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Matching Orderable and Separable Hypergraphs

Shmuel Onn ∗†

Abstract

A perfect matching in a hypergraph is a set of edges that partition the set of vertices.
We study the complexity of deciding the existence of a perfect matching in orderable
and separable hypergraphs. We show that the class of orderable hypergraphs is strictly
contained in the class of separable hypergraphs. Accordingly, we show that for each fixed
k, deciding perfect matching for orderable k-hypergraphs is polynomial time doable, but
for each fixed k ≥ 3, it is NP-complete for separable hypergraphs.

Keywords: matching, hypergraph, combinatorial optimization, threshold graph

1 Introduction

A k-hypergraph on a finite set V is a set H of k-subsets of V . The elements v ∈ V are
called vertices and the sets E ∈ H are called edges. A perfect matching in H is a subset
{E1, . . . , Em} ⊆ H such that V = ⊎m

i=1Ei, that is, V is the disjoint union of E1, . . . , Em.

The special case of perfect matchings in graphs (that is, 2-hypergraphs) has numerous
applications and is one of the most studied combinatorial optimization problems [6]. The
natural extension to k-hypergraphs for k ≥ 3 has also been studied by several authors and
has a variety of applications, such as for the Santa Claus allocation problem, see e.g. [1, 2, 4]
and the references therein.

In this article we consider the complexity of the problem of deciding if a perfect matching
exists. We assume throughout that k is fixed. Clearly a necessary condition for a perfect
matching to exist is that n = km is a multiple of k where n := |V |. For k = 1 the problem
is trivial as there is a perfect matching if and only if H = {{v} : v ∈ V }. For k = 2, that is,
graphs, it is well known that the problem can be solved in polynomial time, see e.g. [6].

For k = 3 the perfect matching problem, and very special cases of it including the following
two, are NP-complete, see [3]. First, the 3-dimensional matching problem, where we are
given a partition V = V1 ⊎ V2 ⊎ V3 of V into three m-sets, the given hypergraph satisfies
H ⊆ {E ⊆ V : |E ∩ V1| = |E ∩ V2| = |E ∩ V3| = 1}, and we need to decide if H has a perfect
matching.

Second, the 3-partition problem, where we are given a labeling a : V → Z of vertices by
integers, which can even be encoded in unary, and denoting a(U) :=

∑

{a(u) : u ∈ U} for any
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subset U ⊆ V , the hypergraph is given by H = {E ⊆ V : |E| = 3, a(E) = 0}, and we need
to decide if H has a perfect matching.

This hardness of the problem in general motivates various lines of investigation. First, it
is interesting to study algorithms for approximating a perfect matching. This line is taken
in [2] and the references therein, where effective approximation algorithms for 3-dimensional
matching are given. Second, it is interesting to classify the complexity of deciding perfect
matching in subclasses of hypergraphs. This line is taken, for example, in [4], where a criterion
for perfect matching in bipartite hypergraphs is derived.

Here we continue this second line of investigation and consider two classes of hypergraphs
defined below. These two classes arise as natural extensions to hypergraphs of the well studied
class of threshold graphs, which in itself has many applications and interesting subclasses, see
[5].

First, a k-hypergraph is orderable if there is an elimination order v1, . . . , vn of V , that
is, an order where each vertex vi is either dominating, meaning that E ∈ H for every k-set
E with vi ∈ E ⊆ {v1, . . . , vi}, or isolating, meaning that E /∈ H for every k-set E with
vi ∈ E ⊆ {v1, . . . , vi}. We prove the following theorem.

Theorem 1.1 For any fixed k, the following two statements hold:

1. It can be decided in polynomial time if a given k-hypergraph is orderable;

2. It can be decided in polynomial time if an orderable k-hypergraph has a perfect matching.

Second, reminiscent of the 3-partition problem above, a k-hypergraph is separable if there
is a labeling a : V → Z of vertices by integers such that H = {E ⊆ V : |E| = k, a(E) ≥ 0}.
For k = 2 this coincides with the well studied class of threshold graphs mentioned above. We
show in Proposition 3.1 that the classes of orderable and separable hypergraphs coincide for
k = 1, 2, but the former is strictly contained in the latter for all k ≥ 3. Thus, deciding the
existence of a perfect matching for this broader class is expected to be harder, and we confirm
it by proving the following theorem.

Theorem 1.2 For any fixed k, the following two statements hold:

1. It can be decided in polynomial time if a given k-hypergraph is separable;

2. Deciding if a separable k-hypergraph has a perfect matching is polynomial time doable

for k = 1, 2, but is NP-complete for each k ≥ 3, even if a : V → Z is encoded in unary.

As a rather general line of investigation, it would be interesting to identify meaningful
classes of hypergraphs which lie in between the classes of orderable and separable hypergraphs,
and to understand the complexity of deciding the existence of a perfect matching for such
classes.
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2 Orderable hypergraphs

We now prove our theorem about orderable hypergraphs.

Theorem 1.1 For any fixed k, the following two statements hold:

1. It can be decided in polynomial time if a given k-hypergraph is orderable;

2. It can be decided in polynomial time if an orderable k-hypergraph has a perfect matching.

Proof of part 1. First, we claim that if H is orderable, and v ∈ V satisfies that either
E ∈ H for each k-set E with v ∈ E ⊆ V , or E /∈ H for each k-set E with v ∈ E ⊆ V , then H
has an elimination order where v comes last. To see this, suppose v1, . . . , vn is any elimination
order for H with v = vi and consider the order v1, . . . , vi−1, vi+1, . . . , vn, vi. We claim this is
also an elimination order. For vi = v the condition holds by assumption. Since v1, . . . , vn is
an elimination order, for each other vertex vj we have that either E ∈ H for each k-set E
with vj ∈ E ⊆ {v1, . . . , vj}, or E /∈ H for each k-set E with vj ∈ E ⊆ {v1, . . . , vj}, and hence
also either E ∈ H for each k-set E with vj ∈ E ⊆ {v1, . . . , vj} \ {vi}, or E /∈ H for each k-set
E with vj ∈ E ⊆ {v1, . . . , vj} \ {vi}. So this is indeed an elimination order where v comes
last.

This implies that H is orderable if and only if there exists a vertex v ∈ V for which the
following hold: first, either v is dominating, that is, E ∈ H for each k-set E with v ∈ E ⊆ V ,
or v is isolating, that is, E /∈ H for each k-set E with v ∈ E ⊆ V ; and second, the hypergraph
H′ := {E ∈ H : E ⊆ V ′} on V ′ := V \ {v} is also orderable.

So the algorithm proceeds recursively as follows. If n := |V | ≤ k then H is orderable by
definition. If n > k then we search for v ∈ V such that either E ∈ H for each k-set E with
v ∈ E ⊆ V , or E /∈ H for each k-set E with v ∈ E ⊆ V . If there is no such v then H is
not orderable. If there is such v then we define V ′ and H′ as above and apply the algorithm
recursively to H′. The running time of the algorithm is dominated by the number t(n) of
k-sets E for which we test if E ∈ H. We show by induction on n that t(n) ≤ nk+1. For
n ≤ k any H is orderable so t(n) = 0. Suppose n > k. For each v ∈ V , checking if E ∈ H
for each k-set E with v ∈ E ⊆ V , or E /∈ H for each k-set E with v ∈ E ⊆ V , involves
(

n−1

k−1

)

≤ (n − 1)k−1 sets to be tested. And we check this for the vertices in V one after the
other, until we either find one such v or conclude none exists, so for at most n vertices. So
we test at most n(n− 1)k−1 sets. Thus, by induction, we obtain the polynomial bound

t(n) ≤ t(n−1)+n(n−1)k−1 ≤ (n−1)k+1+n(n−1)k−1 = (n2−n+1)(n−1)k−1 ≤ nk+1 .

As pointed out by one of the referees, the time bound above can be improved by incorpo-
rating a suitable data structure, but as it does not affect the statement of the theorem, and
we wish to keep the article short and self contained, we do not elaborate on this.

Proof of part 2. Now suppose H is orderable. Assume that n = km is a multiple of k
else there is no perfect matching. We can then find an elimination order v1, . . . , vn of V in
polynomial time by the algorithm in the above proof of the first statement of the theorem. By
definition each vertex vj for j < k is both dominating and isolating and we choose to designate
all of them as dominating. Using this order we compute in polynomial time a sequence of
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integers rn, . . . , r1, initializing rn+1 := 0 and setting rj := rj+1+k−1 if vj is dominating and
rj := rj+1 − 1 if vj is isolating for j = n, . . . , 1. Note that, letting dj and ij for j = 1, . . . , n
be, respectively, the number of dominating and isolating vertices with index at least j, we
have that rj = (k − 1)dj − ij .

We claim H has a perfect matching if and only if all ri are nonnegative. The intuition
is that, when traversing the vertices backwards, vn, . . . , v1, each dominating vertex vj can be
used in a matching edge containing k − 1 isolating vertices following it, and therefore when
encountering such a vertex we increase rj by k − 1; on the other hand, each isolating vertex
vj takes a slot in such a matching edge and therefore when encountering such a vertex we
decrease rj by 1.

But before proceeding with the proof of the claim, to illuminate it, following a suggestion
by one of the referees, we demonstrate how this claim leads to a process for finding a perfect
matching in an orderable hypergraph when all ri are nonnegative. For k = 1 the hypergraph
H has a perfect matching if and only if H = {{v1}, . . . , {vn}} which holds if and only if all
ri are nonnegative, in which case M := H is the unique perfect matching. So assume k ≥ 2.
Using the above elimination order v1, . . . , vn and nonnegative r1, . . . , rn, traverse the vertices
backwards, vn, . . . , v1, and maintain two sets D, I, of yet unmatched dominating and isolating
vertices, respectively, and a set M ⊆ H of a partial matching constructed. The nonnegativity
of the ri guarantees that each vi in this backward order can be suitably matched. Initialize
D := I := ∅ and M := ∅. During the traversal proceed as follows. If vi is dominating then
update D := D⊎{vi}. If vi is isolating then, if |I| < k− 2 then update I := I ⊎{vi}, whereas
if |I| = k − 2 then pick vr ∈ D with largest index r, update M := M ⊎ {I ⊎ {vi, vr}} and
update D := D \ {vr} and I := ∅. When the traversal is complete, add k − |I| vertices from
D to I including vr ∈ D with largest index r, and then add I to M. Finally, partition the
remaining vertices in D, if any, to sets of size k and add all these sets to M. See Example
2.1 below for a specific illustration of this process.

We now proceed with the proof of the claim that H has a perfect matching if and only if
all ri are nonnegative. If k = 1 then all ri are nonnegative if and only if all vi are dominating
which is equivalent to H = {{v1}, . . . , {vn}}, which is indeed the case if and only if H has a
perfect matching. So assume k ≥ 2. First we prove by induction on the number of isolating
vertices that if all ri are nonnegative then H has a perfect matching. Note that vn must
be dominating else rn = −1 is negative. If there are l ≤ k − 1 isolating vertices then these
vertices together with k − l dominating vertices including vn form an edge of H. This edge,
together with m − 1 more k-sets forming an arbitrary partition of the remaining (m − 1)k
vertices, which are all in H since all these vertices are dominating, forms a perfect matching.
Suppose then there are l ≥ k isolating vertices. Note that then n ≥ 2k since there are also
at least k dominating vertices v1, . . . , vk−1, vn. Let vi have the (k − 1)-largest index among
the isolating vertices. Let F be the k-set consisting of vn and the k − 1 isolating vertices of
largest indices including vi. Note that F ∈ H since vn is dominating. Now let V ′ := V \ F
and H′ := {E ∈ H : E ⊆ V ′}. It is clear that the order of V ′ induced by the order of
V is an elimination order for H ′ with each vertex isolating or dominating as before. Also
|V ′| = n − k ≥ k and the number of isolating vertices in V ′ is smaller than that of V by
k−1 ≥ 1. Let (r′j : vj ∈ V ′) be the sequence of integers computed using the elimination order
of V ′. For each vj ∈ V let dj , ij , respectively, be the number of dominating and isolating
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vertices in V with indices at least j, and for each vj ∈ V ′ let d′j, i
′
j , respectively, be the number

of dominating and isolating vertices in V ′ with indices at least j. Note that for each j we
then have rj = (k− 1)dj − ij and r′j = (k− 1)d′j − i′j . Consider any j with vj ∈ V ′. Note that
j 6= i, n since vi, vn were removed from V . If j < i then d′j = dj − 1 and i′j = ij − (k − 1) so
r′j = rj ≥ 0. If j > i then all vertices in V ′ with indices at least j must be dominating since all
isolating vertices with indices at least j were removed from V , so r′j = (k− 1)d′j ≥ k− 1 ≥ 0.
Therefore all r′j are nonnegative and it follows by induction that H′ has a perfect matching
M′. Then M := M′ ⊎ {F} is a perfect matching of H.

Second, suppose some ri is negative and let D, I, respectively, be the set of dominating
and isolating vertices in V with indices at least i. Then 0 > ri = (k − 1)|D| − |I| implies
|I| > (k − 1)|D|. Suppose indirectly H has a perfect matching M and let M′ := {E ∈
M : E ∩ I 6= ∅}. Since each j ∈ I is isolating we must also have E ∩ D 6= ∅ and hence
|E ∩ I| ≤ k − 1 for all E ∈ M′. This implies |M′| ≤ |D| and (k − 1)|M′| ≥ |I| which
contradicts |I| > (k− 1)|D|. So if not all ri are nonnegative then H has no perfect matching.
This completes the proof.

Example 2.1 Here is an example of the process for constructing a perfect matching in an

orderable hypergraph described in the proof above. Let k = 3 and let H be the orderable

3-hypergraph with n = 15 vertices and elimination order v1, . . . , v15 such that the vertices

v1, v2, v3, v4, v6, v10, v13, v15 are dominating and the vertices v5, v7, v8, v9, v11, v12, v14 are iso-

lating. Going backwards we obtain the following sequence of the ri which are all nonnegative

and guarantee the existence of a perfect matching,

r15 = 2, 1, 3, 2, 1, 3, 2, 1, 0, 2, 1, 3, 5, 7, 9 = r1 .

Starting with D := I := ∅ and M := ∅ and traversing vertices backwards, we obtain:

v15 : D := {v15};

v14 : I := {v14};

v13 : D := {v13, v15};

v12 : D := {v13}, I := ∅, M := {{v12, v14, v15}};

v11 : I := {v11};

v10 : D := {v10, v13};

v9 : D := {v10}, I := ∅, M := M⊎ {{v9, v11, v13}};

v8 : I := {v8};

v7 : D := ∅, I := ∅, M := M⊎ {{v7, v8, v10}};

v6 : D := {v6};

v5 : I := {v5};

v4, v3, v2, v1 : D := {v1, v2, v3, v4, v6}, M := M⊎ {{v1, v2, v3}, {v4, v5, v6}} .

So we end up with the perfect matching

M = {{v1, v2, v3}, {v4, v5, v6}, {v7, v8, v10}, {v9, v11, v13}, {v12, v14, v15}} .
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3 Separable hypergraphs

We begin by comparing the classes of orderable hypergraphs and separable hypergraphs.

Proposition 3.1 The following relations between orderable and separable hypergraphs hold:

1. Every orderable k-hypergraph is separable;

2. For k = 1, 2 every separable k-hypergraph is orderable, but for each k ≥ 3 there exist

separable but not orderable k-hypergraphs.

Proof of part 1. Suppose H is orderable and let v1, . . . , vn be an elimination order. Define
a vertex labeling by a(vi) := 2i if vi is dominating and a(vi) := −2i if vi is isolating. Consider
any k-set E ⊆ V and let vi ∈ E be the vertex with largest index in E, which then implies
that vi ∈ E ⊆ {v1, . . . , vi}. If vi is dominating then E ∈ H and a(E) ≥ 2i −

∑

j<i 2
j > 0,

whereas if vi is isolating then E /∈ H and a(E) ≤ −2i +
∑

j<i 2
j < 0. Therefore we have that

H = {E ⊆ V : |E| = k, a(E) ≥ 0} is separable.

Proof of part 2. For k = 1, any H is orderable, since any order is an elimination order,
where we declare v ∈ V isolating if {v} /∈ H and v ∈ V dominating if {v} ∈ H. For k = 2,
that is, graphs, we prove the claim by induction on n := |V |. For n ≤ 2 any graph is orderable
providing the induction base so assume n ≥ 3. Since H is separable there exists a labeling
a : V → Z of vertices by integers such that

H = {{u, v} : u, v ∈ V, u 6= v, a(u) + a(v) ≥ 0} .

Now, either there is a w ∈ V such that a(w) ≥ 0 and a(w) ≥ |a(v)| for all v ∈ V , or there is a
w ∈ V such that a(w) < 0 and |a(w)| > a(v) for all v ∈ V . In either case, define V ′ := V \{w}
and H′ := {E ∈ H : E ⊆ V ′}. Clearly, for any two distinct u, v ∈ V ′ we have that {u, v} ∈ H′

if and only if a(u) + a(v) ≥ 0, so H′ is separable, and |V ′| = n − 1, so by induction H′ is
orderable. Let v1, . . . , vn−1 be an elimination order for H′. We claim v1, . . . , vn−1, w is an
elimination order for H. Indeed, if a(w) ≥ 0 then for all v ∈ V ′ we have a(w) + a(v) ≥ 0 so
we can declare w dominating, whereas if a(w) < 0 then for all v ∈ V ′ we have a(w)+a(v) < 0
so we can declare w isolating. So the induction follows and we are done.

For k ≥ 3 let V = {v1, . . . , vk+1} and define a labeling a : V → Z by setting

a(v1) := 0, a(v2) := · · · := a(vk) := 1, a(vk+1) := −(k − 1) .

Then it is easy to check that the corresponding separable hypergraph is

H = {E ⊆ V : |E| = k, a(E) ≥ 0} = {{v1, v2, . . . , vk}, {v2, v3, . . . , vk+1}} .

Now, suppose there exists an elimination order for H and let v ∈ V be the last in that order.
If v is isolating then it lies in no edge of H. But this is impossible since every vertex is in
at least one of the two edges of H. If v is dominating then all k-sets E with v ∈ E ⊂ V
must be edges of H. But there are k ≥ 3 such sets whereas H has only 2 edges. So v can be
neither isolating nor dominating, hence there is no elimination order andH is not orderable.
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We remark, following a suggestion by one of the referees, that the construction in the
above proof can be extended to produce, for any k ≥ 3 and any n ≥ k+ 1, separable but not
orderable k-hypergraphs of order n, by simply adding n− (k + 1) more vertices and labeling
each by −k. The reader can verify that this works.

We now prove our theorem about separable hypergraphs.

Theorem 1.2 For any fixed k, the following two statements hold:

1. It can be decided in polynomial time if a given k-hypergraph is separable;

2. Deciding if a separable k-hypergraph has a perfect matching is polynomial time doable

for k = 1, 2, but is NP-complete for each k ≥ 3, even if a : V → Z is encoded in unary.

Proof of part 1. Given a k-hypergraph H on V , consider the following system of linear
inequalities in variables a(v), v ∈ V ,

∑

{a(v) : v ∈ E} ≥ 0 for each E ∈ H ,

∑

{a(v) : v ∈ E} ≤ −1 for each E ⊆ V , |E| = k , E /∈ H .

Clearly H is separable if and only if this system has a rational solution. Since k is fixed, the
number of inequalities is O(nk), polynomial in n := |V |, and so the existence of a rational
solution of this system can be tested in polynomial time by linear programming, see e.g. [6].

Proof of part 2. Now suppose H is separable. If k = 1, 2 then H is also orderable by
Proposition 3.1, and so by Theorem 1.1 the existence of a perfect matching can be decided
in polynomial time. Suppose k = 3. We reduce the NP-complete 3-partition problem with
input H= = {E ⊆ V : |E| = 3, a(E) = 0} with a encoded in unary to our problem over
H≥ := {E ⊆ V : |E| = 3, a(E) ≥ 0}. We may and do assume a(V ) = 0 else H= has no
perfect matching. Indeed, if E1, . . . , Em is a perfect matching of H= then

a(V ) = a (⊎m
i=1Ei) =

m
∑

i=1

a(Ei) = 0 .

We claim that H= has a perfect matching if and only if H≥ has. Since H= ⊆ H≥, clearly
if H= has a perfect matching then so does H≥. Conversely, suppose that E1, . . . , Em is a
perfect matching of H≥. Then

m
∑

i=1

a(Ei) = a (⊎m
i=1Ei) = a(V ) = 0 ,

and a(Ei) ≥ 0 for all i, so in fact a(Ei) = 0 hence Ei ∈ H= for all i. Therefore E1, . . . , Em is
a perfect matching of H= as well. So 3-partition reduces to perfect matching over separable
3-hypergraphs.

Now suppose k ≥ 4. We reduce the problem of deciding the existence of a perfect matching
in a given separable 3-hypergraph H = {E ⊆ V : |E| = 3, a(E) ≥ 0} where a is encoded in
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unary, just proved to be NP-complete, to the analog problem for separable k-hypergraphs.
We may and do assume n := |V | = 3m is a multiple of 3 and H 6= ∅ else H has no perfect
matching. Let b := 1 + max{a(E) : E ⊆ V, |E| ≤ k} which can be computed in polynomial
time as k is fixed. Let V ′ := V ⊎ U where U is a set of (k − 3)m new vertices. Define
a′ : V ′ → Z by a′(u) := 3b for u ∈ U and a′(v) := ka(v) − (k − 3)b for v ∈ V . Let
H′ := {E ⊆ V ′ : |E| = k, a′(E) ≥ 0}.

We claim that H has a perfect matching if and only if H′ has. Suppose first E1, . . . , Em is
a perfect matching of H. Let U = ⊎m

i=1Fi be an arbitrary partition of U into (k− 3)-sets and
let E′

i := Ei ⊎ Fi for all i. Then E′
1, . . . , E

′
m is a perfect matching of H′ since V ′ = ⊎m

i=1E
′
i,

and for all i,

a′(E′
i) =

∑

v∈Ei

(ka(v)− (k− 3)b) +
∑

u∈Fi

3b = ka(Ei)− 3(k− 3)b+ (k− 3)3b = ka(Ei) ≥ 0 .

For the converse, consider first any E′ ∈ H′ and let E := E′ ∩ V and F := E′ ∩ U . Then

0 ≤ a′(E′) =
∑

v∈E

(ka(v) − (k − 3)b) +
∑

u∈F

3b = ka(E)−
∑

v∈E

kb+
∑

v∈E⊎F

3b

= ka(E)− kb|E|+
∑

v∈E′

3b ≤ k(b− 1)− kb|E|+ k3b = kb(4− |E|)− k .

This implies 1 ≤ b(4− |E|) and, since our assumption H 6= ∅ implies b ≥ 1, we get |E| ≤ 3.
Now suppose E′

1, . . . , E
′
m is a perfect matching of H′. Let Ei := E′

i ∩ V and Fi := E′
i ∩ U

for each i. Then V = ⊎m
i=1

Ei hence 3m = |V | =
∑m

i=1
|Ei|, and as just proved, |Ei| ≤ 3 for

each i, so in fact |Ei| = 3 and |Fi| = k − 3 for each i. Therefore, for each i, we find that
Ei ∈ H since

0 ≤ a′(E′
i) =

∑

v∈Ei

(ka(v)− (k− 3)b)+
∑

u∈Fi

3b = ka(Ei)− 3(k− 3)b+(k− 3)3b = ka(Ei) .

So E1, . . . , Em is a perfect matching of H. Therefore the problem over k-hypergraphs is NP-
complete for all k ≥ 3, completing the proof.
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