
Noname manuscript No.
(will be inserted by the editor)

Efficiently solving the thief orienteering problem
with a max-min ant colony optimization approach

Jonatas B. C. Chagas 1,2,* · Markus Wagner 3

Received: date / Accepted: date

Abstract We tackle the Thief Orienteering Problem (ThOP), an academic
multi-component problem that combines two classical combinatorial problems,
namely the Knapsack Problem and the Orienteering Problem. In the ThOP,
a thief has a time limit to steal items that distributed in a given set of cities.
While traveling, the thief collects items by storing them in their knapsack,
which in turn reduces the travel speed. The thief has as the objective to maxi-
mize the total profit of the stolen items. In this article, we present an approach
that combines swarm-intelligence with a randomized packing heuristic. Our
solution approach outperforms existing works on almost all the 432 bench-
marking instances, with significant improvements.

Keywords Ant Colony Optimization · Multi-Component Problems ·
Knapsack Problem · Orienteering Problem

1 Introduction

Many studies devoted to solving classical combinatorial optimization prob-
lems are directly motivated by real-world problems, such as packing prob-
lems, scheduling problems, and vehicle routing problems. While already chal-
lenging, many real-world problems exhibit multi-component structures: they

Jonatas B. C. Chagas
E-mail: jonatas.chagas@iceb.ufop.br

Markus Wagner
E-mail: markus.wagner@adelaide.edu.au

* Corresponding author
1 Departamento de Computação, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
2 Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil
3 School of Computer Science, The University of Adelaide, Adelaide, Australia

ar
X

iv
:2

10
9.

13
10

3v
3

 [
cs

.N
E

]
 2

6
O

ct
 2

02
1

https://orcid.org/0000-0001-7965-8419
https://orcid.org/0000-0002-3124-0061

2 Jonatas B. C. Chagas, Markus Wagner

comprise a number of interacting combinatorial optimization problems. Multi-
component problems are hard to solve as each component has the potential to
influence the feasibility as well as the quality of the other components [4].

Among the studied multi-component problems, vehicle routing problems
with loading constraints [15] appear to be very frequently investigated. In
these problems, tour are to be created for vehicles while constraints and aims
of specific loading policies must be taken into account. One of these problems
is the Traveling Thief Problem (TTP), which combines two classic well-known
and well-studied problems: the Knapsack Problem (KP) and the Traveling
Salesman Problem (TSP). The TTP was proposed in 2013 by Bonyadi et al. [3]
in order to provide an academic abstraction of multi-component problems for
the scientific community. In the TTP, a thief travels across all cities (TSP
component) and steals items along the way (KP component). The stolen items
are stored in a rented knapsack, for which the thief has to pay a time-dependent
fee. The overall objective of the thief is to maximize the following: the total
profit of all stolen items, minus the travel time multiplied with the renting rate.
As the travel speed is inversely proportional to the total weight of the items
in the knapsack, this non-constant cost sets the TTP apart from many vehicle
routing problems, such as the environmental prize-collection problem [26].

In this article, we tackle the Thief Orienteering Problem (ThOP) [23],
another academic multi-component problem. The ThOP has been proposed
based on the TTP, but with different interactions and constraints in mind. It
combines the Orienteering Problem (OP) and the Knapsack Problem (KP).
In operational research, the OP has been the subject of many studies [13,14]:
a traveler starts at a predetermined location, travels through a region visiting
checkpoints, and has to arrive at a control point within a given limited time.
Because each checkpoint has a score, the participant’s objective is to find a
route that maximizes the total score, i.e., where the sum of scores of the visited
checkpoints is the highest. In the ThOP context, the participant (i.e., the thief)
does not score points by just visiting a checkpoint but has to steal valuable
items located in them and carry the stolen items in their knapsack until the
end of their robbery journey. As in the TTP, in the ThOP, the thief has a
capacitated knapsack to carry the items. Moreover, as items are collected, the
knapsack becomes heavier, and the speed of the thief decreases. There is no
knapsack rental fee, and the thief only aims to find a route and a set of items
that maximizes their total stolen profit.

Although the ThOP and the TTP are related, the ThOP appears to be
more practical due to two key differences: in the ThOP (A) the participant
does not have to travel through all cities, and (B) the interaction is not de-
fined by the time-dependent rent for the knapsack, but by the time-constraint.
Even though the relaxation of difference (A) may seem to be straightforward,
handling this constraint is typically reflected in the design of heuristic [28] and
exact [29,19] algorithms, with only Chand and Wagner’s [6] Multiple Travel-
ing Thieves Problem (MTTP) being an exception. Regarding (B), applications
with routing time limit frequently arise in real-world scenarios, where there
is insufficient time and/or capacity to visit/met all possible locations. Exam-

Efficiently solving the ThOP with a max-min ACO approach 3

ples of this include cash logistics [20], urban crowd-sourcing [7], and concert
promotion [16].

Santos and Chagas [23] presented a Mixed Integer Non-Linear Program-
ming formulation for the ThOP (although without results) and two simple
heuristics. Afterwards, Faêda and Santos [9] proposed a genetic algorithm that
performed better on most instances. We have also addressed the ThOP in a
preceding article [5] with a two-phase approach based on Ant Colony Opti-
mization (ACO) and a greedy heuristic to construct the route and the packing
plan (stolen items) of the thief. Our ACO is able to find better solutions than
other aforementioned algorithms for most instances because of its focus on
creating efficient routes.

Here, we describe a number of improvements that we incorporated into our
ACO algorithm, which made it more substantially effective with regard to the
quality of the solutions found. In our computation experiments, we have inves-
tigated the importance of the parameters of our ACO algorithm considering
these improvement changes. In addition, to make a fairer comparison among
the other algorithms already proposed for the ThOP, we have also investigated
the parameters of those algorithms and then evaluate their performances on a
broad set of instances according to the results already presented in the litera-
ture.

In this article, we begin in Section 2 with a formal description of the TTP,
where we also present a mixed integer non-linear programming formulation.
Subsequently, we present our new approach for solving the ThOP in Section 3.
Then, we report on our computational experiments in Section 4. Lastly, we
summarize our present work and outline future work.

2 Problem definition

2.1 Formal definition

The Thief Orienteering Problem (ThOP) can be formally described as follows.
There is a set I = {1, 2, . . . ,m} of m items and a set C = {1, 2, . . . , n} of n
cities. Each item k ∈ I has a profit pk and weight wk associated. In addition,
each item is associated with only a single city, but a city can have multiple
items. Let us denoted by Ii the set of items localized at city i. From the
foregoing definition,

⋃
i∈C Ii = I and Ii

⋂
Ij = ∅ ∀i ∈ C, ∀j ∈ C \ {i}.

The items are scattered among all cities, except cities 1 and n (I1 = In = ∅).
Cities 1 and n are the cities where the thief starts and ends their journey. Let
us denote by A = {(i, j), ∀i ∈ C \ {n}, ∀j ∈ C \ {1, i}} the set of arcs in
which the thief can travel. For any pair of cities i and j with (i, j) ∈ A, the
distance dij between them is known. The thief can make a profit throughout
their journey by stealing items and storing them in a knapsack with a limited
capacity W . Moreover, the thief has a maximum time T to complete their
whole robbery journey. As stolen items are put into the capacitated knapsack,
its weight increases and the thief’s velocity decreases inversely proportional

4 Jonatas B. C. Chagas, Markus Wagner

to the knapsack weight. Specifically, when the knapsack is empty, the thief
can move with their highest velocity vmax. However, when the knapsack is
completely full, the thief moves with the minimum speed vmin. In general
terms, the thief can move with a speed v = vmax − w · (vmax − vmin) /W ,
where w is the current weight of their knapsack. The objective of the ThOP
is to find a path for the thief that starts from city 1 and ends at city n, as
well as a robbery plan, i.e., a set of items chosen from the cities visited that
maximizes the total profit stolen, ensuring that the capacity of the knapsack
W is not exceeded and that the total traveling time is within the given time
limit T .

We can represent any solution for the ThOP through a pair 〈π, z〉, where
π = 〈1, . . . , n〉 is a list of visited cities by the thief, and z = 〈z1, z2, . . . , zm〉
is a binary vector to represent the packing plan (zj = 1 if item j is collected,
and 0 otherwise) adopted by the thief throughout their robbery journey. Note
that the first and last cities are fixed for any feasible solution. In addition, the
number of cities visited may differ for different solutions.

It is important to note that nothing prevents the thief from visiting a
city more than once. In this scenario, the thief should collect all items of a
city at once on the last visit from that city to minimize their travel time and
consequently has more time to collect other items. One more aspect that should
be pointed out is that a solution that visits some cities without collecting any
items would only be advantageous if the distances between cities do not respect
the triangular inequality because it may be convenient that the thief visits a
city just to shorten their route. Nevertheless, as Santos and Chagas [23] have
defined the test problems for the ThOP – which we have also used in this work
– in such a way that the distances between cities respect triangular inequality,
it can be considered as an implicit optimization that any solution is formed
by a list of cities π without repetition.

2.2 Mixed Integer Non-Linear Programming formulation

In order to formally describe the ThOP through a mathematical formula-
tion, we have proposed an alternative Mixed Integer Non-Linear Programming
(MINLP) formulation to that proposed by Santos and Chagas [23]. In contrast
to Santos and Chagas’ formulation, the following formulation uses a polyno-
mial number of decision variables in terms of the number of cities and items.
These decision variables are detailed below:

– xij : binary variable that gets 1 if the thief crosses arc (i, j) ∈ A, and 0
otherwise.

– yi : binary variable that gets 1 if the thief visits city i ∈ C, and 0 otherwise.

– zk : binary variable that gets 1 if the thief collects item k ∈ I, and 0
otherwise.

– qi : variable that reports the weight of the knapsack after leaving city i ∈ C.

– ti : variable that informs the thief’s arrival time at city i ∈ C.

Efficiently solving the ThOP with a max-min ACO approach 5

With these variables, we can describe the following MINLP formulation for
the ThOP.

max
∑
k∈ I

pk · zk (1)

∑
k∈I

wk · zk ≤W (2)

yi ≥ zk i ∈ C, k ∈ Ii (3)

yi ≤
∑
k∈Ii

zk i ∈ C \ {1, n} (4)

y1 = yn = 1 (5)

∑
j:(i,j) ∈ A

xij = yi i ∈ C \ {n} (6)

∑
i:(i,j) ∈ A

xij = yj j ∈ C \ {1} (7)

qj ≥

(
qi +

∑
k∈Ij

wk · zk

)
· xij (i, j) ∈ A (8)

tj ≥

(
ti +

dij
vmax − ν · qi

)
· xij (i, j) ∈ A (9)

xij ∈ {0, 1} (i, j) ∈ A (10)

yi ∈ {0, 1} i ∈ C (11)

zk ∈ {0, 1} k ∈ I (12)

0 ≤ qi ≤W i ∈ C (13)

0 ≤ ti ≤ T i ∈ C (14)

The objective (1) is to maximize the total profit of items collected. Con-
straint (2) ensures that the total weight of items collected does not exceed
the knapsack capacity. While constraints (3) guarantee that the thief must
visit a city to collect any item from it, constraints (4) ensure that the thief
does not visit cities where no items are selected. Note that constraints (4) are
not needed for the model to produce feasible solutions. However, these con-
straints strengthen the model by removing unprofitable route combinations.
Constraint (5) simply imposes that cities 1 and n have to be visited once
they are, respectively, the fixed start and end points of any feasible route.
Constraints (6) and (7) guarantee route connectivity. Constraints (8) and (9)
guarantee that the knapsack weight and the route time is properly increasing
along the route according to the items, which also avoid subcycles. Note that
constraints (8) and (9) are non-linear. Finally, constraints (10)-(14) define the

6 Jonatas B. C. Chagas, Markus Wagner

scope and domain of the decision variables. Note that, as constraints (13) en-
sure that the knapsack weight must be always less than knapsack capacity W
throughout the route, constraint (2) could be removed. However, constraints
(13) may be weaker for the purpose expressed by constraint (2) due to the
multiplication by the variable xij , which allows that weak fractional solutions
to be considered during the resolution of the formulation.

It is worth mentioning that constraints (8) can be linearized by rewrit-
ing them using Big-M constants as shown in (15). On the other hand, we
cannot linearize constraints (9) as they involve divisions and multiplications
of decision variables. Nevertheless, we have also rewritten them using Big-M
constants, as shown in (16), to remove their non-linear multiplications. In con-
straints (15) and (16), we have used different Big-M constants M ′

j and M ′′
ij ,

which should assume any sufficiently large number that is greater than or equal
to W +

∑
i∈Ij

wi and T + dij/vmin, respectively.

qj ≥ qi +
∑
k∈Ij

wk · yk −M ′
j ·
(
1− xij

)
(i, j) ∈ A (15)

tj ≥ ti +
dij

vmax − ν · qi
−M ′′

ij ·
(
1− xij

)
(i, j) ∈ A (16)

Although the foregoing mathematical formulation may be used for solving
the ThOP from a mathematical solver, we have not considered it in our ex-
periments due to its complexity. As constraints (16) are still non-linear, they
greatly increase the complexity of the formulation, making it impracticable to
solve even the smallest-size instance defined in the literature for the ThOP [23].
In fact, our formulation cannot find even reasonable bounds for the problem
due to its non-linearity. Therefore, we have bet in a heuristic strategy for
helping the thief in their robbery, leaving an improved mathematical formula-
tion and exact algorithms for future investigation. As our MINLP formulation
might be used as a starting point for other investigations, we have made it
publicly available at https://github.com/jonatasbcchagas/minlp thop1, which
has been implemented using PySCIPOpt [18], a Python interface for the SCIP
Optimization Suite [12].

3 Problem-solving methodology

Throughout this section, we describe our solution approach, called ACO++,
for solving the ThOP. Our ACO++ is an improved version of the ACO algo-
rithm previously presented in [5]. At the end of this section, we highlight the
differences between both algorithms.

1 In addition to the code of our mathematical model, it also contains some experiments
and results on smaller instances that we have created in order to solve the model and
establish a benchmarking with exact results. However, the experiments have shown that
even for instances with 15 cities and 1 item per city, our model cannot be solved, and it also
is not able to find tight mathematical bounds within a reasonable computational time.

https://github.com/jonatasbcchagas/minlp_thop

Efficiently solving the ThOP with a max-min ACO approach 7

3.1 The overall algorithm

Our solution approach has been loosely based on Wagner’s TTP approach [27],
with Ant Colony Optimization (ACO) [8] as the central component.

Following [27], we have used the ACO for determining the thief’s route,
while another algorithm for determining their packing plan for each route
found by the ants. We have used the MAX-MIN ant system [24], which limits
all pheromones to an interval. In our implementation, we have used Stützle’s
ACOTSP 1.0.3 framework2 for constructing the thief’s route. The ACOTSP
is an efficient framework that implements several ACO algorithms for the
symmetric TSP. Most of the ACOTSP framework remains untouched in our
approach, with only a few minimal modifications necessary to adapt it to the
ThOP specifications. First, to construct the feasible routes for the thief from
a given city to a given destination, and without the need to visit all cities, we
have made an adaptation so that the ants built their routes until the thief’s
destination city, that is, city n has been visited. Thus, the ants are able to
build routes of varying sizes.

Second, the pheromone trail updates are performed based on the quality
of the TSP routes. Because the TSP’s objective is to find the shortest possible
route over all cities, the fitness of a given route is inversely proportional to
its total distance. In contrast to this, in our ACOTSP adaptation, the fitness
of each route is set based on the profit of the stolen items, because stolen
items define the quality of ThOP solutions, which are defined by our proposed
packing routine (to be described later): the fitness of a ThOP’s route π is
inversely proportional to UB + 1− p(z), where UB is an upper bound for the
ThOP and p(z) is the total profit of packing plan z. Thus, the fitness behaves
similar to that of the TSP, and we do not need to modify the ACOTSP any
further. To set the upper bound UB, we use the optimal solution for the KP
version that allows the selection of fractions of items, which can be solved in
O(m log2m) [25].

In Algorithm 1, we show the simplified overview of our ACO++. At the
beginning (Line 1), the best ThOP solution (route and packing plan) found
by the algorithm is initialized as an empty solution. The algorithm performs
its iterative cycle (Lines 2 to 18) as long as the stopping criterion is not met.
At Line 3, each ant constructs a route for the thief, and then packing plans are
created (Line 4 and 5). The ACOTSP framework allows us to apply several
classic local search heuristics: 2-opt, 2.5-opt, and 3-opt [1]. If any local search
is enabled in our algorithm (Line 6), that local search procedure is performed
on each route π, thus generating routes π′ (Line 7), which may be better than
π regarding the distance costs. In the next step, a packing plan z′ is created
from π′ (Line 8). If z′ is better than z (Line 9), π and z are replaced by π′

and z′ (Line 10). At Lines 13 to 15, we update the best solution. Note that,
to achieve more efficient routes, we remove from π all those cities from which
no items are stolen (Line 14). As we have stated before, this is only true as

2 Publicly available online at http://www.aco-metaheuristic.org/aco-code

http://www.aco-metaheuristic.org/aco-code

8 Jonatas B. C. Chagas, Markus Wagner

all ThOP instances use distances that preserve the triangular inequality. After
every route has been considered, the pheromones are updated according to the
quality of the ThOP solutions (Line 17). In the end, the best solution found
is returned.

Algorithm 1: ACO++ algorithm for the ThOP

1 πbest ← ∅, zbest ← ∅
2 repeat
3 Π ← construct routes using ants
4 foreach route π ∈ Π do
5 z ← construct a packing plan from π
6 if local search procedure is activated then
7 π′ ← perform a local search procedure on route π
8 z′ ← construct a packing plan from π′

9 if profit of z′ is higher than profit of z then
10 π ← π′, z ← z′

11 end

12 end

13 if profit of z is higher than profit of zbest then
14 πbest ← ζ(π), zbest ← z

15 end

16 end
17 update ACO statistics and pheromone trail

18 until stopping condition is fulfilled

19 return πbest, zbest

ζ(π) removes from π all cities where no items are stolen according to the packing plan z.

3.2 Randomized packing heuristic

To construct a packing plan in our proposed ACO++ for a given route π, we
use our previously developed, randomized heuristic for solving the ThOP [5]:3

in brief, the randomization varies the relative influence of weights, prof-
its, and distances in the (originally deterministic) heuristic PackIterative,
which is an efficient packing algorithm developed for the TTP [10]. This non-
deterministic strategy lets us explore the packing plan space even for a fixed
route, which can lead to overall better configurations. This was also necessi-
tated by the observation that the ants would often find near-identical routes
during an optimization run.

3 As stated by Polyakovskiy and Neumann [22], determining the optimal packing plan is
NP-hard, even when the route of the thief is kept fixed.

Efficiently solving the ThOP with a max-min ACO approach 9

3.3 Differences between the ACO++ and ACO approaches

Compared to the ACO described in [5], we have incorporated two new features
into our ACO++. These features are described in the following:

1. The ants of ACO++ construct routes that do not necessarily visit all cities,
while in our previous ACO the ants always construct complete TSP tours,
i.e., all cities are visited. Note that, although both algorithms remove from
the route all cities in which no item is selected, there is now a higher con-
sistency with respect to the ThOP’s definition, because ants do not have to
visit all cities. Note that this allows ants to construct routes that might not
be easily constructed from our previous ACO. In addition, when a route
visits fewer cities fewer items are available to be collected from that route,
which reduces the search space to find a packing plan, thus making our
packing routines more computationally efficient. It is also because of this
last point, that we had to adapt our randomized packing heuristic algo-
rithm to consider only the items that can be selected from each constructed
route. However, its core idea remains unchanged.

2. There is now the possibility to apply different local searches on each route
constructed by the ants in our ACO++. While this results in a TSP-bias
toward shorter routes, finding shorter routes may help the thief to better
plan their robbery journey.

4 Computational study

In the following, we present the experiments performed to study the perfor-
mance of the proposed algorithm against other algorithms proposed for the
ThOP [23,9,5]. As the computational budget of all ThOP algorithms are based
on wallclock time, in order to enable a fair comparison, we have rerun all ThOP
codes, except for Faêda and Santos [9]’s algorithm because we have not had
access to their code. In our experiments, we have used a machine with Intel(R)
Xeon(R) CPU X5650 @ 2.67GHz, running CentOS 7.4.

Our algorithm has been implemented based on Thomas Stützle’s ACOTSP
1.0.3 framework, which has been in C programming language. All raw results
and solutions (tours and packing plans), as well as the code, are publicly
available at https://github.com/jonatasbcchagas/acoplusplus thop.

4.1 Benchmarking instances

To evaluate the different ThOP approached, we use all 432 ThOP instances
from [23]. These have been created based on the TTP instances [21] by remov-
ing the items in city n and by adding a maximum travel time. The instances
have the following characteristics:

• numbers of cities: 51, 107, 280, and 1000 (TSP instances: eil51, pr107,
a280, dsj1000);

https://github.com/jonatasbcchagas/acoplusplus_thop

10 Jonatas B. C. Chagas, Markus Wagner

• numbers of items per city: 01, 03, 05, and 10;
• sizes of knapsacks: 01, 05 and 10 times the size of the smallest knapsack;
• types of knapsacks: values and weights of the items are either uncorrelated

(unc), uncorrelated with similar weights (usw), or bounded and strongly
correlated (bsc);

• maximum travel times: 01, 02, and 03 classes. These values refer to 50%,
75%, and 100% of instance-specific references times defined in the original
ThOP paper [23].

In the remainder of this article, each instance will be identified as
XXX YY ZZZ WW TT, where XXX, YY, ZZZ, WW and TT indicate the different char-
acteristics of the instance at hand. For example, pr107 05 bsc 01 01 identifies
the instance with 107 cities (TSP instance pr107), 5 items per city with their
weights and values bounded and strongly correlated with each other, and the
smallest knapsack and time limit defined.

4.2 Parameter tuning

In the following, we tune a variety of ACOTSP parameters: ants defines the
number of ants; alpha controls the relative importance of pheromone values
in the construction of routes; beta defines the influence of distances between
cities; rho is the evaporation rate of the pheromones; and localsearch controls
whether and what local search procedure to apply. Moreover, we vary the
number of attempts of our randomized packing heuristic ptries. To stop the
algorithm, as in previous work on the ThOP, we limit the execution time to
d0.1me seconds, which is determined based on the number of items m of each
particular instance.

To find well-performing configurations, we have followed the same tuning
experiments used in [5], i.e., we have used the Irace package [17] for the auto-
matic configuration of algorithms [2], in order to determine the influence of pa-
rameter values across different instance sets. We have divided all 432 instances
into 48 groups and then executed Irace on each of them to achieve tuned config-
urations that (1) perform well and (2) that can be analyzed to learn about the
problem domain. Each instance group is identified as XXX YY ZZZ: XXX denotes
the TSP base group, YY the number of items per city and ZZZ the knapsack
type. Each group XXX YY ZZZ contains all nine instances defined with different
knapsack sizes and maximum travel time.

In Table 1 we show the parameters as well as their ranges; the ranges were
determined in preliminary experiments. We have used Irace with its default
settings, except for the parameter maxExperiments, which we have set to 5000.

In Figure 1, we show for each group of instances the configurations re-
turned by Irace. Because Irace can return more than one configuration, we
can sometimes see several configurations originating from the same instance
(shown in the left-most columns). Each axis stands for a parameter and each
parameter configuration is described by a line that intersects each parallel axis
in its corresponding value. We can see which parameter values have been most

Efficiently solving the ThOP with a max-min ACO approach 11

Table 1: Parameter values considered during the tuning experiments.

Parameter Investigated values

ants {10, 20, 50, 100, 200, 500, 1000}
alpha {0.00, 0.01, 0.02, . . . , 10.00}
beta {0.00, 0.01, 0.02, . . . , 10.00}
rho {0.00, 0.01, 0.02, . . . , 1.00}

ptries {1, 2, 3, 4, 5}
localsearch {no local search, 2-opt, 2.5-opt, 3-opt}

selected among all tuning experiments by looking for “concentrations” of lines.
We use different styles and colors to emphasize the results obtained for each
individual group. All logfiles for these experiments can be found at the GitHub
repository along with our code.

ant
s

alp
ha

bet
a

rho ptr
ies

loc
als

ear
ch

eil51_10_usw
eil51_10_unc
eil51_10_bsc
eil51_05_usw
eil51_05_unc
eil51_05_bsc
eil51_03_usw
eil51_03_unc
eil51_03_bsc
eil51_01_usw
eil51_01_unc
eil51_01_bsc

10

20

50

100

200

500

1000

0

2.5

5

7.5

10

0

2.5

5

7.5

10

0

0.25

0.5

0.75

1

1

2

3

4

5

no local
search

2-opt

2.5-opt

3-opt

ant
s

alp
ha

bet
a

rho ptr
ies

loc
als

ear
ch

pr107_10_usw
pr107_10_unc
pr107_10_bsc
pr107_05_usw
pr107_05_unc
pr107_05_bsc
pr107_03_usw
pr107_03_unc
pr107_03_bsc
pr107_01_usw
pr107_01_unc
pr107_01_bsc

10

20

50

100

200

500

1000

0

2.5

5

7.5

10

0

2.5

5

7.5

10

0

0.25

0.5

0.75

1

1

2

3

4

5

no local
search

2-opt

2.5-opt

3-opt

ant
s

alp
ha

bet
a

rho ptr
ies

loc
als

ear
ch

a280_10_usw
a280_10_unc
a280_10_bsc
a280_05_usw
a280_05_unc
a280_05_bsc
a280_03_usw
a280_03_unc
a280_03_bsc
a280_01_usw
a280_01_unc
a280_01_bsc

10

20

50

100

200

500

1000

0

2.5

5

7.5

10

0

2.5

5

7.5

10

0

0.25

0.5

0.75

1

1

2

3

4

5

no local
search

2-opt

2.5-opt

3-opt

ant
s

alp
ha

bet
a

rho ptr
ies

loc
als

ear
ch

dsj1000_10_usw
dsj1000_10_unc
dsj1000_10_bsc
dsj1000_05_usw
dsj1000_05_unc
dsj1000_05_bsc
dsj1000_03_usw
dsj1000_03_unc
dsj1000_03_bsc
dsj1000_01_usw
dsj1000_01_unc
dsj1000_01_bsc

10

20

50

100

200

500

1000

0

2.5

5

7.5

10

0

2.5

5

7.5

10

0

0.25

0.5

0.75

1

1

2

3

4

5

no local
search

2-opt

2.5-opt

3-opt

Fig. 1: Irace results for the 48 instance groups. Dashed, solid, and dotted
lines are used, respectively, to emphasize the groups of instances with items
where their weights and values are uncorrelated (unc), uncorrelated with sim-
ilar weights (usw), and bounded and strongly correlated (bsc). Blue, green,
red, and yellow lines represent, respectively, groups of instances with 1, 3, 5,
and 10 items-per-city.

12 Jonatas B. C. Chagas, Markus Wagner

We can make several observations. First, we notice that the number of ants
is typically between 50 and 200. The importance of the pheromone trail (α) is
typically low, especially for the groups of instances that consider the TSP bases
eil51, and a280. In turn, the importance of distances between cities (β) varies
depending on the underlying TSP instance. This is to be expected, because the
underlying TSP instances are different in nature and not normalized, hence
requiring different values of beta. The evaporation rate of the pheromone trail
has had a behavior more spread, although it seems to have a compensation
correlation between the parameter beta: the higher the influence of distances
between cities, the lower the evaporation rate of the pheromone trail. We can
also observe that nearly all tuned configurations require the multiple invoca-
tion of our randomized packing heuristic, with the number of packing attempts
widely spread among each other. Regarding the application of local searches on
routes, one can note that for most groups of instances, the use of 2-opt moves
produces better ThOP solutions. However, some configurations do not include
the use of any local search. Note that there are no configurations that indicate
the use of 2.5-opt and 3-opt moves. Potentially, this is because high-quality
TSP routes do not necessarily result in high-quality ThOP routes. Therefore,
there may be no need to use local searches with larger neighborhood moves
based solely on route distances as an improvement phase for ThOP routes.

4.3 Comparison of ThOP solution approaches

We compare the quality of the solutions obtained by ACO++ with the quality
of the solutions obtained by other algorithms (ILS [23], BRKGA [23], GA [9],
ACO [5]) already proposed for the ThOP. To enable a fair comparison, we also
tuned the parameters of the BRKGA and ACO following the same process for
ACO++, i.e., we have individually executed the Irace for each 48 different
groups of instances. The ILS algorithm has no parameters to be tuned [23],
while for the GA, we have not investigated its parameters because we have
not had access to its code. Therefore, for the GA, we have made our analysis
based on the results reported in [9].

Because all algorithms are randomized, we have performed 30 independent
runs per instance. Each run has been executed with the parameter values with
the best mean performance among those returned by Irace. ILS, BRKGA, and
ACO codes, as well as their tuned configurations, raw results and solutions
found, are also available at the GitHub link along with our ACO++.

In the first analysis, we compare the performance of the solutions obtained
by measuring for each instance the achieved approximation ratio: for each in-
stance and algorithm, we take the average objective value obtained considering
the independent runs of that algorithm and compute the ratio between that av-
erage objective value and the best objective value found among all algorithms.
Note that the higher the approximation ratio, the higher the average perfor-
mance of that particular algorithm. In Figure 2, we plot for every instance and
algorithm the approximation ratio as a heatmap in order to highlight larger

Efficiently solving the ThOP with a max-min ACO approach 13

differences. Moreover, we use diamond symbols to highlight the instances for
which each algorithm has found the best known solutions.

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03

(a) ILS

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03

(b) BRKGA

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03

(c) GA

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03

(d) ACO

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03

(e) ACO++

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eil
51
_0
1

eil
51
_0
3

eil
51
_0
5

eil
51
_1
0

pr
10
7_
01

pr
10
7_
03

pr
10
7_
05

pr
10
7_
10

a2
80
_0
1

a2
80
_0
3

a2
80
_0
5

a2
80
_1
0

ds
j10
00
_0
1

ds
j10
00
_0
3

ds
j10
00
_0
5

ds
j10
00
_1
0

bsc_01_01
bsc_01_02
bsc_01_03
bsc_05_01
bsc_05_02
bsc_05_03
bsc_10_01
bsc_10_02
bsc_10_03
unc_01_01
unc_01_02
unc_01_03
unc_05_01
unc_05_02
unc_05_03
unc_10_01
unc_10_02
unc_10_03
usw_01_01
usw_01_02
usw_01_03
usw_05_01
usw_05_02
usw_05_03
usw_10_01
usw_10_02
usw_10_03Fig. 2: Approximation ratio of the solution approaches. Diamond symbols

highlight in which the instances each algorithm has found the best solutions.

From Figure 2, we can make several observations. As stated by Santos and
Chagas [23], we can also confirm that their BRKGA has outperformed their
ILS for most instances, with higher prominence on the larger-size instances. In
addition, one can note that their algorithms perform better for instances that
involve only one item per city. Regarding the best-known solutions, we can

14 Jonatas B. C. Chagas, Markus Wagner

see that their algorithms have not been able to find many of them. The GA
proposed by Faêda and Santos [9] has outperformed, in general, both BRKGA
and ILS solution approaches. Although BRKGA has found more best-known
solutions, the GA has a more uniform behavior regarding the dimensions of
the instances. Note that our previous ACO algorithm [5] has reached a better
approximation ratio for almost all instances when compared to GA and also
to ILS and BRKGA. In turn, our current ACO++ algorithm has presented
a better or equal performance regarding the other algorithms for almost all
instances. Similarly, it has typically found the best solutions for most of the
instances.

In order to compare each pair of algorithms as to the best solutions found
by them, we show in Table 2 the percentage of the number of instances in
which every algorithm found better or equal quality solutions than another
algorithm. The results shown in this table corroborate with those shown in
Figure 2. In addition to showing that the ACO++ algorithm outperformed all
other algorithms by more than 96% of the total of instances, we can also see
that our previous ACO also is more efficient than ILS, BRKGA, and GA by
over 88% of instances. In turn, GA is more efficient than ILS and BRKGA,
and BRKGA overcomes ILS.

Table 2: Percentage of the number of instances in which algorithm i found
better or equal quality solutions than algorithm j.

i ↓ j → ILS BRKGA GA ACO ACO++

ILS - 3.01% 20.37% 4.63% 2.55%
BRKGA 99.54% - 37.50% 14.58% 8.56%

GA 81.71% 64.58% - 2.78% 2.31%
ACO 96.99% 88.89% 98.61% - 5.32%

ACO++ 99.54% 96.06% 99.54% 98.15% -

As both algorithms based on ACO metaheuristics have had the best and
most similar performances, we statistically compare the quality of their solu-
tions using the Wilcoxon signed-rank test. At a significance level of 5%, the
performance of ACO++ has been statistically worse than ACO in only 11 in-
stances, in 12 instances there is no difference between the performance of both
algorithms, while in 409 instances (about 95% of total) ACO++ has been better
than ACO.

In Table 3, we summarize the results obtained with a closer analysis of
the solutions found by ACO and ACO++. For each TSP base instance (XXX)
and number of items per city (YY), which resulted in 27 instances each, we
show averaged information concerning all the best solutions achieved by both
approaches. Column D shows the ratio between the total distance traveled and
the number of cities visited by the thief, while columns %T and %W report,
respectively, the percentage spent of the time limit and the percentage used of
the knapsack capacity. If values in these last two columns are close to 100%,

Efficiently solving the ThOP with a max-min ACO approach 15

then these indicate limiting factors. Note that both algorithms have a similar
use of the time limit. On the other hand, the solutions found by ACO++ have
used more the knapsack capacity, especially for instances with more cities and
items. From the values in column D, we can understand this behavior. Note
that the ratio between the total distance traveled and the number of cities
visited of the solutions found by ACO is higher than those found by ACO++.
Note that the solutions found by ACO have a ratio between the total distance
traveled and the number of cities visited higher than those solutions found
by ACO++, which indicates that ACO has found the most spread-out routes
and/or with more edge crossings. Therefore, as the routes found by ACO++

are more condensed and/or efficient, the thief is able to travel more effectively
and, consequently, uses better the knapsack capacity, thus managing to collect
a better set of items. To illustrate this behavior, Figure 3 shows for some
instances, where the resulting quality differs significantly, the best solution
found by each algorithm.

In summary, we can see that our ACO++ has been able to find signifi-
cantly more efficient routes, which allows achieving better packing plans, and,
consequently, achieving higher profits.

Table 3: Information on the structure of the best solutions found. D is the
ratio between the total distance traveled and the number of cities visited; %T
and %W denote the percentage spent of the time limit and the percentage
used of the knapsack capacity.

TSP base Number of items ACO ACO++

(XXX) per city (YY)
D %T %W D %T %W

eil51 01 10.91 98.60 78.06 10.46 99.00 79.55
03 9.46 99.60 83.85 8.63 99.55 85.34
05 9.26 99.62 83.39 8.53 99.78 85.48
10 9.12 99.84 85.26 8.20 99.88 86.57

pr107 01 718.92 99.66 79.58 680.85 99.74 81.82
03 498.71 99.85 81.78 476.67 99.85 83.84
05 471.77 99.93 83.22 445.23 99.95 83.79
10 449.09 99.95 84.95 417.47 99.93 84.40

a280 01 16.52 99.61 79.57 14.23 99.80 83.94
03 12.60 99.74 81.83 10.45 99.76 85.68
05 11.84 99.95 82.72 9.61 99.93 86.27
10 11.17 99.92 83.02 9.22 99.92 86.26

dsj1000 01 44632.08 74.72 79.31 37015.71 72.08 86.16
03 26635.61 99.90 82.91 18943.46 99.89 89.57
05 25648.23 99.85 82.43 18064.09 99.82 89.91
10 23795.22 99.92 84.03 17700.59 99.68 90.35

16 Jonatas B. C. Chagas, Markus Wagner

profit = 68653 distance = 429 profit = 70830 distance = 340

profit = 180879 distance = 34258 profit = 195716 distance = 33796

profit = 422948 distance = 2640 profit = 441530 distance = 2348

Fig. 3: The graphical representation of the solutions found by ACO (left)
and ACO++ (right) for instances eil51 10 bsc 01 03 (top), pr107 05 usw 10 02
(middle), and a280 10 unc 01 03 (bottom). The initial and final cities are
highlighted using a green triangle and a red square, respectively. The lines
connecting pairs of cities represent the route traveled by the thief, with the
increasing line thickness corresponding to the thief’s knapsack weight.

Efficiently solving the ThOP with a max-min ACO approach 17

4.4 Solving the classical Orienteering Problem

One can note that the classical Orienteering Problem (OP) [13] is a subproblem
of the ThOP, i.e., its definition is contained within the definition of the ThOP.
Indeed, if (i) there is only one item per city (|Ii| = 1, ∀i ∈ C \ {1, n}), (ii) the
thief travels at a constant speed (vmax = vmin), and (iii) their knapsack has
unlimited capacity (W = ∞), we have the same constraints and objective on
both problems. Therefore, we can use any ThOP algorithm for solving the
classic OP, simply by fixing some information in the ThOP instances in order
to convert them into OP instances.

To investigate the efficiency of BRKGA, ILS, ACO, and ACO++ algorithms
proposed for the ThOP in solving the OP, we have adapted the ThOP instances
that have only one item per city, setting their vmax = vmin = 1 and W to
a large number so that the knapsack capacity is greater than the sum of all
item profits. These instances will be identified as XXX YY ZZZ WW TT, as already
mentioned in Section 4.1, with the emphasis now that WW = inf.

For our analysis, we have performed 30 independent runs per instance
and algorithm. Then, for each instance, we have taken the average objective
value obtained by each algorithm to compute the ratio between that value
and the optimal objective value of that instance. We have determined the
optimal value for each instance from the branch-and-cut algorithm proposed
by Fischetti et al. [11], which has been executed without time limitation. In
Table 4, we show all computed ratios, where the highest ratio for each instance
is highlighted in bold. Note that the higher the ratio, the higher the average
performance of that particular ThOP algorithm in solving the OP instance.

From Table 4, we can verify the same behavior among the algorithms when
solving OP instances as seen in the previous experiments: better efficiency of
the algorithms based on the ACO strategy, with a significant better perfor-
mance in our ACO++ algorithm. Note that our algorithm is able to find high-
quality solutions for all instances. For almost all instances, the ratio between
the objective values of solutions found by the ACO++ and their optimal values
is larger than 0.95. On average, our algorithm has reached a ratio of 0.98. Note
that for all instances with the TSP base dsj1000, both algorithms based on
ACO has found the optimal solutions (ratio = 1.00). Analyzing such solutions,
we see that the thief is able to visit all cities and, consequently, steal all items.
This has occurred because without the speed reduction and with an unlimited
knapsack, these instances become easier once the thief has enough time and
space in their knapsack to steal and carry all items along a path that does not
need to be very optimized. Anyway, it is noteworthy that the other algorithms
have not been able to find such solutions.

18 Jonatas B. C. Chagas, Markus Wagner

Table 4: Ratios between the average objective value obtained by each algorithm
and the optimal objective value for OP instances.

Instance ILS BRKGA ACO ACO++

eil51 01 bsc inf 01 0.922 0.953 0.921 0.965
eil51 01 bsc inf 02 0.912 0.961 0.977 0.995
eil51 01 bsc inf 03 0.879 0.964 0.968 0.988
eil51 01 unc inf 01 0.872 0.963 0.965 0.997
eil51 01 unc inf 02 0.856 0.956 0.989 0.996
eil51 01 unc inf 03 0.905 0.979 0.999 1.000
eil51 01 usw inf 01 1.000 0.989 1.000 1.000
eil51 01 usw inf 02 0.979 0.996 0.969 1.000
eil51 01 usw inf 03 0.917 0.958 0.966 1.000

pr107 01 bsc inf 01 0.721 0.852 0.923 0.940
pr107 01 bsc inf 02 0.709 0.892 0.967 0.999
pr107 01 bsc inf 03 0.791 0.969 1.000 1.000
pr107 01 unc inf 01 0.689 0.954 0.935 0.955
pr107 01 unc inf 02 0.668 0.904 0.924 0.961
pr107 01 unc inf 03 0.718 0.915 0.999 1.000
pr107 01 usw inf 01 0.861 0.985 0.945 0.965
pr107 01 usw inf 02 0.732 0.943 0.961 0.979
pr107 01 usw inf 03 0.708 0.908 0.940 0.971

a280 01 bsc inf 01 0.537 0.683 0.781 0.882
a280 01 bsc inf 02 0.516 0.655 0.869 0.954
a280 01 bsc inf 03 0.533 0.675 0.981 0.997
a280 01 unc inf 01 0.484 0.639 0.774 0.927
a280 01 unc inf 02 0.476 0.642 0.932 0.973
a280 01 unc inf 03 0.522 0.709 1.000 1.000
a280 01 usw inf 01 0.637 0.750 0.833 0.956
a280 01 usw inf 02 0.500 0.657 0.814 0.932
a280 01 usw inf 03 0.476 0.627 0.828 0.949

dsj1000 01 bsc inf 01 0.669 0.882 1.000 1.000
dsj1000 01 bsc inf 02 0.836 0.952 1.000 1.000
dsj1000 01 bsc inf 03 0.965 0.995 1.000 1.000
dsj1000 01 unc inf 01 0.589 0.904 1.000 1.000
dsj1000 01 unc inf 02 0.759 0.961 1.000 1.000
dsj1000 01 unc inf 03 0.956 0.995 1.000 1.000
dsj1000 01 usw inf 01 0.272 0.656 1.000 1.000
dsj1000 01 usw inf 02 0.363 0.770 1.000 1.000
dsj1000 01 usw inf 03 0.438 0.882 1.000 1.000

Average 0.705 0.863 0.949 0.980

Efficiently solving the ThOP with a max-min ACO approach 19

5 Conclusions

In this article, we have proposed an improvement to a swarm-based approach
to the academic Thief Orienteering Problem (ThOP): we have combined a
heuristic approach based on Ant Colony Optimization with a randomized
packing heuristic and with local searches. Using extensive tuning on groups of
instances, we have studied the effects of our algorithmic components. Further-
more, we have evaluated the performance of the algorithm on the complete set
of instances available in the literature. The experiments show that our solution
strategy is able to find better solutions with large improvements when com-
pared to the other solution methods proposed for the problem. Based on our
analysis, the efficiency of our algorithm is due to the fact that ants have been
able to find more efficient routes, which has allowed our packing heuristic to
select a better set of items. In addition, we have shown that our algorithm is
able to find high-quality solutions for the classic Orienteering Problem without
any modification in its design.

For future research, we may investigate a variant of the current problem
that generalizes to multiple thieves. Another interesting direction will be to
approach the problem in a bi-objective version, where are to maximize the total
profit and minimize the total distance traveled. By combining both foregoing
directions, it will create a very interesting, challenging, and general problem
with potential applications in real-world scenarios with routing problems under
time-dependent limitations.

Acknowledgements The authors would like to thank the following institutions and
funding bodies: Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil
(CAPES) - Finance code 001; Fundação de Amparo à Pesquisa do Estado de Minas Gerais
(FAPEMIG); Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq); Uni-
versidade Federal de Ouro Preto (UFOP); Universidade Federal de Viçosa (UFV); and Aus-
tralian Research Council Project DP200102364.

References

1. Aarts, E., Aarts, E.H., Lenstra, J.K.: Local search in combinatorial optimization. Prince-
ton University Press (2003)

2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An
overview. In: Experimental methods for the analysis of optimization algorithms, pp.
311–336. Springer (2010)

3. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: The first step
in the transition from theoretical problems to realistic problems. In: IEEE Congress on
Evolutionary Computation, pp. 1037–1044. IEEE (2013)

4. Bonyadi, M.R., Michalewicz, Z., Wagner, M., Neumann, F.: Evolutionary computation
for multicomponent problems: opportunities and future directions. In: Optimization in
Industry, pp. 13–30. Springer (2019)

5. Chagas, J.B., Wagner, M.: Ants can orienteer a thief in their robbery. Operations
Research Letters 48(6), 708 – 714 (2020)

6. Chand, S., Wagner, M.: Fast heuristics for the multiple traveling thieves problem. In: Ge-
netic and Evolutionary Computation Conference (GECCO), pp. 293–300. ACM (2016)

7. Chen, C., Cheng, S.F., Gunawan, A., Misra, A., Dasgupta, K., Chander, D.:
Traccs: A framework for trajectory-aware coordinated urban crowd-sourcing. In: J.P.

20 Jonatas B. C. Chagas, Markus Wagner

Bigham, D.C. Parkes (eds.) Second AAAI Conference on Human Computation and
Crowdsourcing (HCOMP). AAAI (2014). URL http://www.aaai.org/Library/HCOMP/

hcomp14contents.php
8. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: IEEE

Congress on Evolutionary Computation (CEC), vol. 2, pp. 1470–1477. IEEE (1999)
9. Faêda, L.M., Santos, A.G.: A genetic algorithm for the thief orienteering problem. In:

2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
10. Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches to

the traveling thief problem. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 385–392. ACM (2015)

11. Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through
branch-and-cut. INFORMS Journal on Computing 10(2), 133–148 (1998)

12. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Ge-
mander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T.,
Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch,
M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F.,
Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse
Institute Berlin (2020). URL http://nbn-resolving.de/urn:nbn:de:0297-zib-78023

13. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics
34, 307–318 (1987)

14. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey of re-
cent variants, solution approaches and applications. European Journal of Operational
Research 255(2), 315 – 332 (2016)

15. Iori, M., Martello, S.: Routing problems with loading constraints. Top 18(1), 4–27
(2010)

16. Kim, H., Kim, B.I., jin Noh, D.: The multi-profit orienteering problem. Computers and
Industrial Engineering 149, 106808 (2020)

17. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace
package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives 3, 43–58 (2016)

18. Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.:
PySCIPOpt: Mathematical programming in python with the SCIP optimization suite.
In: Mathematical Software – ICMS 2016, pp. 301–307. Springer International Publishing
(2016). DOI 10.1007/978-3-319-42432-3 37

19. Neumann, F., Polyakovskiy, S., Skutella, M., Stougie, L., Wu, J.: A fully polynomial
time approximation scheme for packing while traveling. In: Y. Disser, V.S. Verykios
(eds.) Algorithmic Aspects of Cloud Computing, pp. 59–72. Springer (2019)

20. Orlis, C., Bianchessi, N., Roberti, R., Dullaert, W.: The team orienteering problem with
overlaps: An application in cash logistics. Transportation Science 54(2), 470–487 (2020)

21. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A com-
prehensive benchmark set and heuristics for the traveling thief problem. In: Genetic
and Evolutionary Computation Conference (GECCO), pp. 477–484. ACM (2014)

22. Polyakovskiy, S., Neumann, F.: Packing while traveling: Mixed integer programming
for a class of nonlinear knapsack problems. In: International Conference on AI and
OR Techniques in Constriant Programming for Combinatorial Optimization Problems
(CPAIOR), pp. 332–346. Springer (2015)

23. Santos, A.G., Chagas, J.B.: The thief orienteering problem: Formulation and heuristic
approaches. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1191–1199.
IEEE (2018)

24. Stützle, T., Hoos, H.H.: Max–min ant system. Future generation computer systems
16(8), 889–914 (2000)

25. Toth, P., Martello, S.: Knapsack problems: Algorithms and computer implementations.
Wiley (1990)

26. Trachanatzi, D., Rigakis, M., Marinaki, M., Marinakis, Y.: A firefly algorithm for the
environmental prize-collecting vehicle routing problem. Swarm and Evolutionary Com-
putation p. 100712 (2020)

27. Wagner, M.: Stealing items more efficiently with ants: a swarm intelligence approach
to the travelling thief problem. In: International Conference on Swarm Intelligence
(ANTS), pp. 273–281. Springer (2016)

http://www.aaai.org/Library/HCOMP/hcomp14contents.php
http://www.aaai.org/Library/HCOMP/hcomp14contents.php
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023

Efficiently solving the ThOP with a max-min ACO approach 21

28. Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., Hutter, F.: A case study of
algorithm selection for the traveling thief problem. Journal of Heuristics 24(3), 295–
320 (2018)

29. Wu, J., Wagner, M., Polyakovskiy, S., Neumann, F.: Exact approaches for the travelling
thief problem. In: Asia-Pacific Conference on Simulated Evolution and Learning, pp.
110–121. Springer (2017)

	1 Introduction
	2 Problem definition
	3 Problem-solving methodology
	4 Computational study
	5 Conclusions

