0 ⇒ D2 f (z)
i (xi ) < 0 holds. So suppose D f (z)

i (xi ) = 0 and let y = xi + ∑
l zl .

Now y > 0 and ti (xi , y) = 0. By (4), we have to prove that (D1+D2)ti (xi , y) < 0.
Well, if xi > 0, then this follows from (11) and Ass. A1[i] and A2[i]. Now suppose
xi = 0. Assumption A2’[i] implies: ti (0, y) = 0 ⇒ D2ti (0, y) ≤ 0. With Ass.
A1[i] the desired result follows.

2. Suppose Assumption C[i] holds. The proof is complete if for every xi ∈ X⊕
i the

implication D f (0)
i (xi ) = 0 ⇒ D2 f (0)

i (xi ) < 0 holds. So suppose D f (0)
i (xi ) =

0. Now ti (xi , xi ) = 0. By (4), we have to prove that (D1 + D2)ti (xi , xi ) < 0.
Well, this is guaranteed by Ass. C[i].

3. SupposeAssumptionsA1,A2 andA2’ hold. Fix i and z. If i /∈ Ñ , then Lemma2(3)
implies that f (z)

i is strictly quasi-concave. Now suppose i ∈ Ñ . By Part 1, we still

have to prove that f (0)
i is strictly quasi-concave. Well f (0)

i is on X⊕
i differentiable,

and by part 2 there also strictly pseudo-concave. This implies that f (0)
i is on X⊕

i

strictly quasi-concave. As, by (6), f (0)
i is lower semi-continuous at 0, it follows

that f (0)
i is strictly quasi-concave. ��

Lemma 3 and Proposition 1(1,2) imply:

Proposition 2 If Assumptions A1, A2 and A2’ hold, then E \ {0} = T� \ {0}. 


4.3 The transformation part: 1-dimensional fixed point problem

Also in this subsection we always consider a smooth aggregative game.
If Assumptions A1, A2 and A2’ hold, then Proposition 2 guarantees that E \ {0} =

T� \ {0}. The aim of this subsection is to show with Proposition 4 that T� equals the
set of fixed points of a specific 1-dimensional fixed point problem.

Definition 3 Consider a smooth aggregative game.

1. For i ∈ N , define the correspondences bi : Y � R and si : Y ⊕ � R by

bi (y) := {xi ∈ Xi | xi ∈ [0, y] ∧ xi ti (xi , y) = 0 ∧ ti (xi , y) ≤ 0}, si (y) := bi (y)/y.
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The correspondence bi is called the virtual backward response correspondence of
player i and the correspondence si the virtual share correspondence of player i .

2. Define the correspondences b : Y � R and s : Y ⊕ � R by20

b(y) :=
∑
i∈N

bi (y), s(y) :=
∑
i∈N

si (y) = b(y)/y.

The correspondence b is called the aggregate virtual backward response corre-
spondence and the correspondence s the aggregate virtual share correspondence.


Virtual backward response correspondences provide global information on the

marginal reductions ti . In the definition we added ‘virtual’. Roughly stated, the reason
for adding ‘virtual’ is that bi (y) coincides with the notion of backward response as
defined in the Selten variant of the Selten–Szidarovszky technique in situations where
conditional payoff functions are pseudo-concave.

Further denote for i ∈ N , by Vi the essential domain of the correspondence bi , i.e.
the set {y ∈ Y | bi (y) �= ∅}. Now, the essential domain of si is V �

i := Vi \ {0}, that of
b is V := ∩i∈N Vi , that of s is V � := V \ {0}. Let b̂i := bi�Vi , i.e. the restriction of

the correspondence bi to Vi ; so b̂i : Vi � R. Finally, let ŝi := si�V �
i
, b̂ := b�V and

ŝ := s�V
�.

Here is a further important consequence of Assumption A1:

Proposition 3 If Assumption A1[i] holds, then for every y ∈ Y the set bi (y) contains
at most one element. 

Proof By contradiction, suppose xi , x ′

i ∈ Xi with 0 ≤ xi < x ′
i belong to this set.

Note that it follows that y �= 0. Also ti (x ′
i , y) = 0. If xi = 0, then ti (0, y) ≤ 0 and

Lemma 1(2) gives the contradiction ti (x ′
i , y) < 0. If xi > 0, then ti (xi , y) = 0 and

Lemma 1(1) gives the contradiction ti (x ′
i , y) < 0. ��

In the following we shall always assume that Assumption A1[i] holds when we deal
with bi or si and that Assumption A1 holds when we deal with b or s. Therefore,
Proposition 3 implies that the correspondences b̂i , ŝi , b̂ and ŝ are singleton-valued.
We shall interpret (and refer to) these correspondences as functions. So b̂i : Vi → R,
ŝi : V �

i → R, b̂ : V → R and ŝ : V � → R. (Of course, we cannot exclude that

Vi = ∅.) Denote by fix(b̂) the set of fixed points of b̂.

Proposition 4 Suppose Assumption A1 holds.

1. T� = {(b̂1(y), . . . , b̂n(y)) | y ∈ fix(b̂)}.
2. T� \ {0} = {y(ŝ1(y), . . . , ŝn(y)) | y ∈ V � with ŝ(y) = 1}. 

Proof 1. ‘⊆’: Suppose x ∈ T�. With y = xN , we have for every i ∈ N that

xi ti (xi , y) = 0 and ti (xi , y) ≤ 0. For every i ∈ N it follows that y ∈ Vi and

20 The sums here are Minkowski sums.
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b̂i (y) = xi ; thus y ∈ V . As y = ∑
i∈N xi = ∑

i∈N b̂i (y) = b̂(y), y ∈ fix(b̂)

holds.
‘⊇’: suppose y ∈ fix(b̂). Then y ∈ V , b̂(y) = y and for every i we have
b̂i (y)ti (b̂i (y), y) = 0 and ti (b̂i (y), y) ≤ 0. It follows that (b̂1(y), . . . , b̂n(y)) ∈
T�.

2. By part 1. ��
Remember that the Nash equilibrium set is the same as the set of fixed points

of the joint best response correspondence. Proposition 4 together with Proposition 2
show how the n-dimensional fixed point problem for this correspondence is related
to a 1-dimensional fixed point problem for the aggregate virtual best response corre-
spondence b̂. In particular: if Assumption A1 holds, then (10) and Proposition 4(1)
imply:

e ∈ E ⇒ [eN ∈ fix(b̂) and b̂i (eN ) = ei (i ∈ N )]. (12)

This result may shortly be paraphrased as ‘Nash sums are fixed points of the aggregate
virtual backward response function’. Note that this result does not presuppose that
conditional payoff functions are pseudo-concave.

4.4 The analysis part

Also in this subsection we always consider a smooth aggregative game.

Lemma 4 Suppose i ∈ N \ Ñ and Assumption A1[i] holds. Then Vi = Y and b̂i (y) =
0 (y ∈ Y ). 

Proof By Lemma 2(1), ti (0, y) ≤ 0 (y ∈ Y ). This implies the desired results. ��
Proof of Theorem 1 (2a, 2b, 3) 2a. Suppose i /∈ Ñ and e ∈ E . By contradiction we
prove that ei = 0. So suppose ei > 0. By Lemma 2(1), ti (ei ,

∑
l ei ) < 0. Therefore

(10) implies ei = 0, a contradiction.
2b. Suppose Ñ = ∅. Theorem 1(2a) implies that we still have to prove that 0 ∈ E .

Fix i ∈ N . We have to prove that 0 is a maximiser of f (0)
i . Well, apply Lemma 2(3).

3. Suppose Assumptions A1 and A2’ hold and 0 ∈ E . By Theorem 1(1), N> = ∅.
By Remark 2, Ñ = ∅. By Theorem 1(2b), E = {0}. ��
Lemma 5 1. Sufficient for player i ∈ Ñ to be of class I or class II is that t i has the

AMSCFA-property.
2. Suppose i ∈ Ñ is of class II and ti has the AMSCFA-property. Then ti < 0. 

Proof 1. Suppose t i has the AMSCFA-property. In the case where t i has a zero, say

m, we have, t i (xi ) > 0 for xi ∈]0, m [ and thus that i is of class I. Now suppose
that t i does not have a zero. As t i is continuous, we have t i > 0 and then i is of
class I or t i < 0 and then i is of class II.

2. We prove this by contradiction. So suppose t i (ai ) ≥ 0 for some ai > 0. As i is
of class II, t i (xi ) < 0 for xi > 0 small enough. The continuity of t i implies that
there exists li ∈]0, ai ] with t i (li ) = 0. As t i has the AMSCFA-property, we have
t i (xi ) > 0 for 0 < xi < li , a contradiction with player i being of class II. ��

123



Equilibrium uniqueness in aggregative games: very… 2047

Define the function σ : T� → R by

σ(x) :=
∑
i∈N

xi .

Because, by (10), E ⊆ T� holds, one may refer to σ �E as the equilibrium aggregator.
The following result deals with the aggregate virtual share function ŝ : V � → R.

Proposition 5 Suppose Assumption A1 holds.

1. The equilibrium aggregator is injective.
2. Suppose Assumption A2’ holds. Then each of the following conditions is sufficient

for #T� ≤ 1 to hold.

(a) the function ŝ − 1 has the AMSCFA property on the subset where ŝ is positive.
(b) ŝ is strictly monotone on the subset where it is positive. 


Proof 1. By contradiction. So suppose x, x′ ∈ T� with x �= x′ and xN = x ′
N =: y.

Note that y �= 0. Fix i ∈ N with x ′
i > xi . We have ti (x ′

i , y) = 0 ≥ ti (xi , y). But
now Lemma 1(1) implies ti (xi , y) > 0.

2a. If Ñ = ∅, then, by Lemma 2(2), T� ⊆ {0} and we are done. Now suppose Ñ �= ∅.
We prove the desired result by contradiction. So suppose x, x′ ∈ T� with x �= x′.
As Ñ �= ∅ and Ass. A2’ holds, Remark 2 guarantees N> �= ∅. Fix i ∈ N>. As
ti (0, 0) > 0, it follows that x �= 0 and x′ �= 0. We may suppose that x ′

N ≥ xN . By
part 1, xN �= x ′

N . So x ′
N > xN . Proposition 4(2) implies ŝ(xN ) = ŝ(x ′

N ) = 1. So
ŝ(xN ) − 1 = ŝ(x ′

N ) − 1 = 0. But this contradicts the assumption that ŝ − 1 has
the AMSCFA property on the subset where ŝ is positive.

2b. Note that this condition implies the condition in 2a. �� ��
Of course, in Proposition 5(2b) it is also sufficient that b̂ is strictly decreasing on the
subset where it is positive. Note also that Proposition 5 does not presuppose that ŝ is
continuous or that conditional payoff functions are strictly quasi-concave.

Proposition 5(1) immediately implies the following variant of Proposition 2 (part
i) in [15].

Proposition 6 Consider a symmetric almost smooth aggregative game. If Assumption
A1 holds, then each equilibrium is symmetric. 

Proof Indeed. Suppose e would be an asymmetric equilibrium. Then a suitable per-
mutation of the actions in e gives another asymmetric equilibrium e′. As σ(e) = σ(e′)
we have a contradiction with the injectivity of σ . ��
Lemma 6 1. If f (0)

i is strictly pseudo-concave on X⊕
i , then ti has the AMSCFA-

property.
2. If i ∈ Ñ and Assumption C[i] holds, then ti has the AMSCFA-property. 

Proof 1. As t i (xi ) = D f (0)

i (xi ), t i is the derivative of a strictly pseudo-concave
function and therefore (see Remark 6) has the AMSCFA-property.

2. By part 1 and Proposition 1(2). ��
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Proposition 7 Suppose, Assumptions A1 and C hold. If every player in Ñ is of class
II, then at each active equilibrium at least two players are active. 

Proof By contradiction. So suppose e ∈ E with e �= 0 and #{ j ∈ N | e j �= 0} ≤ 1.
So #{ j ∈ N | e j �= 0} = 1. Let ei �= 0 and e j = 0 ( j �= i). By (10), e ∈ T�;
therefore ti (ei , ei ) = 0. Lemma 2(2) implies that i ∈ Ñ . By Lemma 6(2), t i has the
AMSCFA-property. By Lemma 5(2), ti (xi , xi ) = t i (xi ) < 0, a contradiction. �� ��

For i ∈ N let

V +
i := {y ∈ Y | there exists xi ∈]0, y] with ti (xi , y) = 0},

V ++
i := {y ∈ Y | there exists xi ∈]0, y [ with ti (xi , y) = 0}.

Thus we have

V ++
i ⊆ V +

i ⊆ V �
i ⊆ Vi ⊆ Y .

If Assumption A1[i] holds and e ∈ E , then with (10) we obtain

ei > 0 ⇒ [ti (ei , eN ) = 0 ∧ eN ∈ V +
i ∧ b̂i (eN ) = ei ],

ei = 0 ⇒ [ti (ei , eN ) ≤ 0 ∧ eN ∈ Vi ∧ b̂i (eN ) = ei ].

Lemma 7 Suppose Assumption A1[i] holds.

1. V ++
i is open in R.

2. If V ++
i �= ∅, then b̂i is differentiable on V ++

i with Db̂i = − D2ti
D1ti

on V ++
i . 


Proof The first statement is clear if V ++
i = ∅. Further suppose V ++

i �= ∅. For every
y ∈ V ++

i we have (b̂i (y), y) ∈ Int(Δ) and ti (b̂i (y), y) = 0. As ti : Int(Δ) →
R is differentiable and Ass. A1[i] holds, a variant of the classical implicit function
theorem in [14] applies and implies that V ++

i is open and b̂i is differentiable on V ++
i .

Differentiating the identity ti (b̂i (y), y) = 0 (y ∈ V ++
i ), the second statement follows.

�� ��
Lemma 8 Suppose i ∈ Ñ and Assumptions A1[i], A2’[i] and C[i] hold.

1. Suppose y ∈ Vi and y′ > y. Then b̂i (y) = 0 ⇒ [y′ ∈ Vi ∧ b̂i (y′) = 0].
2. V +

i is a real interval.
3. V +

i < Vi \ V +
i .21 


Proof 1. Suppose b̂i (y) = 0. We have ti (0, y) = ti (b̂i (y), y) ≤ 0. As y′ > y, Ass.
A2’[i] gives ti (0, y′) ≤ 0. Thus y′ ∈ Vi and b̂i (y′) = 0.

2. Suppose y < y′′ < y′ with y, y′ ∈ V +
i . As b̂i (y) > 0 and ti (b̂i (y), y) = 0,

Lemma 1(1) gives ti (0, y) > 0 and ti (y, y) ≤ 0. In the same way, ti (0, y′) > 0
and ti (y′, y′) ≤ 0. Ass. A2’[i] implies ti (0, y′′) > 0. And as t i is continuous

21 Notation: for A, B ⊆ R the notation A < B means that a < b for all a ∈ A and b ∈ B.
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and has, by Lemma 6(2), the AMSCFA-property, it follows that ti (y′′, y′′) ≤ 0.
As ti (·, y′′) is continuous, there exists xi ∈]0, y′′] with ti (xi , y′′) = 0. Thus, as
desired, y′′ ∈ V +

i .

3. Suppose y ∈ V +
i and y′ ∈ Vi \ V +

i . As y �= y′, b̂i (y) > 0 and b̂i (y′) = 0, part 1
implies y < y′. �� ��

Proposition 8 1. If Assumption C[i] holds, then i is of class I or class II.
2. If i ∈ N>, ti (0, 0) �= +∞ and ti : Δ → R is continuous, then i is of class I.
3. If i ∈ N> and f (0)

i is continuously differentiable, then i is of class I. 

Proof 1. By Lemmas 5(1) and 6(2).
2. As ti (0, 0) > 0 and ti : Δ → R is continuous, it follows that i is of class I.
3. Now limxi ↓0 t i (xi ) = limxi ↓0 D f (0)

i (xi ) = D f (0)
i (0) = ti (0, 0) > 0. This implies

that i is of class I. ��
Now we address the zeros of t i . Of course, each such zero belongs to V +

i \ V ++
i

and is a stationary point of f (0)
i . Sufficient for t i to have a unique zero is that t i has a

zero and t i has the AMSCFA-property. If t i has a zero and has the AMSCFA-property,
then we denote this zero by

xi ; (13)

if also Assumption A1[i] holds, then b̂i (xi ) = xi . In addition to Lemma 8(2,3) we
have:

Lemma 9 Suppose i ∈ Ñ and Assumptions A1[i], A2’[i] and C[i] hold.

1. V ++
i is an open real interval. If xi is well-defined, then V ++

i is a proper interval.
2. Vi is a real interval. Even: if y ∈ Vi , then also y′ ∈ Vi for every y′ > y.
3. If V +

i \ V ++
i �= ∅, then

(a) xi is well-defined and V +
i \ V ++

i = {xi }.
(b) V +

i is a proper interval and xi ∈ V +
i is a left boundary point of V +

i .

4. V ++
i = ∅ ⇒ V +

i = ∅. 

Proof By Lemma 6(2), t i has the AMSCFA-property.

1. First statement: by Lemma 7(1), V ++
i is open. In order to show that V ++

i is an
interval, we suppose y, y′ ∈ V ++

i and fix y′′ ∈]y, y′ [. By Lemma 8(2), y′′ ∈ V +
i .

The proof is complete if we show that b̂i (y′′) �= y′′. This we do by contradiction,
so suppose b̂i (y′′) = y′′. Then t i (y′′) = ti (y′′, y′′) = ti (b̂i (y′′), y′′) = 0. As t i

has the AMSCFA-property, t i (y) > 0 follows. By Lemma 1(1), as b̂i (y) < y,
0 = ti (b̂i (y), y) > ti (y, y) > 0, a contradiction.
Second statement: suppose that xi is well-defined. So ti (xi , xi ) = 0 holds. By
Lemma 1(1), ti (0, xi ) > 0. Fix x̃i > xi . We have ti (x̃i , x̃i ) < 0. Consider the
open interval ](0, xi ), (x̃i , x̃i ) [ in Δ+. As ti : Δ+ → R is continuous, there exists
(xi , y) ∈ Δ+ with 0 < xi < y and ti (xi , y) = 0. Thus y ∈ V ++

i . As, by the above
V ++

i is an open interval, it follows that V ++
i is a proper interval.

123



2050 J. Itaya, P. von Mouche

2. By contradiction. So suppose y ∈ Vi , y′ > y and y′ /∈ Vi . As y′ /∈ Vi , we have
ti (0, y′) > 0. Lemma 8(1) implies b̂i (y) > 0 and therefore ti (b̂i (y), y) = 0.
With Lemma 1(1) if follows that ti (y, y) ≤ 0. As t i is continuous and has the
AMSCFA-property, it follows that ti (y′, y′) ≤ 0. As ti (0, y′) > 0, the continuity
of ti (·, y′) implies the existence of xi ∈]0, y′] with ti (xi , y′) = 0. Thus y′ ∈ V +

i ,
a contradiction.

3a. Suppose V +
i \V ++

i �= ∅. Let y ∈ V +
i \V ++

i . Then ti (b̂i (y), y) = 0 and b̂i (y) = y.

Thus t i (y) = ti (y, y) = ti (b̂i (y), y) = 0. As t i has a zero y and the AMSCFA-
property, y = xi follows. So V +

i \ V ++
i = {xi }.

3b. Suppose V +
i \ V ++

i �= ∅. By Lemma 8(2), V +
i is an interval. Parts 3a and 1

imply that V ++
i is proper. So V +

i also is proper. Further suppose y′ ∈ V ++
i .

Then ti (b̂i (y′), y′) = 0 and b̂i (y′) < y′. Lemma 1(1) implies ti (y′, y′) < 0. The
AMSCFA-property implies xi < y′. As V ++

i and V +
i are intervals, xi ∈ V +

i is a
left boundary point of V +

i .
4. By contradiction. So suppose V ++

i = ∅ and V +
i �= ∅. By part 3a, V +

i = {xi }. By
part 1, V ++

i is a proper interval, a contradiction. �� ��
If i ∈ N \ Ñ and Assumption A1[i] holds, then by Lemma 4 we have Vi = Y and

b̂i (y) = 0 (y ∈ Y ). In the case Assumption A1 holds, this implies for the domain
V � = ∩i∈N V �

i of ŝ = ∑
i∈N ŝi that V � = ∩i∈Ñ V �

i and22

ŝ =
∑
i∈Ñ

ŝi . (14)

Proposition 9 1. Suppose i ∈ Ñ and Assumptions A1[i], A2[i] and A2’[i] hold. Then
ŝi is decreasing and strictly decreasing on V +

i .
2. Suppose that Assumptions A1, A2 and A2’ hold.

(a) ŝ is decreasing.
(b) The subset on which ŝ is positive is an interval.
(c) ŝ is strictly decreasing on the subset where it is positive. 


Proof 1. Consider ŝi : V �
i → R. By Lemma 6(2), t i has the AMSCFA-property. First

suppose V ++
i = ∅. By Lemma 9(4), V +

i = ∅ and thus ŝi is strictly decreasing on

V +
i . On Vi \ V +

i = Vi , b̂i = 0 and therefore ŝi = 0. So ŝi = 0 on V �
i and thus

there decreasing. Next suppose V ++
i �= ∅. By Lemma 9(1), V ++

i is a proper open
interval. With Lemma 7(2), we obtain for every y ∈ V ++

i

Dŝi (y) = − b̂i (y)D1ti (b̂i (y), y) + y D2ti (b̂i (y), y)

y2 · D1ti (b̂i (y), y)
.

Ass. A1[i] and A2[i] imply that Dŝi (y) < 0 (y ∈ V ++
i ). It follows that ŝi is

strictly decreasing on V ++
i . If V ++

i = V +
i , then ŝi is strictly decreasing on V +

i .

22 Note that V � = Y ⊕ if Ñ = ∅.
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Now suppose V ++
i �= V +

i . Then, by Lemma 9(3), V +
i \ V ++

i = {xi } and xi is a

left boundary point of the proper interval V +
i . As b̂i (xi ) = xi , we have ŝi (xi ) = 1.

As ŝi ≤ 1, it follows that ŝi is strictly decreasing on V +
i . Also ŝi is decreasing:

indeed, ŝi > 0 on V +
i , ŝi = 0 on Vi \ V +

i and, by Lemma 8(3), V +
i < Vi \ V +

i .
2. By Lemma 6(2), t i (i ∈ Ñ ) has the AMSCFA-property. Lemma 9(2) implies that

V � is an interval.
2a. By (14) and part 1.
2b. By part 2a.
2c. We may suppose that the subset where ŝ is positive contains at least two elements.

Let ya, yb with ya < yb such elements. So s(ya) > 0 and s(yb) > 0. Part 1 implies
ŝi (ya) − ŝi (yb) ≥ 0 (i ∈ Ñ ). Fix j ∈ Ñ with ŝ j (ya) > 0. If also ŝ j (yb) > 0, then
by part 1, ŝ j (ya)− ŝ j (yb) > 0. If ŝ j (yb) = 0, then, ŝ j (ya)− ŝ j (yb) = ŝ j (ya) > 0.
Thus, as desired, s(ya) − s(yb) = ∑

i∈Ñ (ŝi (ya) − ŝi (yb)) > 0. �� ��
Proof of Theorem 2 By (10) and Propositions 5(2b) and 9(2c). ��
According to Lemma 7(2), supposing Assumption A1[i] holds, the function b̂i is
continuous on V ++

i . The following proposition considers this issue further.

Proposition 10 Suppose i ∈ Ñ and Assumptions A1[i], A2’[i] and C[i] hold. Then Vi

is a real interval and the function b̂i : Vi → R is continuous. 

Proof By Lemma 6(2), t i has the AMSCFA-property. Lemma 9(2) guarantees that Vi

is a real interval. It is sufficient to prove that b̂i is continuous on each bounded proper
subinterval I of Vi which is closed in R. Fix such an interval. Further we consider
b̂i : I → R. As 0 ≤ b̂i (y) ≤ y (y ∈ I ), b̂i is bounded. As I is compact and b̂i

is bounded, continuity of b̂i is equivalent to the closedness of its graph, i.e. with the
subset {(y, b̂i (y)) | y ∈ I } of R2. In order to prove that this set is closed take a
convergent sequence ((ym, b̂i (ym))) in this set with limit (y�, b̂�). Noting that (as I is
closed) y� ∈ I (so y �= 0), we have to prove that b̂� = b̂i (y�). We distinguish between
two cases.

Case where y� > 0: we have 0 ≤ b̂i (ym) ≤ ym , b̂i (ym)ti (b̂i (ym), ym) = 0 and
ti (b̂i (ym), ym) ≤ 0. Taking limits and noting that ti : Δ+ → R is continuous, we
obtain 0 ≤ b̂� ≤ y�, b̂�ti (b̂�, y�) = 0 and ti (b̂�, y�) ≤ 0. Thus, as desired, b̂� = b̂i (y�).

Case where y� = 0: as b̂i (0) = 0, we have to prove that b̂� = 0. Well, as 0 ≤
b̂i (ym) ≤ ym and lim ym = y� = 0, the desired result follows. �� ��
Lemma 10 Suppose i ∈ Ñ and Assumption C[i] holds.

1. Suppose i is of class I and Assumption B[i] holds.

(a) xi (in (7)) is well-defined and xi ≤ xi .
(b) if Assumption A1[i] holds, then V �

i = [xi ,+∞ [ and b̂i (y) ≤ xi (y ≥ xi ).

2. Suppose i is of class II.

(a) {y ∈ Y ⊕ | ti (0, y) > 0} ⊆ V ++
i .

(b) V �
i =]0,+∞].

(b) if Assumptions A1[i] and B[i] hold, then b̂i (y) ≤ xi (y > 0). 
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Proof By Lemma 6(2), t i has the AMSCFA-property.

1a. As t i is of class I, t i (xi ) > 0 for xi > 0 small enough. By Ass. B[i], also t i < 0 for
xi > xi . As t i is continuous, it follows that t i has a zero. As t i has the AMSCFA-
property, this zero equals xi . Of course, xi ≤ xi follows.

1b. Suppose Assumption A1[i] holds.
First statement ‘⊆’: by contradiction. So suppose y ∈ V �

i and y < xi . The
AMSCFA-property gives ti (y, y) = t i (y) > 0. By Lemma 1(3), ti (xi , y) > 0 for
all xi ∈ Xi with 0 ≤ xi ≤ y. Thus y /∈ Vi , a contradiction.
First statement ‘⊇’: suppose y ≥ xi . If ti (0, y) ≤ 0, then y ∈ Vi . Now suppose
ti (0, y) > 0. By the AMSCFA-property, ti (y, y) ≤ 0. As ti (·, y) is continuous,
there exists xi ∈ [0, y] with ti (xi , y) = 0. Thus y ∈ Vi .
Second statement: this is clear if b̂i (y) = 0. Now suppose b̂i (y) > 0. We have
0 = ti (b̂i (y), y). So Ass. B[i] implies that b̂i (y) ≤ xi .

2a. Suppose y ∈ Y ⊕ with ti (0, y) > 0. By Lemma 5(2), ti (y, y) < 0. As ti (·, y) is
continuous, there exists xi ∈]0, y [ with ti (xi , y) = 0. So y ∈ V ++

i .
2b. ‘⊆’: trivial.

‘⊇’: suppose y > 0. If ti (0, y) ≤ 0, then y ∈ V �
i . Now suppose ti (0, y) > 0. By

part 2a, y ∈ V ++
i ⊆ V �

i .
2c. Suppose Assumption A1[i] and B[i] hold. Fix y > 0. The statement is clear if

b̂i (y) = 0. Now suppose b̂i (y) > 0. We have 0 = ti (b̂i (y), y). So Ass. B[i]
implies that b̂i (y) ≤ xi . �� ��

Proposition 11 Suppose Assumptions A1, A2’, B and C hold and that for every i ∈ Ñ
the conditional payoff functions f (z)

i (z �= 0) are pseudo-concave. If Ñ contains at
least one player of class I , then #E ≥ 1 and even an active equilibrium exists. 

Proof For i /∈ Ñ , by Lemma 4, Vi = R+ and b̂i (y) = 0 (y ≥ 0). Let N ′ := {k ∈ Ñ |
k is of class I}; by assumption, N ′ �= ∅. By Lemma 6(2), every t i has the AMSCFA-
property. So by Lemma 5(1), each player in Ñ is of class I or II. Lemma 10(1b,2b)
implies for V � = ∩i∈N V �

i = ∩i∈Ñ V �
i that V � = [x,+∞ [ where x = max{xk | k ∈

N ′}.
Consider ŝ : [x,+∞ [→ R. By (14), ŝ = ∑

i∈Ñ ŝi . Fix k� ∈ N ′ such that x = xk�
.

Now

ŝ(x) =
∑
k∈Ñ

ŝk(x) =
∑
k∈Ñ

ŝk(xk�
) ≥ ŝk� (xk�

) = 1.

AsAss. B holds andY = R+, we can fix y > 0with y ≥ ∑
k∈Ñ xk . By Lemma 10(1a),

y ≥ ∑
k∈N ′ xk ≥ ∑

k∈N ′ xk ≥ x . Thus y ∈ V � and y ≥ xk (k ∈ N ′). So with
Lemma 10(1b,2c) we obtain,

ŝ(y) =
∑
k∈Ñ

b̂k(y)

y
≤

∑
k∈Ñ

xk

y
≤ 1.

Proposition 10 implies that ŝ is continuous. By the intermediate value theorem,
there exists y� ∈ V � with ŝ(y�) = 1. Thus y� ∈ fix(b̂). Proposition 4(1) implies
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(b̂1(y�), . . . , b̂n(y�)) ∈ T� \ {0}. Lemma 3 and Proposition 1(2) now guarantee that
(b̂1(y�), . . . , b̂n(y�)) ∈ E \ {0}. �� ��

Proof of Theorem 3 Suppose Ñ contains at least one player of class I. Note that, using
Proposition 1(1,2), Proposition 11 applies and guarantees that there exists an active
equilibrium. By Theorem 2 this a unique equilibrium. ��

Proof of Theorem 4 1. Suppose i ∈ Ñ . So there exists ỹi > 0 with ti (0, ỹi ) > 0. As
i is of class II, Ass. A2’ and Lemma 10(2a) imply y ∈ V ++

i (0 < y < ỹi ) and

thus b̂i (y) ∈]0, y [ (0 < y < ỹi ). Now ti (b̂i (y), y) = 0 follows.
2. By part 1, ŝi (y) > 0 (0 < y < ỹi ). By Proposition 9(1), the function ŝi is strictly

decreasing on ]0, ỹi [. As ŝi ≤ 1, the desired result follows.
3. By Lemma 10(2b), we have V �

i = R++ (i ∈ Ñ ). So V � = R++.
‘⇒’: suppose

∑
i∈Ñ si > 1. So Ñ �= ∅; by Remark 2 now also N> �= ∅. By

Theorem 2 and 1(1) we still have to prove that #E ≥ 1. Consider ŝ :]0,+∞] → R. By
part 2, we obtain limy↓0 ŝ(y) = limy↓0

∑
i∈Ñ ŝi (y) = ∑

i∈Ñ si > 1. As Y = R+, we
can fix y > 0 with y ≥ ∑

k∈Ñ xk . By Lemma 10(2c), we have b̂i (y) ≤ xi (i ∈ Ñ ). It

follows that b̂(y) = ∑
∈Ñ b̂k(y) ≤ y and therefore ŝ(y) ≤ 1. Proposition 4(1) implies

(b̂1(y�), . . . , b̂n(y�)) ∈ T� \ {0}. Lemma 3 and Proposition 1(2) now guarantee that
(b̂1(y�), . . . , b̂n(y�)) ∈ E \ {0}.

‘⇐’: suppose the game has a unique equilibrium, say e, and e �= 0. By (12),
ei = b̂i (eN ) (i ∈ N ). As eN �= 0, this implies ŝ(eN ) = 1. For i ∈ Ñ , by the
proof of part 2, ŝi is strictly decreasing on ]0, ỹi [. This implies ŝi (eN ) < si and thus
1 = ŝ(eN ) = ∑

i∈Ñ ŝi (eN ) <
∑

i∈Ñ si . ��

5 Applications

In this section we illustrate with two examples the power of our main theorems. The
power of these theorems lies in the facts that with them one quickly can reproduce,
improve upon and unify many results for economic games (like oligopolistic, public
good, cost-sharing, common resource, contest games and games appearing in the
managerial theory of the firm) in the literature.

The first example deals with a homogeneous Cournot oligopoly with an industry
revenue function that is possibly discontinuous at 0. The second example illustrates
how the results can be applied to various games appearing in the managerial theory of
the firm.

5.1 Cournot oligopoly

So again consider the Cournot oligopoly given by (8) in Sect. 3.

123



2054 J. Itaya, P. von Mouche

Theorem 5 Suppose the proper price function p̃ is positive, twice differentiable, D p̃ <

0, has decreasing price flexibility ε p̃ and each cost function ci is twice differentiable,
convex and strictly increasing. Further, let23

p(0) := limy↓0 p̃(y) ∈]0,+∞], p(∞) := limy→∞ p̃(y) ∈ [0,+∞ [, ε p̃ :=
limy↓0 ε p̃(y) ∈]−∞, 0], Dci := limxi →∞ Dci (xi ) ∈]0,+∞]. Suppose there exists
at least one firm i with p(0) > Dci (0).

1. Each equilibrium is active and strict.
2. If ε p̃ < −1 or ε p̃ = −1, then at each equilibrium at least two firms are active.
3. The game has at most one equilibrium.

Further suppose that p(∞) − Dci < 0 (i ∈ N ). Then

4. If ε p̃ > −1, then the game has a unique equilibrium.
5. Suppose ε p̃ ≤ −1 or ε p̃ = −1.

(a) n > −ε p̃ ⇔ the game has a unique equilibrium.
(b) n ≤ −ε p̃ ⇔ the game does not have an equilibrium. 


Proof We already have seen that Assumption A2’ holds and that therefore Ñ = N>.
Also, by assumption, N> �= ∅. So Theorem 1(1) implies the first statement in part 1.
As ci is convex, it follows that Dci (xi ) > 0 (xi > 0). As t i (xi ) = p̃(xi )(ε p̃(xi ) +
1) − Dci (xi ), it follows that if ε p̃ < −1 or ε p̃ = −1, then every i ∈ Ñ is of class II,
and if −1 < ε p̃ ≤ 0, then every i ∈ Ñ is of class I. As Dε p̃ = D(D p̃ · Id

p̃ ) ≤ 0, it

follows that D2 p̃ · Id+ D p̃ ≤ Id · (D p̃)2

p̃ . For y > 0 and xi ∈]0, y] with ti (xi , y) = 0,
we obtain

(xi D1 + y D2)ti (xi , y) = xi (D p̃(y) − D2ci (xi )) + y(D2 p̃(y)xi + D p̃(y))

= xi (y D2 p̃(y) + D p̃(y)) + y D p̃(y) − xi D2ci (xi )

≤ xi y
(D p̃(y))2

p̃(y)
+ y D p̃(y) − xi D2ci (xi )

= y D p̃(y)

p̃(y)
(ti (xi , y) + Dci (xi )) − xi D2ci (xi )

= ε p̃(y)Dci (xi ) − xi D2ci (xi ).

As ci is strictly increasing and convex we here have (noting that xi �= 0) Dci (xi ) > 0.
Therefore as ε p̃(y) < 0 and D2ci (xi ) ≥ 0, it follows that Assumption A2 holds. Of
course, also Ass. A1 holds. Now Remark 3 implies that the second statement in part
1 holds. Part 1 and Proposition 7 now imply part 2. And Theorem 2 guarantees that
the game has at most one equilibrium; so part 3 holds.

Further suppose that p(∞) − Dci < 0 (i ∈ N ). Now we prove that Assumption B
holds. Fix i ∈ Ñ . As p(∞)− Dci < 0, there exists xi > 0 with p̃(xi )− Dci (xi ) < 0.
As ci is convex it follows for every y ≥ xi > xi that ti (xi , y) ≤ p̃(y) − Dci (xi ) ≤
p̃(xi ) − Dci (xi ) < 0. Now Theorem 3 implies part 4.

23 Concerning the values that these objects can assume, note that p̃ and ε p̃ are decreasing, and that ci is
strictly increasing and convex.
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Further suppose ε p̃ ≤ −1. Each player is of class II. So Theorem 4(3) applies and
guarantees that the proof of part 5a is complete if we show that

∑
i∈Ñ si = n

−ε p̃
. Well,

first note that p(0) = +∞; this follows from the identity p̃(y) = p̃(1)e
∫ 1

y − ε p̃ (ξ)

ξ
dξ .

Next, by Theorem 4(1), for all i ∈ Ñ and y > 0 small enough there exists a unique
bi (y) ∈]0, y] with ti (bi (y), y) = 0. As 0 = D p̃(y)bi (y) + p̃(y) − Dci (bi (y)) =
p̃(y)(−ε p̃(y)si (y) + 1) − Dci (bi (y)), we have

si (y) = 1

−ε p̃(y)

(
1 − Dci (bi (y))

p̃(y)

)
. (15)

As Dci is continuous at 0 and 0 ≤ bi (y) ≤ y, we obtain si = limy↓0 si (y) = 1
−ε p̃

.

Thus, as desired,
∑

i∈Ñ si = n
−ε p̃

.

As the game has at most one equilibrium, part 5b follows from part 5a. ��
Theorem 5, dealing with decreasing price flexibility, in particular applies to the

proper price function p̃(y) = y−α where α > 0; here the price flexibility ε p̃ is
constant, i.e. −α. For this case the first results appeared in [34] for α = 1, wherein
also a structural equivalence between this case and rent-seeking games was shown.24

The case for α > 0 is dealt with in [7]. Results for Cournot oligopolies with decreasing
price flexibility can be found in [38,42,43,45]; Theorem5 also essentially follows from
results in this literature. However, in Theorem 5, the smoothness assumptions for the
proper price function and cost functions are weaker, our proof is very short and follows
from our general results for smooth aggregative games

Finally, we use the opportunity to illustrate how the Selten–Szidarovszky technique
is at the base of an algorithm for determining the equilibrium set. Again consider the
above oligopoly with p̃(y) = y−α and suppose there n = 3, α = 1 and ci (xi ) = i x2i .
By Theorem 4(1), for all i ∈ Ñ and y > 0 small enough, there exists a unique

b̂i (y) ∈]0, y] with ti (b̂i (y), y) = 0, that is with y−α(1−α
b̂i (y)

y ) = Dci (b̂i (y)). From

(15) we obtain b̂i (y) = y
1+2iy (y > 0). This leads to (maybe by using a program

like Maple) b̂(y) = ∑3
i=1 b̂i (y) = 44y3+24y2+3y

48y3+44y2+12y+1
and that b̂ has y� = 0.797..

as a unique fixed point. By Theorem 1(1), 0 is not an equilibrium. Therefore, using
Propositions 1 and 4(2), we obtain that the game has (0.307.., 0.1903.., 0.137..) as
unique equilibrium.

5.2 Oligopoly model with alternative objectives

We pick up here an idea in [18] and quickly and roughly show how the results in the
present article can be used to further elaborate on it.

[18] deals with a Cournot oligopoly model in which each firm’s objective is to
maximize the weighted average of profit and another factor such as revenue, market
share, output, negative of cost or profit per worker. This can be realised by modifying

24 Also see [5] and [47].
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the payoff function of the general Cournot oligopoly game (8) as follows:

fi (x) = (1 − θi )
(

p

(∑
l

xl

)
xi − ci (xi )

)
+ θi hi

(
xi ,

∑
l

xl

)
. (16)

Here θi ∈ [0, 1 [ is a weight assigned on the objective represented by the alternative
objective function hi : Δ → R.25

Various results for games dealing with a single alternative objective can be found in
the literature. For the revenue objective take hi (xi , y) = p(y)xi (e.g. [29]), for market
share hi (xi , y) = xi/y (e.g. [30]), for output hi (xi , y) = xi (e.g. [32]), for negative of
cost hi (xi , y) = −ci (xi ) (e.g. [20]) and for profit per worker hi (xi , y) = p(y)xi −ci (xi )

N (xi )
where N (xi ) represents the employment level of workers associated with the output
level xi (e.g. [32]).

The marginal reduction ti becomes

ti (xi , y) = (1 − θi )(Dp(y)xi + p(y) − Dci (xi )) + θi (D1hi (xi , y) + D2hi (xi , y)).

And note that concerning Assumption A2 we have (using short notations)

xi D1ti + y D2ti = (1 − θi )(ti − Dci − xi D2ci + y D2 p − p)

+ θi (xi D11hi + xi D12hi + y D21hi + y D22hi ).

The analysis in [18] is by assuming the generalised Fisher–Hahn conditions
D1ti < 0 and D2ti ≤ 0 assuming that each firm has the same cost function and
the same alternative object function. It is clear (especially by having already results
like Theorem 5) that by using our Assumptions A1 and A2 much more general results
can be obtained.

Acknowledgements The authors would like to thank the late Richard Cornes for various discussions related
to the results in the present article and Vsevolod Ivanov for communicating the reference in footnote 19.
The article also benefited from the comments of two referees.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acemoglu, D., Jensen, M.K.: Aggregate comparative statics. Games Econ. Behav. 81, 27–49 (2013)
2. Auslender, A.: Optimisation. Masson, Paris (1976)

25 Δ is defined in (1).

123

http://creativecommons.org/licenses/by/4.0/


Equilibrium uniqueness in aggregative games: very… 2057

3. Corchón, L.C.: Comparative statics for aggregative games. Math. Soc. Sci. 28, 151–165 (1994)
4. Corchón, L.C.: Theories of Imperfectly Competitive Markets. Lecture Notes in Economics and Math-

ematical Systems, vol. 442, 2nd edn. Springer-Verlag, Berlin (1996)
5. Cornes, R., Hartley, R.: Asymmetric contests with general technologies. Econ. Theory 26, 923–46

(2005)
6. Cornes, R., Hartley, R.: Well-behaved aggregative games. Economic Discussion PaperMay 24, School

of Social Sciences. The University of Manchester (2011)
7. Cornes, R., Sato, T.: Existence and uniqueness of Nash equilibrium in aggregative games: an expository

treatment. In: von Mouche, P.H.M., Quartieri, F. (eds.) Equilibrium Theory for Cournot Oligopolies
and Related Games: Essays in Honour of Koji Okuguchi, pp. 47–61. Springer, Cham (2016)

8. Finus, M., von Mouche, P.H.M., Rundshagen, B.: On uniqueness of coalitional equilibria. In: L.A.
Petrosjan, N.A. Zenkevich (eds.) Contributions to Game Theory and Management, vol. VII, pp. 51–
60. St. Petersburg State University (2014)

9. Folmer, H., vonMouche, P.H.M.: On a less knownNash equilibrium uniqueness result. J. Math. Sociol.
28, 67–80 (2004)

10. Forgó, F.: On the existence ofNash-equilibrium in n-person generalized concave games. In: S.Komlósi,
T. Rapscák, S. Schaible (eds.) Generalized Convexity, Lecture Notes in Economics and Mathematical
Systems, vol. 405, pp. 53–61. Springer-Verlag (1994)

11. Forgó, F.,Kánnai, Z.:Necessary conditions for concave andCournot oligopoly games. In: Szidarovszky,
F., Bischi, G.I. (eds.) Games and Dynamics in Economics: Essays in Honour of Akio Matsumoto.
Springer, Singapore (2020)

12. Gaudet, G., Salant, S.W.: Uniqueness of Cournot equilibrium: new results from old methods. Rev.
Econ. Stud. 58(2), 399–404 (1991)

13. Ginchev, I., Ivanov, V.I.: Second-order characterizations of convex and pseudoconvex functions. J.
Appl. Anal. 9(2), 261–273 (2003)

14. Halkin, H.: Implicit functions and optimization problems without differentiability of the data. SIAM
J. Control 12(2), 229–236 (1974)

15. Hefti, A.: Equilibria in symmetric games: theory and applications. Theor. Econ. 12, 979–1002 (2017)
16. Hirai, S., Szidarovszky, F.: Existence and uniqueness of equilibrium in asymmetric contests with

endogenous prizes. Int. Game Theory Rev. 15(1), 1350005 (2013)
17. Jensen, M.K.: Chapter 4: Aggregative games. In: Corchón, L.C., Marini, M.A. (eds.) Handbook of

Game Theory and Industrial Organization, vol. I, pp. 66–92. Edward Elgar, New York (2018)
18. Kaneda, M., Matsui, A.: Do profit maximizers maximize profit?: Divergence of objective and result in

oligopoly. Technical report, Mimeo, University of Tokyo (2003)
19. Kolstad, C.D., Mathiesen, L.: Necessary and sufficient conditions for uniqueness of a Cournot equi-

librium. Rev. Econ. Stud. 54(4), 681–690 (1987)
20. Laffont, J.J., Tirole, J.: Using cost observations to regulated firms. J. Polit. Econ. 94, 614–641 (1986)
21. Martimort, D., Stole, L.: Representing equilibrium aggregates in aggregate games with applications to

common agency. Games Econ. Behav. 76, 753–772 (2012)
22. McLennan, A., Monteiro, P.K., Tourky, R.: Games with discontinuous payoffs; a strengthening of

Reny’s existence theorem. Econometrica 79(5), 1643–1664 (2011)
23. McManus, M.: Numbers and size in Cournot oligopoly. Yorkshire Bull. 14, 14–22 (1962)
24. Nikaido, H., Isoda, K.: Note on non-cooperative games. Pac. J. Math. 5, 807–815 (1955)
25. Okuguchi, K.: The Cournot oligopoly and competitive equilibria as solutions to non-linear comple-

mentrity problems. Econ. Lett. 12, 127–133 (1983)
26. Okuguchi, K., Suzumura, K.: Uniqueness of the Cournot oligopoly equilibrium: a note. Econ. Stud.

Q. 22, 81–83 (1971)
27. Okuguchi, K., Yamazaki, T.: Global stability of Nash equilibrium in aggregative games. Int. Game

Theory Rev. 16(4), 1450014 (2014)
28. Quartieri, F.: Necessary and sufficient conditions for the existence of a unique Cournot equilibrium.

Ph.D. thesis, Siena-Università di Siena, Italy (2008)
29. Ritz, R.: Rand journal of economics. Int. J. Ind. Organ. 18, 452–498 (1987)
30. Ritz, R.: Strategic incentives for market share. Int. J. Ind. Organ. 26, 586–597 (2008)
31. Selten, R.: Preispolitik der Mehrproduktunternehmung in der Statischen Theorie. Springer-Verlag,

Berlin (1970)
32. Stewart, G.: Management objectives and strategic interactions among capitalist and labor-managed

firms. J. Econ. Behav. Organ. 17, 423–431 (1992)

123



2058 J. Itaya, P. von Mouche

33. Szidarovszky, F.: On the Oligopoly game. Technical report, Karl Marx University of Economics,
Budapest (1970)

34. Szidarovszky, F., Okuguchi, K.: On the existence and uniqueness of pure Nash equilibrium in rent-
seeking games. Games Econ. Behav. 18, 135–140 (1997)

35. Szidarovszky, F., Yakowitz, S.: A newproof of the existence and uniqueness of theCournot equilibrium.
Int. Econ. Rev. 18, 787–789 (1977)

36. Szidarovszky, F., Yakowitz, S.: Contributions to Cournot oligopoly theory. J. Econ. Theory 28, 51–70
(1982)

37. Tan, K., Yu, J., Yuan, X.: Existence theorems of Nash equilibria for non-cooperative n-person games.
Int. J. Game Theory 24, 217–222 (1995)

38. Vasin, A., Vasina, P., Ruleva, T.: On organization of markets of homogeneous goods. J. Comput. Syst.
Sci. Int. 46, 93–106 (2007)

39. von Mouche, P.H.M.: On the geometric structure of the Cournot equilibrium set: the case of concave
industry revenue and convex costs. In: von Mouche, P.H.M., Quartieri, F. (eds.) Equilibrium Theory
for Cournot Oligopolies and Related Games: Essays in Honour of Koji Okuguchi, pp. 63–88. Springer,
Cham (2016)

40. vonMouche, P.H.M.: The Selten–Szidarovszky technique: the transformation part. In: Petrosyan, L.A.,
Mazalov, V.V. (eds.) Recent Advances in Game Theory and Applications, pp. 147–164. Birkhäuser,
Cham (2016)

41. von Mouche, P.H.M., Quartieri, F.: Existence of equilibria in Cournotian games with utility functions
that are discontinuous at the origin. Technical report, SSRN 2528435 (2012)

42. von Mouche, P.H.M., Quartieri, F.: On the uniqueness of Cournot equilibrium in case of concave
integrated price flexibility. J. Glob. Optim. 57(3), 707–718 (2013)

43. von Mouche, P.H.M., Quartieri, F.: Cournot equilibrium uniqueness via demi-concavity. Optimization
67(4), 441–455 (2017)

44. von Mouche, P.H.M., Quartieri, F., Szidarovszky, F.: On a fixed point problem transformation method.
In: Proceedings of the 10th IC-FPTA, Cluj-Napoca, Romania, pp. 179–190 (2013)

45. von Mouche, P.H.M., Sato, T.: Cournot equilibrium uniqueness: at 0 discontinuous industry revenue
and decreasing price flexibility. Int. Game Theory Rev. 21(2), 1940010 (2019)

46. von Mouche, P.H.M., Yamazaki, T.: Sufficient and necessary conditions for equilibrium uniqueness in
aggregative games. J. Nonlinear Convex Anal. 16(2), 353–364 (2015)

47. Yamazaki, T.: On the existence and uniqueness of pure-strategy Nash equilibrium in asymmetric rent-
seeking contests. J. Public Econ. Theory 10(2), 317–327 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Equilibrium uniqueness in aggregative games: very practical conditions
	Abstract
	1 Introduction
	2 Setting
	3 Main results
	4 The Selten–Szidarovzsky technique  
	4.1 Two variants
	4.2 The transformation part: nonlinear complementarity problem
	4.3 The transformation part: 1-dimensional fixed point problem
	4.4 The analysis part

	5 Applications
	5.1 Cournot oligopoly
	5.2 Oligopoly model with alternative objectives

	Acknowledgements
	References




