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Abstract

A mathematical program with complementarity constraints (MPCC) is an optimization
problem with equality/inequality constraints in which a complementarity type constraint
is considered in addition. This complementarity condition modifies the feasible region so
as to remove many of those properties that are usually important to obtain the standard
optimality conditions, e.g., convexity and constraint qualifications. In the literature, these
problems have been tackled in many different ways: methods that introduce a parameter
in order to relax the complementarity constraint, modified simplex methods that use an
appropriate rule for choosing the non basic variable in order to preserve complementarity.
We introduce a decomposition method of the given problem in a sequence of parameterized
problems, that aim to force complementarity. Once we obtain a feasible solution, by means
of duality results, we are able to eliminate a set of parameterized problems which are not
worthwhile to be considered. Furthermore, we provide some bounds for the optimal value
of the objective function and we present an application of the proposed technique in a non
trivial example.

Keywords Mathematical programs with complementarity constraints, duality, decomposi-
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1 Introduction

In the field of equilibrium models, mathematical programs with complementarity constraints
(MPCC) form a class of important, but extremely difficult, problems. MPCC’s constitute a sub-
class of the well-known mathematical programs with equilibrium constraints (MPEC), widely
studied in recent years. Their relevance comes from many applications which arise, for exam-
ple, in economics and structural engineering [3, 6]. Their difficulty is due to the presence of
the complementarity constraints, because the feasible region may not enjoy some fundamental
properties: it may be not convex, even not connected and such that many of the standard con-
straint qualifications are violated at any feasible point. This last lack implies that the usual
KKT conditions may not be fulfilled at an optimal solution, even in the linear case [7], that is
the one considered in the present work.

In this paper we consider a reformulation of MPCC by means of a family of parameterized
linear problems whose minimization leads to an optimal solution of MPCC. Exploiting the classic
tools of the duality theory, we propose an iterative method which explores the set of parameters,
excluding at each step a subset of them, by means of a suitable cut; indeed, the optimal values of
the linear problems associated with such a subset are proved to be greater than or equal to the
optimal value related to the current parameter. A similar approach can be found in [5, 9] where
different kinds of cuts are considered. The method that we propose is different from the classic
relaxation and penalty methods for MPEC (see e.g. [4, 8]), and allows us to define an algorithm
which can be implemented in an interactive way taking advantage of some devices that speed
up the solving procedure, owing to the decomposition of the given problem in a sequence of
parameterized problems.

The paper is organized as follows. In Section 2, we introduce the problem and describe
the decomposition method of MPCC in a family of parameterized problems. In Section 3, we
exploit the classic tools of duality theory to obtain a necessary condition for improving the
current solution and, moreover, we establish a sufficient optimality condition. In Section 4, still
using duality, we obtain upper and lower bounds of the optimum value of the problem; in such
a way, we define a sequence of nested intervals, which allows us to stop the iterative procedure,
when their width is below a fixed tolerance. Finally, in Section 5, the iterative method is
described and illustrated by means of an example. In Section 6, we conclude with some final
remarks and the description of further developments.

2 A decomposition approach

We consider the following constrained minimization problem, whose objective function is linear
and having a linear complementarity constraint besides affine ones:

(P )
f0 := min(〈c, x〉+ 〈d, y〉)
s.t. (x, y) ∈ K := {(x, y) ∈ R

2n : Ax+By ≥ b, x ≥ 0, y ≥ 0, 〈x, y〉 = 0},

where A,B ∈ R
m×n, c, d ∈ R

n, b ∈ R
m and 〈·, ·〉 denotes the scalar product in R

n.
We will assume that the feasible set K nonempty and a global minimum point of P exists;

call it (x0, y0). Let us introduce the following penalized form for the gradient of the objective
function of P :

c(α) = (cj(αj) := cj + ρjαj , j = 1, ..., n),

d(α) = (dj(αj) := dj + σj(1− αj), j = 1, ..., n),
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where α = (α1, ..., αn) ∈ ∆ := {0, 1}n. For our purposes, we will assume that ρj and σj ,
j = 1, ..., n, are large enough positive constants; the meaning of this assumption will be clear
inside the proof of Theorem 1.

The given problem P can be associated with a family {P (α)}α∈∆ of subproblems

P (α)
f↓(α) := min [f(x, y;α) := 〈c(α), x〉+ 〈d(α), y〉]
s.t. (x, y) ∈ R := {(x, y) ∈ R

2n : Ax+By ≥ b, x ≥ 0, y ≥ 0}.

Let us suppose that ∀α ∈ ∆ the objective function of P (α) is bounded from below on R;
hence, ∀α ∈ ∆ there exists a minimum point, say (x(α), y(α)), of P (α). A sufficient condition
for the boundedness of f(·, ·;α) on R, ∀α ∈ ∆, is that 〈c, x〉+ 〈d, y〉 is bounded from below on
R, which obviously implies that the objective function of P is bounded from below on K, which
in turn yields that a global minimum point of P exists.

We have the following result.

Theorem 1. It holds

f0 = min
α∈∆

f↓(α) = min
α∈∆

min
(x,y)∈R

[f(x, y;α) = 〈c(α), x〉+ 〈d(α), y〉]. (1)

Proof. Suppose that (x0, y0) is a minimum point of P , so that f0 = 〈c, x0〉+ 〈d, y0〉. Recalling
that ∆ is a finite set, let i = 1 and αi ∈ ∆ := {α1, α2, . . . , α2n}. From the definition of c(α) and
d(α), we have

f(x, y;αi) = 〈c, x〉+ 〈d, y〉+
n
∑

j=1

ρjα
i
jxj +

n
∑

j=1

σj(1− αi
j)yj , ∀(x, y) ∈ R.

Let vertR be the set of vertices of R. Consider (x̄, ȳ) ∈ vertR; if (x̄, ȳ) is such that

n
∑

j=1

ρjα
i
j x̄j +

n
∑

j=1

σj(1− αi
j)ȳj = 0 (2)

(which happens independently on the positive constants ρ and σ), then 〈x̄, ȳ〉 = 0 and (x̄, ȳ) is
a feasible solution of P . Therefore, f0 ≤ f(x̄, ȳ;αi); choose ρi, σi ∈ R

n arbitrarily, for example
ρi = σi = (1, . . . , 1) ∈ R

n. Otherwise, if (x̄, ȳ) is a vertex of R such that (2) is not fulfilled,
we can choose ρi = (ρi1, . . . , ρ

i
n) and σi = (σi

1, . . . , σ
i
n) such that f0 ≤ f(x̄, ȳ;αi). Noticing that

vertR is a finite set, it is possible to find a couple (ρi, σi) such that

f0 ≤ f(x, y;αi), ∀(x, y) ∈ vertR. (3)

Since a minimum point of P (α) is attained in the set vertR, from (3), it follows f0 ≤ f↓(αi).
Now, consider αi+1; if f0 ≤ f(x, y;αi+1), ∀(x, y) ∈ vertR, with ρ = ρi and σ = σi, then set
ρi+1 = ρi and σi+1 = σi; in such a way, we obtain f0 ≤ f↓(αi+1). Otherwise, choose ρi+1 and
σi+1 by increasing the previous vectors ρ = ρi and σ = σi, in order to get f0 ≤ f↓(αi+1). Set
i = i+ 1 and repeat this procedure for all i = 2, .., 2n − 1. It turns out that

f0 ≤ min
α∈∆

f↓(α). (4)

Moreover, starting again from (x0, y0) minimum point of P , let us define the following vector
α0 = α(x0, y0):

α0 :=

{

α0
j = 0, if x0j > 0

α0
j = 1, if x0j = 0
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The above vector α0 belongs to ∆ and f0 = f(x0, y0;α0). Since (x0, y0) ∈ R is a feasible
solution of the problem P (α0), then

f0 = f(x0, y0;α0) ≥ f↓(α0) ≥ min
α∈∆

f↓(α). (5)

Inequalities (4) and (5) imply (1) and this concludes the proof.

Based on Theorem 1, we can propose a decomposition approach for solving problem P .
In fact, Theorem 1 establishes that the minimum f0 of problem P can be achieved by first
determining f↓(α) ∀α ∈ ∆, and secondly by minimizing f↓(α) with respect to α ∈ ∆; in other
words, equation (1) decomposes the problem P in a sequence of subproblems P (α).

In view of the definition of α, ρj and σj , j = 1, ..., n, and of problem P (α), by setting
αj = 1 or αj = 0 one would expect xj = 0 or yj = 0, respectively, in an optimal solution of
P (α); however, in general, an optimal solution of P (α) will not necessarily comply with such
an expectation for a given α ∈ ∆. Anyway, if such an expectation does not occur for a given
α ∈ ∆, then f↓(α) > f0, provided we choose ρ and σ large enough. Consequently, we should
work with the subset ∆̄ of ∆ whose elements fulfill the following definition.

Definition 1. Let ∆̄ be the set of all α ∈ ∆ such that the system

Ax+By ≥ b, x ≥ 0, y ≥ 0

is possible, when one sets xj = 0 for αj = 1 and yj = 0 for αj = 0, j = 1, ..., n.

Clearly, if a minimum point of P exists, then the set ∆̄ is nonempty.

Unfortunately, the cardinality of ∆, and also of ∆̄, is in general so large that the above
outlined decomposition is not, by itself, of use. We aim at solving P through the penalized
problems P (α)’s, by running as less as possible on α ∈ ∆: at step k, having solved P (αk), we
try to determine αk+1, such that

f(x(αk), y(αk), αk) > f(x(αk+1), y(αk+1), αk+1). (6)

An initial effort in this direction is described in the first part of next section.

3 Optimality conditions

Suppose that we have solved, at step k, the problem P (αk); we try to determine αk+1, such that
(6) holds. To this aim, we introduce the dual problem of P (α) given by:

P ∗(α)
max < λ, b >
s.t. λA ≤ c(α), λB ≤ d(α), λ ≥ 0.

Let R∗(α) denote the feasible region of P ∗(α).

Theorem 2. If αk+1 ∈ ∆k := {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}, where λ̄ is a maximum point

of P ∗(αk), then

f(x(αk), y(αk), αk) ≤ f(x(αk+1), y(αk+1), αk+1).

Proof. Observe that λ̄ is a feasible solution of P ∗(αk+1) so that the maximum of such a problem
is greater than or equal to that of P ∗(αk):

max
λ∈R∗(αk+1)

〈λ, b〉 ≥ 〈λ̄, b〉 := max
λ∈R∗(αk)

〈λ, b〉.

By the strong duality theorem, the minimum of P (αk+1) is greater than or equal to that of
P (αk).
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By the previous theorem, we infer that a necessary condition for (6) to hold is that

αk+1 6∈ ∆k = {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}. (7)

In other words, having an optimal solution of P (αk) for some αk ∈ ∆, and, thus, a feasible
solution to the given problem P , a necessary condition for obtaining a problem P (αk+1) with a
minimum f↓(αk+1) < f↓(αk) (namely, a feasible solution of P "better" than the current one),
is that αk+1 belongs to the set ∆ \∆k.

Theorem 2 provides a criterion for eliminating from considerations subsequent to the k-th
one, the subset ∆k; observe that ∆k cannot be empty as it contains at least αk.

We need to deepen the analysis of (7); to this aim, let us reconsider the inequalities in the
definition of ∆k:

λ̄A ≤ c(α) and λ̄B ≤ d(α).

Taking into account the definition of c(α) and d(α), the two inequalities can be rewritten in the
form:

〈λ̄, Aj〉 − cj
ρj

≤ αj , j = 1, . . . , n; (8a)

〈λ̄, Bj〉 − dj
σj

≤ 1− αj , j = 1, . . . , n, (8b)

where Aj and Bj are the j-th column of A and B, respectively.

Remark 1. If the left-hand side of the j-th inequality of (8a) is non positive, then the inequality
is fulfilled for any choice of αj , i.e. both for αj = 0 and αj = 1. Otherwise, let us suppose that
it is positive; in such a case, since ρj > 0 is large enough, we can assume - without any loss of

generality - that
〈λ̄,Aj〉−cj

ρj
< 1. Hence, the j-th inequality of (8a) is fulfilled if αj = 1, but not

if αj = 0. Obviously, we can make analogous remarks on the j-th inequality of (8b) and we

obtain that if
〈λ̄,Bj〉−dj

σj
is positive, then the j-th inequality of (8b) is satisfied if αj = 0, but not

if αj = 1.

Let us introduce the following sets of indexes

Ix(λ̄) :=
{

j = 1, . . . , n :
〈λ̄, Aj〉 − cj

ρj
> 0

}

=
{

j = 1, . . . , n : 〈λ̄, Aj〉 − cj > 0
}

(9)

Iy(λ̄) :=
{

j = 1, . . . , n :
〈λ̄, Bj〉 − dj

σj
> 0

}

=
{

j = 1, . . . , n : 〈λ̄, Bj〉 − dj > 0
}

(10)

where, both in (9) and in (10), the second equality is true because ρj > 0 and σj > 0, j = 1, . . . , n.
Now we establish some results expressed in terms of the sets Ix(λ̄) and Iy(λ̄). In the next

results we assume that αk ∈ ∆ and λ̄ is a maximum point of P ∗(αk).

Proposition 1. Ix(λ̄) ∩ Iy(λ̄) = ∅.

Proof. Inequalities (8) are fulfilled by αk because λ̄ is an optimal solution of P ∗(αk). They can
be equivalently written as:

〈λ̄, Aj〉 − cj
ρj

≤ αj ≤ 1−
〈λ̄, Bj〉 − dj

σj
, j = 1, . . . , n. (11)

If, ab absurdo, Ix(λ̄)∩ Iy(λ̄) 6= ∅, then there exists at least one index j ∈ Ix(λ̄)∩ Iy(λ̄) such that
the j-th inequalities of (11) are simultaneously satisfied neither by αk

j = 0 nor by αk
j = 1 and

this is a contradiction.
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Theorem 3. (sufficient optimality condition) If

Ix(λ̄) ∪ Iy(λ̄) = ∅, (12)

then an optimal solution (x̄k, ȳk) of the problem P (αk) is an optimal solution of problem P .

Proof. Ix(λ̄) ∪ Iy(λ̄) = ∅ is equivalent to

〈λ̄, Aj〉 − cj
ρj

≤ 0 and
〈λ̄, Bj〉 − dj

σj
≤ 0, ∀ j = 1, . . . , n.

Then all α ∈ ∆ satisfy the inequalities (11); i.e., ∆ = ∆k which implies ∆ \ ∆k = ∅. Hence,
there is no way to improve the current solution (x̄k, ȳk), so that it is an optimal solution of
P .

The following result establishes a condition equivalent to the necessary condition (7). Notice
that we are interested only in the case where Ix(λ̄) ∪ Iy(λ̄) 6= ∅. Indeed, if Ix(λ̄) ∪ Iy(λ̄) = ∅,
the optimality of the current solution is proved by Theorem 3.

Theorem 4. Suppose that Ix(λ̄) ∪ Iy(λ̄) 6= ∅. Then

α 6∈ {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)} (13)

iff
∑

i∈Ix(λ̄)

αi −
∑

j∈Iy(λ̄)

αj ≤ |Ix(λ̄)| − 1. (14)

Proof. Let us consider the inequalities in (13) in the equivalent form (8). Therefore (13) holds if
at least one of the inequalities of (8) is not fulfilled. Observe that, if i 6∈ Ix(λ̄) or j 6∈ Iy(λ̄), then
the i-th inequality in (8a) or the j-th in (8b) is fulfilled whatever αi or αj may be, respectively.
Then the system (8) is equivalent to the following

{

αi > 0, i ∈ Ix(λ̄)
1− αj > 0, j ∈ Iy(λ̄).

The above system is possible iff

∑

i∈Ix(λ̄)

αi +
∑

j∈Iy(λ̄)

(1− αj) = |Ix(λ̄)|+ |Iy(λ̄)|,

so that it is impossible iff

∑

i∈Ix(λ̄)

αi +
∑

j∈Iy(λ̄)

(1− αj) ≤ |Ix(λ̄)|+ |Iy(λ̄)| − 1,

which coincides with (14).

Define the relaxed problem of P obtained by dropping the complementarity constraints, i.e.

(RP )

{

min(〈c, x〉+ 〈d, y〉) s.t.
Ax+By ≥ b, x ≥ 0, y ≥ 0

and denote by f̄ the optimal value of RP (possibly −∞).
The next result deepens the meaning of the sufficient optimality condition given by

Theorem 3.
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Proposition 2. Let α ∈ ∆ and λ̄ be an optimal solution of P ∗(α). If Ix(λ̄) ∪ Iy(λ̄) = ∅, then

f0 = f̄ .

Proof. The assumption Ix(λ̄)∪ Iy(λ̄) = ∅ is equivalent to say that λ̄A ≤ c , λ̄B ≤ d. Therefore,
since λ̄ ≥ 0, we have that λ̄ is a feasible solution for the dual of RP : if it were f̄ = −∞, we
achieve a contradiction. Suppose that f̄ > −∞; then, by strong duality f↓(α) = 〈λ̄, b〉 and, by
weak duality,

f↓(α) = 〈λ̄, b〉 ≤ f̄ ,

which implies f0 := minα∈∆ f↓(α) ≤ f̄ . On the other hand, f0 ≥ f̄ and this completes the
proof.

4 Lower and upper bounds for the minimum

The sufficient optimality condition (12) given in Theorem 3 is a very restrictive condition.
Indeed, it directly implies that the minimum value of the relaxed problem RP is equal to the
one of P , as proved by Proposition 2.

Therefore, in this section, we propose an alternative iterative approach that leads, not only to
a different sufficient optimality condition, but mainly to the possibility to evaluate the difference
between the current value of the objective function of P and its minimum value, i.e., f↓(αk)−f0.
We will achieve this purpose by defining a finite sequence of lower and upper bounds of the
minimum of P .

We restrict our attention to the case where it is possible to find vectors of upper bounds,
say X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), for x and y respectively, in such a way that the
optimal value of problem P does not change. Therefore, alternatively to {P (α)}α∈∆, we can
associate with the given problem P the following family {Q(α)}α∈∆ of subproblems:

Q(α)

min(〈c, x〉+ 〈d, y〉)
s.t. Ax+By ≥ b,

0 ≤ xj ≤ Xj(1− αj), j = 1, . . . , n
0 ≤ yj ≤ Yjαj , j = 1, . . . , n.

Denote by S(α) the feasible set of Q(α). The dual of Q(α), say Q∗(α), is given by:

Q∗(α)

max
(

〈λ, b〉 −
∑n

j=1 µjXj(1− αj)−
∑n

j=1 νjYjαj

)

s.t. λA− µ ≤ c
λB − ν ≤ d
λ ≥ 0, µ ≥ 0, ν ≥ 0.

An optimal basic solution of Q∗(α) can be immediately derived from an optimal basic solution
of P ∗(α), as it proved by the following proposition.

Proposition 3. If λ̄ is an optimal basic solution of P ∗(α), then the vector (λ̄, µ̄, ν̄) ∈ R
m
+ ×

R
n
+ × R

n
+, where

µ̄j = max{0, λ̄Aj − cj}, j = 1, . . . , n, (15a)

ν̄j = max{0, λ̄Bj − dj}, j = 1, . . . , n (15b)

is an optimal basic solution of Q∗(α).
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Proof. Let us compare problems P ∗(α) and Q∗(α). By construction, (λ̄, µ̄, ν̄) is a feasible basic
solution of Q∗(α). Moreover, ∀α ∈ ∆ we have that

〈λ̄, b〉 −

n
∑

j=1

µ̄jXj(1− αj)−

n
∑

j=1

ν̄jYjαj ≤ 〈λ̄, b〉;

in other words, 〈λ̄, b〉 is an upper bound of the feasible values of the objective function of Q∗(α).
Now, we will prove that the objective function of Q∗(α) assumes at (λ̄, µ̄, ν̄) exactly the value
〈λ̄, b〉 and hence (λ̄, µ̄, ν̄) is an optimal solution of Q∗(α). To this aim, we rewrite (15) as follows:

λ̄Aj − cj > 0 ⇒ µ̄j = λ̄Aj − cj ; λ̄Aj − cj ≤ 0 ⇒ µ̄j = 0, j = 1, . . . , n, (16a)

λ̄Bj − dj > 0 ⇒ ν̄j = λ̄Bj − dj ; λ̄Bj − dj ≤ 0 ⇒ ν̄j = 0, j = 1, . . . , n. (16b)

When αj = 0, νj does not affect the objective function of Q∗(α); on the other hand, if αj = 0,
the j-th inequality of λ̄A ≤ c(α) in P ∗(α) becomes λ̄Aj ≤ cj and by the second implication
of (16a) we obtain µ̄j = 0. Similar results hold for αj = 1: µj does not affect the objective
function of Q∗(α) and ν̄j = 0. In conclusion, in the objective function of Q∗(α), we have
∑n

j=1 µ̄jXj(1− αj) +
∑n

j=1 ν̄jYjαj = 0 and this completes the proof.

Let us observe that the feasible set of Q∗(α) does not depend on α; call this set S∗, ∀α ∈ ∆,
and notice that S∗ 6= ∅ by Proposition 3. Denote by V := vertS∗, the set of all vertices of S∗,
or, equivalently, of all basic solutions of Q∗(α). Then, we have the following result.

Theorem 5. The minimum f0 of problem P equals the minimum of the problem:

min
α,f

f

s.t. α ∈ ∆
f ≥

(

〈λh, b〉 −
∑n

j=1 µ
h
jXj(1− αj)−

∑n
j=1 ν

h
j Yjαj

)

, (λh, µh, νh) ∈ V.

(17)

Proof. The following relations are readily seen to hold:

f0 = min
α∈∆

min
(x,y)∈S(α)

(〈c, x〉+ 〈d, y〉)

= min
α∈∆

max
(λ,µ,ν)∈S∗

(

〈λ, b〉 −

n
∑

j=1

µjXj(1− αj)−

n
∑

j=1

νjYjαj

)

= min
α∈∆

max
(λh,µh,νh)∈V

(

〈λh, b〉 −

n
∑

j=1

µh
jXj(1− αj)−

n
∑

j=1

νhj Yjαj

)

.

(18)

The last equality and the introduction of the scalar variable f prove the thesis of the theorem.

Remark 2. Observe that if V̄ is any subset of V , then by (18) we have:

f0 ≥ min
α∈∆

max
(λh,µh,νh)∈V̄

(

〈λh, b〉 −
n
∑

j=1

µh
jXj(1− αj)−

n
∑

j=1

νhj Yjαj

)

]. (19)

Therefore, the minimum in (19) is a lower bound t of f0. At every α met in the solution process,
an optimal basic solution of Q(α) and, hence, an optimal basic solution of Q∗(α) is available.
Let Vk be the set of the basic solutions of Q∗(αk) considered until step k. Thus, Vk which is
initially empty, gains a new element. Every time this happens, problem (19) may be solved to
find a new lower bound on f0, say it tk. Moreover, the minimum f↓(αk) of problem P (αk) for
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every αk ∈ ∆, is obviously an upper bound on the optimal value f0; let Tk be the minimum
of all the previously found upper bounds. Obviously, at k-th step, the equality Tk = tk is
a sufficient condition for optimality; moreover, |Tk − tk| is un upper bound of the difference
between the current value of the objective function of P and its minimum. We can decide to
stop the iterative procedure if such a difference is small enough, in a sense that can be specified
case by case according to the meaning of the given complementarity problem.

5 The iterative method

The analysis developed in the previous sections allows us to define an iterative method for the
minimization of the problem P .

General Algorithm

Step 0) (initialization).
Consider RP , the relaxed problem of P , and let f̄ be the optimal value of RP (possibly
−∞). If f̄ > −∞, let (x̄, ȳ) be an optimal solution of RP . If 〈x̄, ȳ〉 = 0, then (x̄, ȳ) is an
optimal solution of P too; hence → STOP. Otherwise (i.e., if f̄ = −∞ or 〈x̄, ȳ〉 > 0), set
k = 0, ∆0 = ∆, T−1 = +∞, t−1 = f̄ . Go to Step 1.

Step 1) (solution of problem P (αk)).
Choose αk ∈ ∆k and solve P (αk). Let (x(αk), y(αk)) be an optimal solution of P (αk)
with optimal value f↓(αk). If f↓(αk) < Tk−1 then Tk = f↓(αk); otherwise Tk = Tk−1. Go
to Step 2.

Step 2) (computation of a cut on the set ∆).
Let λ̄ be an optimal solution of P ∗(αk). If Ix(λ̄) ∪ Iy(λ̄) = ∅, then (x(αk), y(αk)) is an
optimal solution of P ; hence → STOP. Otherwise, by means of inequality (13), determine
the set {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}, that gives the vectors α to be rejected in the
sequel. Go to Step 3.

Step 3) (computation of a lower bound).
Determine an optimal solution (λ̄, µ̄, ν̄) of the problem Q∗(αk) and let t the minimum in
(18) obtained by adding the (basic) solution (λ̄, µ̄, ν̄) to the set V̄ . If t > tk−1, then tk = t;
otherwise tk = tk−1. If Tk = tk then (x(αk), y(αk)) is an optimal solution of P ; hence →
STOP. Otherwise, let ∆k+1 = ∆k \ {α ∈ ∆ : λ̄A ≤ c(α), λ̄B ≤ d(α)}. If ∆k+1 = ∅, then
(x(αk), y(αk)) is an optimal solution of P ; hence → STOP. (Remark that ∆k+1 = ∅ is
implied by Ix(λ̄) ∪ Iy(λ̄) = ∅). Otherwise, set k = k + 1 and go to Step 1.

Remark 3. The following observations are worth noting:

(a) The algorithm ends in a finite numbers of steps because there are at most 2n problems
P (α) to be solved.

(b) The decomposition method requires to process the set of binary vectors α ∈ ∆. As a binary
vector is equivalent to the binary representation of an integer number, the enumeration
of all the α’s can be obtained starting from α0 = (0, . . . , 0) and by adding each time the
binary unit to αi in order to obtain αi+1.

(c) In the formulation of problem Q(α) and hence of its dual Q∗(α), we need to choose the
values of the upper bounds X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) of which we have
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assumed the existence. The selection of such vectors is a crucial aspect of the method.
Even if it is valid only for the particular case, a suggestion for this choice is given in the
subsequent Example 5.1 at Step 3 of Iteration 1.

(d) If, at Step 3, we can prove that f↓(α) ≥ f↓(αk) ∀α ∈ ∆k+1, then f↓(αk) is the optimum
value of P and the current solution (x(αk), y(αk)) is an optimal solution. Suppose for
example that |Ix(λ̄)| + |Iy(λ̄)| = 1; from the inequality (14) it follows that there is a
unique index j such that any α to be considered in the sequel has αj = 0 if |Ix(λ̄)| = 1,
and αj = 1 if |Iy(λ̄)| = 1. If, by solving RP with the additional condition xj = 0 when
αj = 1 or yj = 0 when αj = 0, we obtain a minimum greater than or equal to f↓(αk), the
current solution is an optimal one. Otherwise, such a minimum is a lower bound of f0 and
it will replace the current lower bound if it is better.

(e) Recall that in the proposed decomposition method we should work with the subset ∆̄ of ∆,
introduced in Definition 1. If a vector α /∈ ∆̄, the optimal value of the corresponding P (α)
is of the same magnitude of ρj ’s and σj ’s. In this case, we skip Step 1 and we generate a
new α. We refer to this case as a null step.

Example 1. Let us apply the iterative method to the following problem P :

min(2x1 + 2x2 + x3 + 2x4 + 2y1 + 2y2 + 2y3 + 2y4)







































x1 + x4 + y1 + y2 + y3 ≥ 20
x1 + x2 + y1 + y3 ≥ 14

x2 + x3 + y1 ≥ 10
x2 + y3 + y4 ≥ 10

x1 + x3 + y4 ≥ 5
〈x, y〉 = 0
x ≥ 0, y ≥ 0

(20)

For the solution of some of the steps, the numerical software MATLAB has been used.

Step 0) The solution of the relaxed problem RP is x̄ =
(

5
2 , 0,

5
2 , 0

)

, ȳ =
(

15
2 , 0, 10, 0

)

, with
optimal value f̄ = 85

2 . As 〈x̄, ȳ〉 > 0 and hence the complementarity condition is not satisfied,
set k = 0, ∆0 = ∆ = {0, 1}4, T−1 = +∞, t−1 = f̄ = 85

2 . Goto Step 1.

Iteration 1 with k = 0

Step 1) Let’s choose in the binary ordering a first α0 = (0, 0, 0, 0). Let’s solve P (α0). We get

x(α0) = (5, 10, 0, 15) , y(α0) = (0, 0, 0, 0), with f↓(α0) = 60.

As f↓(α0) < Tk−1 then T0 = 60. Go to Step 2.
Step 2) The optimal solution of P ⋆(α0) is λ̄ = (2, 0, 1, 1, 0). The sets of indexes defined in (9)
and (10) are Ix(λ̄) = ∅ and Iy(λ̄) = {1, 3}. Since Ix(λ̄) ∪ Iy(λ̄) 6= ∅, according to Theorem
4 the subsequent α’s to be considered must satisfy the inequality α1 + α3 ≥ 1 (see inequality
(14)). Therefore, we can disregard the following α’s

α0 = (0, 0, 0, 0) ; (0, 0, 0, 1) ; (0, 1, 0, 0) ; (0, 1, 0, 1).

Go to Step 3.
Step 3) Let us consider {Q(α)}α∈∆ where the upper bounds are

X =
(

20, 10, 20, 312
)

and Y =
(

20, 312 , 25, 10
)

.
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The values of the upper bounds can be determined by combining the inequality

2x1 + 2x2 + x3 + 2x4 + 2y1 + 2y2 + 2y3 + 2y4 ≤ 60,

given by the objective function less than or equal to its current value, with the inequalities
coming from the constraints. For example, by considering the first constraint together with the
above inequality, we get

40 + 2x2 + x3 + 2y4 ≤ 2(x1 + x4 + y1 + y2 + y3) + 2x2 + x3 + 2y4 ≤ 60,

that gives the bounds x2 ≤ 10, x3 ≤ 20 and y4 ≤ 10. Similar bounds for the other variables
may be obtained by means either of other constraints, taken singularly, or linear combinations
of them. The optimal solution of Q∗(α0), obtained from (15), is

(λ̄; µ̄; ν̄) = (2, 0, 1, 1, 0; 0, 0, 0, 0; 1, 0, 1, 0).

Therefore, problem (17) is

t = min
α,f

f s.t. α ∈ ∆ , f ≥ 60− Y1α1 − Y3α3

with solution t = 15. Since t = 15 < t−1, set t0 = t−1 = 85
2 . As T0 6= t0, let us continue in Step

3. ∆1 = {(α1, α2, α3, α4) ∈ ∆ : α1 + α3 ≥ 1}. As ∆1 6= ∅, set k = 1 and go to Step 1.

Iteration 2 with k = 1

Step 1) We have to choose α1 ∈ ∆1. As α0+1 = (0, 0, 0, 1) /∈ ∆1, following the binary ordering
on vectors α, we have α1 = (0, 0, 1, 0) ∈ ∆1. The optimal solution of P (α1) is

x(α1) = (5, 10, 0, 15) , y(α1) = (0, 0, 0, 0), with f↓(α1) = 60.

As f↓(α1) = T0 then T1 = T0 = 60. Goto Step 2.
Step 2) By solving P ⋆(α1) we get λ̄ = (2, 0, 2, 0, 0). The sets of indexes defined in (9) and
(10) are Ix(λ̄) = {3} and Iy(λ̄) = {1}; Ix(λ̄) ∪ Iy(λ̄) 6= ∅. The subsequent vectors α ∈ ∆1 to
be considered must satisfy the additional inequality α3 − α1 ≤ 0. Therefore, in the following
analysis we can disregard the following α’s

α1 = (0, 0, 1, 0) ; (0, 0, 1, 1) ; (0, 1, 1, 0) ; (0, 1, 1, 1).

Go to Step 3.
Step 3) The optimal solution of Q∗(α1) is (λ̄; µ̄; ν̄) = (2, 0, 2, 0, 0; 0, 0, 1, 0; 2, 0, 0, 0). Therefore,
problem (17) becomes

t = min
α,f

f s.t. α ∈ ∆ , f ≥ 60− Y1α1 − Y3α3 ; f ≥ 60−X3(1− α3)− 2Y1α1

with solution t = 20; observe that this value of t (t = 20) improves the previous one (t =
15). Since t = 20 < t0 = 85

2 , set t1 = t0. As T1 6= t1, let us continue in Step 3. ∆2 =
{(α1, α2, α3, α4) ∈ ∆ : α1 + α3 ≥ 1 ∧ α3 − α1 ≤ 0}. As ∆2 6= ∅, set k = 2 and go to Step 1.

Iteration 3 with k = 2

Step 1) We have to choose α2 ∈ ∆2. Following the binary ordering on α’s the first element of
∆ not already discarded is α2 = (1, 0, 0, 0) ∈ ∆2. The optimal solution of P (α2) is

x(α2) = (0, 10, 5, 16) , y(α2) = (4, 0, 0, 0), with f↓(α2) = 65.
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As f↓(α2) > T1 then T2 = T1 = 60. Go to Step 2.
Step 2) By solving P ⋆(α2) we get λ̄ = (2, 0, 0, 2, 1). The sets of indexes defined in (9) and
(10) are Ix(λ̄) = {1} and Iy(λ̄) = {3, 4}; Ix(λ̄) ∪ Iy(λ̄) 6= ∅. The subsequent vectors α ∈ ∆2 to
be considered must satisfy the additional inequality α1 − α3 − α4 ≤ 0. Therefore, we have to
disregard the following α’s

α2 = (1, 0, 0, 0) ; (1, 1, 0, 0).

Go to Step 3.
Step 3) The optimal solution of Q∗(α2) takes to the problem (17)

t = min
α,f

f s.t.















α ∈ ∆
f ≥ 60− Y1α1 − Y3α3

f ≥ 60−X3(1− α3)− 2Y1α1

f ≥ 65−X1(1− α1)− 2Y3α3 − Y4α4

with solution t = 20. Since t = 20 < t1, set t2 = t1 = 85
2 . As T2 6= t2, let us continue in Step 3.

∆3 = {(α1, α2, α3, α4) ∈ ∆ : α1 + α3 ≥ 1 ∧ α3 − α1 ≤ 0 ∧ α1 ≤ α3 + α4}. As ∆3 6= ∅, set
k = 3 and go to Step 1.

Iteration 4 with k = 3

Step 1) We have to choose α3 ∈ ∆3. Following the binary ordering on α’s the first element of
∆ not already discarded is α3 = (1, 0, 0, 1) ∈ ∆3. The optimal solution of P (α3) is

x(α3) = (0, 0, 0, 0) , y(α3) = (20, 0, 0, 10), with f↓(α3) = 60.

As f↓(α3) = T2 then T3 = T2 = 60. Go to Step 2.
Step 2) Let us solve P ⋆(α3). We obtain the sets of indexes Ix(λ̄) = ∅ and Iy(λ̄) = {3}, that
take to the inequality α3 ≥ 1.
We are now under the assumption of item d) of Remark 3. We solve the relaxed problem RP
with the additional condition x3 = 0, getting a minimum value equal to 45. This is a lower
bound of the optimal value f0, better than the current one t2 = 85

2 . Hence we set t3 = 45. Go
to Step 3.
Step 3) From now on, for the sake of simplicity, in this example we drop in Step 3 the part
related to the computation of the lower bound. As T3 6= t3, let us continue in Step 3. ∆4 =
{(α1, α2, α3, α4) ∈ ∆ : α1 + α3 ≥ 1 ∧ α3 − α1 ≤ 0 ∧ α1 ≤ α3 + α4 ∧ α3 ≥ 1}.
As ∆4 6= ∅, set k = 4 and go to Step 1.

Iteration 5 with k = 4

Step 1) We have to choose α4 ∈ ∆4. Following the binary ordering on α’s the first element of ∆
not already discarded is α4 = (1, 0, 1, 0) ∈ ∆4. The solution of P (α4) produces a null step (see
item e) of Remark 3). The next vector, denoted again by α4, is (1, 0, 1, 1). By solving P (α4),
we get

x(α4) = (0, 0, 0, 0) , y(α4) = (10, 0, 10, 5), with f↓(α4) = 50.

As f↓(α4) < T3 then T4 = f↓(α4) = 50. Go to Step 2.
Step 2) Let us solve P ⋆(α4). We obtain the sets of indexes Ix(λ̄) = {1, 3} and Iy(λ̄) = ∅, that
take to the inequality α1 + α3 ≤ 1. This inequality leads to discard the last two vectors in ∆4,
namely

(1, 1, 1, 0) ; (1, 1, 1, 1).

Go to Step 3.
Step 3) (Recall that we are dropping the first part of this step.) Set t4 = t3 = 45. As T4 6= t4, let
us continue in Step 3. The set ∆5 is empty; hence → STOP. The current solution (x(α4), y(α4))
is an optimal solution of P .
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6 Conclusions

We have introduced a decomposition method for a linear problem with complementarity con-
straints in a sequence of parameterized problems. By means of suitable cuts we have proposed
an iterative method that leads to an optimal solution of the given problem or to an approxi-
mation of it providing an estimate of the error. In particular the considered method avoids the
use of constraint qualifications which are hard to be determined in such kind of problems. The
iterative method has been described by means of a non trivial example; for the solution of the
example, at some steps, the numerical software MATLAB has been used. A completely unified
MATLAB code fully implementing the whole algorithm is still in progress. This is a possible
further development, together with some numerical testing. A full implementation will allow us
to try out the method presented in the paper on standard test complementarity problems and
to compare it with other existing methods.

References

[1] Cottle, R.W.: Linear Complementarity Problem. In: Floudas C., Pardalos P. (eds) Encyclo-
pedia of Optimization. Springer, Boston, MA (2008)

[2] Cottle, R.W., Pang, J.-S. and Stone, R.E.: The linear complementarity problem. Aca-
demic Press, San Diego, CA (1992); reprint, SIAM Classics in Applied Mathematics, Vol.60,
Philadelphia, PA (2009)

[3] Ferris, M. C. and Pang, J.-S: Engineering and economic applications of complementarity
problems, SIAM Rev., Vol.39, pp. 669–713 (1997)

[4] Hoheisel, T., Kanzow, C. and Schwartz A.: Theoretical and numerical comparison of relax-
ation methods for mathematical programs with complementarity constraints, Math. Program.,
Ser. A, Vol.137, pp.257–288 (2013)

[5] Hu, J., Mitchell, J. E., Pang, J.-S., Bennet, K.P. and Kunapuli, G.: On the global solution
of linear programs with linear complementarity constraints, SIAM J. Optim., Vol. 19, No. 1,
pp. 445–471 (2008)

[6] Giannessi, F., Jurina L. and Maier G.: Optimal excavation profile for a pipeline freely resting
on the sea floor, Eng. Struct., Vol.1, pp. 81–91 (1979)

[7] Kanzow, C. and Schwartz A.: Mathematical Programs with Equilibrium Constraints: en-
hanced Fritz John-conditions, new constraint qualifications, and improved exact penalty re-
sults, SIAM J. Optim., Vol.20, No. 5, pp. 2730–2753 (2010)

[8] Leyffer, S., López-Calva, G. and Nocedal, J.: Interior methods for mathematical programs
with complementarity constraints. SIAM J. Optim., Vol. 17, no. 1, pp. 52–77 (2006)

[9] Yu, B., Mitchell, J. E. and Pang, J.-S.: Solving linear programs with complementarity
constraints using branch-and-cut, Math. Program. Comp., Vol.1, pp. 267–310 (2019)

13


