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Abstract

This note establishes a limiting formula for the conic Lagrangian dual of a
convex infinite optimization problem, correcting the classical version of Karney
[Math. Programming 27 (1983) 75-82] for convex semi-infinite programs. A
reformulation of the convex infinite optimization problem with a single constraint
leads to a limiting formula for the corresponding Lagrangian dual, called sup-
dual, and also for the primal problem in the case when strong Slater condition
holds, which also entails strong sup-duality.
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1 Introduction

Given a real linear space X, consider the (algebraic) convex infinite programming (CIP)
problem

(P ) inf
x∈X

f(x), s.t. ft(x) ≤ 0, t ∈ T,

where T is an infinite index set and f, ft : X −→ R := R∪{±∞} , t ∈ T, are convex
proper functions. We denote by

E :=
⋂

t∈T

[ft ≤ 0] = {x ∈ X : ft(x) ≤ 0, t ∈ T}

the feasible set of (P ) and define

M :=
⋂

t∈T

dom ft ⊃ E and ∆ := M ∩ dom f.
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Let R
(T )
+ be the positive cone of the space R(T ) of functions λ = (λ)t∈T : T → R

whose support supp λ := {t ∈ T : λt 6= 0} is finite and let 0R(T ) be its null element. The

ordinary Lagrangian function associated to (P ) is (see [7], [8], etc.) is L0 : X×R
(T )
+ −→

R such that L0 (x, λ) := f(x) +
∑

t∈T λtft(x), where

∑

t∈T

λtft(x) :=

{ ∑

t∈supp λ λtft(x), if λ 6= 0R(T ) ,

0, if λ = 0R(T ) .

A slightly different Lagrangian is the associated to the cone constrained reformulation
of (P ), that is [14, page 138], the function L : X × R

(T )
+ −→ R such that

L (x, λ) :=

{

f(x) +
∑

t∈T λtft(x), if x ∈ M, λ ∈ R
(T )
+ ,

+∞, else.

We call L the conic Lagrangian of (P ).

For each x ∈ X we have

sup
λ∈R

(T )
+

L0 (x, λ) = sup
λ∈R

(T )
+

L (x, λ) = f(x) + δE(x),

where δE is the indicator of E, that is, δE (x) = 0 if x ∈ E and δE (x) = +∞ otherwise.
Consequently,

inf
x∈X

sup
λ∈R

(T )
+

L0 (x, λ) = inf
x∈X

sup
λ∈R

(T )
+

L (x, λ) = inf(P ).

The ordinary and conic-Lagrangian dual problems of (P ) read, respectively,

(D0) sup
λ∈R

(T )
+

inf
x∈X

(

f(x) +
∑

t∈T

λtft(x)

)

,

and

(D) sup
λ∈R

(T )
+

inf
x∈M

(

f(x) +
∑

t∈T

λtft(x)

)

,

and one has
sup(D0) ≤ sup(D) ≤ inf (P ) . (1.1)

Note that, if dom f ⊂ M, then sup(D0) = sup(D). This is in particular the case when
the functions ft, t ∈ T, are real-valued. But it may happen that sup(D0) < sup(D)
even if T is finite and Slater condition holds. This is the case in the next example.

Example 1.1 Consider X = R2, T = {1} , f (x1, x2) = ex2 , and

f1 (x1, x2) =

{

x1, if x2 ≥ 0,
+∞, if x2 < 0.

We then have
max(D0) = 0 < 1 = max(D) = min (P ) .
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Duffin [5] observed that a positive duality gap may occur when one considers the
ordinary Lagrangian dual (D0) of (P ) . The same happens when (D0) is replaced by
(D) even though, according to (1.1), the gap may be smaller. Different ways have
been proposed to close the duality gap, e.g., by adding a linear perturbation to the
saddle function f +

∑

t∈T λtft, and sending it to zero in the limit [5]. Blair, Duffin
and Jeroslow [1] used the conjugate duality theory to extend the limiting phenomena
to the general minimax setting. Pomerol [12] showed that it was possible to obtain
infisup theorems, including that of [1], by using a slightly more general form of the
duality theory. In turn, Karney and Morley [9] proved that, when X = Rn, either the
convex semi-infinite programming (CSIP in brief) problem (P ) satisfies some recession
condition guaranteeing a zero duality gap or there exists d ∈ Rn� {0n} such that the
problem

(Pε) inf
x∈X

f(x) + ε 〈d, x〉 , s.t. ft(x) ≤ 0, t ∈ T,

satisfies the mentioned recession condition for ε > 0 sufficiently small, with (Pε) en-
joying strong duality, and inf (P ) = lim

ε↓0
(Pε) . The theory developed in [9] subsumed

the CSIP versions of some results on limiting Lagrangians in [2] and [6]. Three years
before, Karney gave, in the CSIP setting, a limiting formula for the dual problem (D0) :

sup(D0) = lim
ε↓0

inf {f(x) : ft(x) ≤ ε, t ∈ T} . (1.2)

According to [8, Proposition 3.1], this formula comes from [13, Theorem 7] and [2,
Corollary 2], and does not require any constraint qualification (other than E 6= ∅, or
something stronger as E∩dom f 6= ∅, E ⊂ cl dom f, ...). The next example shows that
[8, Proposition 3.1] fails even in linear semi-infinite programming, where dom f = X =
Rn.

Example 1.2 Consider the following optimization problem, with T = N :

(P ) infx∈R2 x2

s.t. x1 ≤ 0, (t = 1)
−x2 ≤ 1, (t = 2)
t−1x1 − x2 ≤ 0, t = 3, 4, ...

Its dual problem (D0) is equivalent to the Haar dual (see, e.g., [7])

sup
λ∈R

(N)
+

−λ2

s.t. λ1

(

−1
0

)

+ λ2

(

0
1

)

+
∑

t≥3

(

−t−1

1

)

=

(

0
1

)

,

whose unique feasible solution is λ ∈ R
(N)
+ such that λ2 = 1 and λt = 0 for t 6= 2.

So, max (D0) = −1 while E = {(x1, x2) : x1 ≤ 0, x2 ≥ 0} , so that min (P ) = 0. On the
other hand, given ε > 0,

{

x ∈ R2 : ft(x) ≤ ε, t ∈ N
}

=
{

x ∈ R2 : x1 ≤ ε, x2 ≥ −ε,
x1

3
− x2 ≤ ε

}

,
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so that
min {x2 : ft(x) ≤ ε, t ∈ N} = −ε

is attained at {(x1,−ε) : x1 ≤ 0} . Hence,

max (D0) = −1 < 0 = lim
ε↓0

min {x2 : ft(x) ≤ ε, t ∈ N} .

From [8, Proposition 3.1] Karney obtained, following the suggestion of an unknown
referee, the reverse stromg duality theorem [8, Theorem 3.2]

min (P ) = sup (D0)

under some recession condition. However, he asserted in [8, Section 5] that he had two
(longer) unpublished proofs. In either case, his result has been recently proved from a
new strong duality theorem for CIP (see [4, Corollary 3.2 and Remark 3.2]).

In this note we show in a simpler way, for general CIP problems, that, if

∃α > 0, ∃a ∈ dom f : ft(a) ≤ −α, ∀t ∈ T,

then (1.2) entails that zero duality gap holds:

sup(D0) = inf (P ) .

This duality theorem is obtained by studying the Lagrangian dual (D1) associated with
the representation of E by a single constraint (the so-called sup-function). Section 2
(resp. Section 3) provides a limiting formula for sup(D) (resp. sup(D1)). Under the
strong Slater condition, the limiting formula for sup(D1) also holds for inf (P ) together
with the strong duality theorem inf (P ) = max(D1).

2 Conic-Lagrangian duality

Problem (D) receives a perturbational interpretation (see [3], [14], etc.) in terms of
the ordinary value function v : RT −→ R associated with (P ) defined by

v (y) := inf {f(x) : ft(x) ≤ yt, t ∈ T} , ∀y = (yt)t∈T ∈ RT .

Let us make explicit this approach. The linear space Y := RT , equipped with the
product topology, is a locally convex Hausdorff topological vector space whose topo-
logical dual is R(T ) via the bilinear pairing

〈·, ·〉 : Y × R(T ) −→ R such that 〈y, λ〉 =
∑

t∈T

λtyt.

The Fenchel conjugate of v is (see [3], [14], etc.)

− v∗ (−λ) =

{

infx∈∆
(

f (x) +
∑

t∈T λtft (x)
)

, if ∆ 6= ∅ and λ ∈ R
(T )
+ ,

−∞, if ∆ = ∅ or λ ∈ R(T )�R
(T )
+ .

(2.1)
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If ∆ 6= ∅ we the have

v∗∗ (0Y ) = supλ∈R(T ) −v∗ (λ) = supλ∈R(T ) −v∗ (−λ) = sup
λ∈R

(T )
+

−v∗ (−λ)

= sup
λ∈R

(T )
+

infx∈∆
(

f (x) +
∑

t∈T λtft (x)
)

= sup(D).

Note that, if ∆ = ∅ we have dom v = ∅ and v∗∗ (0Y ) = +∞ = sup(D). Therefore, in
all cases we have

sup(D) = v∗∗ (0Y ) ≤ v (0Y ) ≤ v (0Y ) = inf (P ) , (2.2)

where v is the lower semicontinuous (lsc in brief) hull of v for the product topology on
Y = RT . A neighborhood basis of the origin 0Y is furnished by the family

{

V H
ε : ε > 0, H ∈ F (T )

}

,

where F (T ) is the class of non-empty finite subsets of T, and

V H
ε := {y ∈ Y : |yt| ≤ ε, t ∈ H} .

We now give a general explicit formula for v (0Y ) :

Lemma 2.1 v (0Y ) = sup
ε>0,H∈F(T )

inf
x∈M

{f (x) : ft (x) ≤ ε, t ∈ H} .

Proof For each ε > 0 and H ∈ F (T ) one has

inf
y∈V H

ε

v (y) = inf {f (x) : ft (x) ≤ yt, t ∈ T ; |yt| ≤ ε, t ∈ H}

= inf {f (x) : ft (x) ≤ ε, t ∈ H ; ft (x) < +∞, t /∈ H}
= inf

x∈M
{f (x) : ft (x) ≤ ε, t ∈ H} .

Since v (0Y ) = sup
ε>0,H∈F(T )

inf
y∈V H

ε

v (y) , we are done. �

Remark 2.1 From Lemma 2.1 one gets

v (0Y ) ≤ lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} .

Remark 2.2 In the case when the index set T is finite, the formula provided by Lemma
2.1 can be simplified as follows:

v (0Y ) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} .

In such a case we also have M =
⋂

t∈T

dom ft and

v∗∗ (0Y ) = sup
λ∈RT

+

inf
x∈M

(

f (x) +
∑

t∈T

λtft (x)

)

.
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Proposition 2.1 (Limiting formula for sup(D)) Assume either v (0Y ) 6= +∞ or
sup(D) 6= −∞. Then we have

sup(D) = sup
ε>0,H∈F(T )

inf
x∈M

{f (x) : ft (x) ≤ ε, t ∈ H} .

Proof We know that sup(D) = v∗∗ (0Y ) (see (2.2)). Since the functions f and ft,
t ∈ T, are convex, the value function v is convex, too. By [2, Proposition 1], we then
have sup(D) = v (0Y ) and Lemma 2.1 concludes the proof. �

Remark 2.3 Condition v (0Y ) 6= +∞ is in particular satisfied if inf(P ) 6= +∞, that
is E ∩ dom f 6= ∅.
Condition sup(D) 6= −∞ is satisfied if and only if there exists λ ∈ R

(T )
+ and r ∈ R

such that
x ∈ M =⇒ f (x) +

∑

t∈T

λtft (x) ≥ r.

Remark 2.4 By (1.1), (2.1) and (2.2), we have

sup(D0) ≤ sup(D) ≤ lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} .

In [8, Proposition 3.1] it is claimed that for X = Rn, f and ft, t ∈ T, are proper, lsc
and convex, and E 6= ∅, it holds that

sup(D0) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} .

To the best of our knowledge, this fact has not been proved anywhere. We prove in
Proposition 3.2 below an exact formula for its right-hand side.

3 Sup-Lagrangian duality

Let h := sup
t∈T

ft be the sup-function of (P ) which allows to represent its feasible set E

with a single constraint. We associate with (P ) another Lagrangian L1 : X×R+ −→ R,
called sup-Lagrangian, such that

L1 (x, s) :=

{

f(x) + sh(x), if x ∈ ∆1 := dom f ∩ domh and s ≥ 0,
+∞, else.

Note that ∆1 ⊂ ∆. For each x ∈ X we have

sup
s≥0

L1 (x, s) = f(x) + δE (x) ,

and
inf
x∈X

sup
s≥0

L1 (x, s) = inf (P ) .
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The corresponding Lagrangian dual problem, say sup-dual problem, reads

(D1) sup
s≥0

inf
x∈∆1

(f(x) + sh(x)) .

Let us introduce the sup-value function v1 : R −→R associated with (P ) via L1, namely,

v1 (r) := inf {f(x) : h(x) ≤ r} , r ∈ R,

which is non-increasing and satisfies

v1 (0) = lim
ε↓0

v1 (ε) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} . (3.1)

Lemma 3.1 sup(D) ≤ sup(D1) ≤ inf (P ) .

Proof Let us prove the first inequality (the second being obvious). Given λ ∈ R
(T )
+ ,

one has to check that

inf
x∈∆

(

f (x) +
∑

t∈T

λtft (x)

)

≤ sup(D1).

If suppλ = ∅, then

inf
x∈∆

(

f (x) +
∑

t∈T

λtft (x)

)

= inf
x∈∆

f ≤ inf
x∈∆1

f ≤ sup(D1)

and we are done.

If suppλ 6= ∅, one has, for s =
∑

t∈T λt,

sup(D1) ≥ infx∈∆1 (f(x) + sh(x))

≥ infx∈∆1

(

f(x) + s
∑

t∈T
λt

s
ft (x)

)

≥ infx∈∆1

(

f (x) +
∑

t∈T λtft (x)
)

≥ infx∈∆
(

f (x) +
∑

t∈T λtft (x)
)

.

�

Proposition 3.1 (Limiting formula for sup(D1)) Assume either v1 (0) 6= +∞ or
sup(D1) 6= −∞. Then we have

sup(D1) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} .

Proof By (3.1), the right-hand side of (3.1) coincides with v1 (0) . By definition of v1
we have (as for v), v∗∗1 (0) = sup(D1). Since v1 is convex and either v1 (0) 6= +∞ or
v∗∗1 (0) 6= −∞, we then have, by [2, Proposition 1], sup(D1) = v1 (0) and we are done.
�
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Proposition 3.2 (Limiting formula for inf (P )) Assume the strong Slater condi-
tion

∃α > 0, ∃a ∈ dom f : ft(a) ≤ −α, ∀t ∈ T, (3.2)

holds. Then we have

inf (P ) = max
s≥0

inf
x∈∆1

(f(x) + sh(x)) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T} . (3.3)

Proof By definition of h we have

inf (P ) = inf {f(x) : h(x) ≤ 0} .

Note that (3.2) amounts to the usual Slater condition relative to h :

∃a ∈ dom f : h(a) < 0.

Since the functions f and h are convex, we then have (see, e.g., [10, Lemma 1])

inf (P ) = max
s≥0

inf
x∈∆1

(f(x) + sh(x)) = max (D1) .

By (3.2) we have v1 (0) ≤ v1 (0) < +∞. By Proposition 3.1 it follows that

sup(D1) = lim
ε↓0

inf {f (x) : ft (x) ≤ ε, t ∈ T}

and we are done. �

Let us revisit Example 1.2, where (3.3) fails. Any candidate a to be strong Slater
point is feasible. Let a be a feasible solution of (P ) . Then a = (a1, 0) , with a1 ≤ 0, and
h (a) ≥ sup {t−1a1 : t = 3, 4, ...} = 0. Thus, h (a) = 0 and the strong Slater constraint
qualification (3.2) fails. However, by Proposition 7, we have

sup(D1) = lim
ε↓0

inf {f (x) : h (x) ≤ ε} = lim
ε↓0

−ε = 0

and, finally,

−1 = sup(D0) = sup(D) < sup(D1) = 0 = min (P )
= inf {f (x) : h (x) = 0} = lim

ε↓0
inf {f (x) : h (x) ≤ ε} .

Remark 3.1 In the case when T is finite, condition (3.2) reads

∃a ∈ dom f : ft(a) < 0, ∀t ∈ T,

that is the familiar Slater constraint qualification. One has also ∆1 =

(

⋂

t∈T

dom ft

)

∩

dom f and, by Proposition 3.2, there exists s ≥ 0 such that

inf (P ) = inf
x∈∆1

(f(x) + sh(x)) = inf
x∈∆1

sup
ν∈ST

(

f(x) + s
∑

t∈T

νtft (x)

)

,
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where ST =
{

ν ∈ RT
+ :
∑

t∈T νt = 1
}

is the unit simplex in RT . By the minimax theorem
[14, Theorem 2.10.1], with A = ST and B = ∆1, there exists ν ∈ ST such that

inf (P ) = inf
x∈∆1

(

f(x) + s
∑

t∈T

νtft (x)

)

≤ sup(D) ≤ inf (P )

and, consequently, inf (P ) = max (D) , which is the strong duality theorem [14, Theorem
2.9.3] without assuming a topological structure on the basic linear space X (see also
[11, Remark 8]).

Concerning Example 1.1, let us note that

max(D0) = 0 < 1 = max(D) = lim
ε↓0

inf {f (x) : f1 (x) ≤ ε} = min (P ) ,

which also contradicts [8, Proposition 3.1].
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