Duality for convex infinite optimization on linear spaces

M. A. Goberna* and M. Volle ${ }^{\dagger}$

June 29, 2021

Abstract

This note establishes a limiting formula for the conic Lagrangian dual of a convex infinite optimization problem, correcting the classical version of Karney [Math. Programming 27 (1983) 75-82] for convex semi-infinite programs. A reformulation of the convex infinite optimization problem with a single constraint leads to a limiting formula for the corresponding Lagrangian dual, called supdual, and also for the primal problem in the case when strong Slater condition holds, which also entails strong sup-duality.

Key words Convex infinite programming • Lagrangian duality. Haar duality•Limiting formulas

Mathematics Subject Classification Primary 90C25; Secondary 49N15 • 46N10

1 Introduction

Given a real linear space X, consider the (algebraic) convex infinite programming (CIP) problem

$$
(P) \inf _{x \in X} f(x) \text {, s.t. } f_{t}(x) \leq 0, t \in T \text {, }
$$

where T is an infinite index set and $f, f_{t}: X \longrightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{ \pm \infty\}, t \in T$, are convex proper functions. We denote by

$$
E:=\bigcap_{t \in T}\left[f_{t} \leq 0\right]=\left\{x \in X: f_{t}(x) \leq 0, t \in T\right\}
$$

the feasible set of (P) and define

$$
M:=\bigcap_{t \in T} \operatorname{dom} f_{t} \supset E \text { and } \Delta:=M \cap \operatorname{dom} f .
$$

[^0]Let $\mathbb{R}_{+}^{(T)}$ be the positive cone of the space $\mathbb{R}^{(T)}$ of functions $\lambda=(\lambda)_{t \in T}: T \rightarrow \mathbb{R}$ whose support $\operatorname{supp} \lambda:=\left\{t \in T: \lambda_{t} \neq 0\right\}$ is finite and let $0_{\mathbb{R}^{(T)}}$ be its null element. The ordinary Lagrangian function associated to (P) is (see [7], [8], etc.) is $L_{0}: X \times \mathbb{R}_{+}^{(T)} \longrightarrow$ $\overline{\mathbb{R}}$ such that $L_{0}(x, \lambda):=f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)$, where

$$
\sum_{t \in T} \lambda_{t} f_{t}(x):= \begin{cases}\sum_{t \in \operatorname{supp} \lambda} \lambda_{t} f_{t}(x), & \text { if } \lambda \neq 0_{\mathbb{R}^{(T)}} \\ 0, & \text { if } \lambda=0_{\mathbb{R}^{(T)}}\end{cases}
$$

A slightly different Lagrangian is the associated to the cone constrained reformulation of (P), that is [14, page 138], the function $L: X \times \mathbb{R}_{+}^{(T)} \longrightarrow \overline{\mathbb{R}}$ such that

$$
L(x, \lambda):= \begin{cases}f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x), & \text { if } x \in M, \lambda \in \mathbb{R}_{+}^{(T)} \\ +\infty, & \text { else. }\end{cases}
$$

We call L the conic Lagrangian of (P).
For each $x \in X$ we have

$$
\sup _{\lambda \in \mathbb{R}_{+}^{(T)}} L_{0}(x, \lambda)=\sup _{\lambda \in \mathbb{R}_{+}^{(T)}} L(x, \lambda)=f(x)+\delta_{E}(x),
$$

where δ_{E} is the indicator of E, that is, $\delta_{E}(x)=0$ if $x \in E$ and $\delta_{E}(x)=+\infty$ otherwise. Consequently,

$$
\inf _{x \in X} \sup _{\lambda \in \mathbb{R}_{+}^{(T)}} L_{0}(x, \lambda)=\inf _{x \in X} \sup _{\lambda \in \mathbb{R}_{+}^{(T)}} L(x, \lambda)=\inf (P)
$$

The ordinary and conic-Lagrangian dual problems of (P) read, respectively,

$$
\left(D_{0}\right) \sup _{\lambda \in \mathbb{R}_{+}^{(T)}} \inf _{x \in X}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right)
$$

and

$$
(D) \sup _{\lambda \in \mathbb{R}_{+}^{(T)}} \inf _{x \in M}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right)
$$

and one has

$$
\begin{equation*}
\sup \left(D_{0}\right) \leq \sup (D) \leq \inf (P) \tag{1.1}
\end{equation*}
$$

Note that, if dom $f \subset M$, then $\sup \left(D_{0}\right)=\sup (D)$. This is in particular the case when the functions $f_{t}, t \in T$, are real-valued. But it may happen that $\sup \left(D_{0}\right)<\sup (D)$ even if T is finite and Slater condition holds. This is the case in the next example.

Example 1.1 Consider $X=\mathbb{R}^{2}, T=\{1\}, f\left(x_{1}, x_{2}\right)=e^{x_{2}}$, and

$$
f_{1}\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}, & \text { if } x_{2} \geq 0 \\ +\infty, & \text { if } x_{2}<0\end{cases}
$$

We then have

$$
\max \left(D_{0}\right)=0<1=\max (D)=\min (P)
$$

Duffin [5] observed that a positive duality gap may occur when one considers the ordinary Lagrangian dual $\left(D_{0}\right)$ of (P). The same happens when $\left(D_{0}\right)$ is replaced by (D) even though, according to (1.1), the gap may be smaller. Different ways have been proposed to close the duality gap, e.g., by adding a linear perturbation to the saddle function $f+\sum_{t \in T} \lambda_{t} f_{t}$, and sending it to zero in the limit 5]. Blair, Duffin and Jeroslow [1] used the conjugate duality theory to extend the limiting phenomena to the general minimax setting. Pomerol [12] showed that it was possible to obtain infisup theorems, including that of [1], by using a slightly more general form of the duality theory. In turn, Karney and Morley [9] proved that, when $X=\mathbb{R}^{n}$, either the convex semi-infinite programming (CSIP in brief) problem (P) satisfies some recession condition guaranteeing a zero duality gap or there exists $d \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that the problem

$$
\left(P_{\varepsilon}\right) \inf _{x \in X} f(x)+\varepsilon\langle d, x\rangle, \text { s.t. } f_{t}(x) \leq 0, t \in T
$$

satisfies the mentioned recession condition for $\varepsilon>0$ sufficiently small, with $\left(P_{\varepsilon}\right)$ enjoying strong duality, and $\inf (P)=\lim _{\varepsilon \downarrow 0}\left(P_{\varepsilon}\right)$. The theory developed in [9] subsumed the CSIP versions of some results on limiting Lagrangians in [2] and [6]. Three years before, Karney gave, in the CSIP setting, a limiting formula for the dual problem $\left(D_{0}\right)$:

$$
\begin{equation*}
\sup \left(D_{0}\right)=\liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\} \tag{1.2}
\end{equation*}
$$

According to [8, Proposition 3.1], this formula comes from [13, Theorem 7] and [2, Corollary 2], and does not require any constraint qualification (other than $E \neq \emptyset$, or something stronger as $E \cap \operatorname{dom} f \neq \emptyset, E \subset \operatorname{cl} \operatorname{dom} f, \ldots)$. The next example shows that [8, Proposition 3.1] fails even in linear semi-infinite programming, where $\operatorname{dom} f=X=$ \mathbb{R}^{n}.

Example 1.2 Consider the following optimization problem, with $T=\mathbb{N}$:

$$
\begin{array}{lll}
(P) & \inf _{x \in \mathbb{R}^{2}} & x_{2} \\
& \text { s.t. } & x_{1} \leq 0, \\
& -x_{2} \leq 1, & (t=1) \\
& t^{-1} x_{1}-x_{2} \leq 0, & t=3,4, \ldots
\end{array}
$$

Its dual problem $\left(D_{0}\right)$ is equivalent to the Haar dual (see, e.g., (7])

$$
\begin{array}{ll}
\sup _{\lambda \in \mathbb{R}_{+}^{(N)}} & -\lambda_{2} \\
\text { s.t. } & \lambda_{1}\binom{-1}{0}+\lambda_{2}\binom{0}{1}+\sum_{t \geq 3}\binom{-t^{-1}}{1}=\binom{0}{1},
\end{array}
$$

whose unique feasible solution is $\lambda \in \mathbb{R}_{+}^{(\mathbb{N})}$ such that $\lambda_{2}=1$ and $\lambda_{t}=0$ for $t \neq 2$. So, $\max \left(D_{0}\right)=-1$ while $E=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 0, x_{2} \geq 0\right\}$, so that $\min (P)=0$. On the other hand, given $\varepsilon>0$,

$$
\left\{x \in \mathbb{R}^{2}: f_{t}(x) \leq \varepsilon, t \in \mathbb{N}\right\}=\left\{x \in \mathbb{R}^{2}: x_{1} \leq \varepsilon, x_{2} \geq-\varepsilon, \frac{x_{1}}{3}-x_{2} \leq \varepsilon\right\}
$$

so that

$$
\min \left\{x_{2}: f_{t}(x) \leq \varepsilon, t \in \mathbb{N}\right\}=-\varepsilon
$$

is attained at $\left\{\left(x_{1},-\varepsilon\right): x_{1} \leq 0\right\}$. Hence,

$$
\max \left(D_{0}\right)=-1<0=\lim _{\varepsilon \downarrow 0} \min \left\{x_{2}: f_{t}(x) \leq \varepsilon, t \in \mathbb{N}\right\}
$$

From [8, Proposition 3.1] Karney obtained, following the suggestion of an unknown referee, the reverse stromg duality theorem [8, Theorem 3.2]

$$
\min (P)=\sup \left(D_{0}\right)
$$

under some recession condition. However, he asserted in [8, Section 5] that he had two (longer) unpublished proofs. In either case, his result has been recently proved from a new strong duality theorem for CIP (see [4, Corollary 3.2 and Remark 3.2]).

In this note we show in a simpler way, for general CIP problems, that, if

$$
\exists \alpha>0, \exists a \in \operatorname{dom} f: \quad f_{t}(a) \leq-\alpha, \forall t \in T,
$$

then (1.2) entails that zero duality gap holds:

$$
\sup \left(D_{0}\right)=\inf (P) .
$$

This duality theorem is obtained by studying the Lagrangian dual $\left(D_{1}\right)$ associated with the representation of E by a single constraint (the so-called sup-function). Section 2 (resp. Section 3) provides a limiting formula for $\sup (D)\left(\right.$ resp. $\left.\sup \left(D_{1}\right)\right)$. Under the strong Slater condition, the limiting formula for $\sup \left(D_{1}\right)$ also holds for $\inf (P)$ together with the strong duality theorem $\inf (P)=\max \left(D_{1}\right)$.

2 Conic-Lagrangian duality

Problem (D) receives a perturbational interpretation (see [3], [14], etc.) in terms of the ordinary value function $v: \mathbb{R}^{T} \longrightarrow \overline{\mathbb{R}}$ associated with (P) defined by

$$
v(y):=\inf \left\{f(x): f_{t}(x) \leq y_{t}, t \in T\right\}, \forall y=\left(y_{t}\right)_{t \in T} \in \mathbb{R}^{T} .
$$

Let us make explicit this approach. The linear space $Y:=\mathbb{R}^{T}$, equipped with the product topology, is a locally convex Hausdorff topological vector space whose topological dual is $\mathbb{R}^{(T)}$ via the bilinear pairing

$$
\langle\cdot, \cdot\rangle: Y \times \mathbb{R}^{(T)} \longrightarrow \mathbb{R} \text { such that }\langle y, \lambda\rangle=\sum_{t \in T} \lambda_{t} y_{t} .
$$

The Fenchel conjugate of v is (see [3], [14], etc.)

$$
-v^{*}(-\lambda)= \begin{cases}\inf _{x \in \Delta}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right), & \text { if } \Delta \neq \emptyset \text { and } \lambda \in \mathbb{R}_{+}^{(T)} \tag{2.1}\\ -\infty, & \text { if } \Delta=\emptyset \text { or } \lambda \in \mathbb{R}^{(T)} \backslash \mathbb{R}_{+}^{(T)}\end{cases}
$$

If $\Delta \neq \emptyset$ we the have

$$
\begin{aligned}
v^{* *}\left(0_{Y}\right) & =\sup _{\lambda \in \mathbb{R}^{(T)}}-v^{*}(\lambda)=\sup _{\lambda \in \mathbb{R}^{(T)}}-v^{*}(-\lambda)=\sup _{\lambda \in \mathbb{R}_{+}^{(T)}}-v^{*}(-\lambda) \\
& =\sup _{\lambda \in \mathbb{R}_{+}^{(T)}} \inf _{x \in \Delta}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right)=\sup (D) .
\end{aligned}
$$

Note that, if $\Delta=\emptyset$ we have $\operatorname{dom} v=\emptyset$ and $v^{* *}\left(0_{Y}\right)=+\infty=\sup (D)$. Therefore, in all cases we have

$$
\begin{equation*}
\sup (D)=v^{* *}\left(0_{Y}\right) \leq \bar{v}\left(0_{Y}\right) \leq v\left(0_{Y}\right)=\inf (P) \tag{2.2}
\end{equation*}
$$

where \bar{v} is the lower semicontinuous (lsc in brief) hull of v for the product topology on $Y=\mathbb{R}^{T}$. A neighborhood basis of the origin 0_{Y} is furnished by the family

$$
\left\{V_{\varepsilon}^{H}: \varepsilon>0, H \in \mathcal{F}(T)\right\}
$$

where $\mathcal{F}(T)$ is the class of non-empty finite subsets of T, and

$$
V_{\varepsilon}^{H}:=\left\{y \in Y:\left|y_{t}\right| \leq \varepsilon, t \in H\right\} .
$$

We now give a general explicit formula for $\bar{v}\left(0_{Y}\right)$:
Lemma $2.1 \bar{v}\left(0_{Y}\right)=\sup _{\varepsilon>0, H \in \mathcal{F}(T)} \inf _{x \in M}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in H\right\}$.
Proof For each $\varepsilon>0$ and $H \in \mathcal{F}(T)$ one has

$$
\begin{aligned}
\inf _{y \in V_{\varepsilon}^{H}} v(y) & =\inf \left\{f(x): f_{t}(x) \leq y_{t}, t \in T ;\left|y_{t}\right| \leq \varepsilon, t \in H\right\} \\
& =\inf \left\{f(x): f_{t}(x) \leq \varepsilon, t \in H ; f_{t}(x)<+\infty, t \notin H\right\} \\
& =\inf _{x \in M}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in H\right\}
\end{aligned}
$$

Since $\bar{v}\left(0_{Y}\right)=\sup _{\varepsilon>0, H \in \mathcal{F}(T)} \inf _{y \in V_{\varepsilon}^{H}} v(y)$, we are done.

Remark 2.1 From Lemma 2.1 one gets

$$
\bar{v}\left(0_{Y}\right) \leq \liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\} .
$$

Remark 2.2 In the case when the index set T is finite, the formula provided by Lemma 2.1 can be simplified as follows:

$$
\bar{v}\left(0_{Y}\right)=\liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\}
$$

In such a case we also have $M=\bigcap_{t \in T} \operatorname{dom} f_{t}$ and

$$
v^{* *}\left(0_{Y}\right)=\sup _{\lambda \in \mathbb{R}_{+}^{T}} \inf _{x \in M}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right) .
$$

Proposition 2.1 (Limiting formula for $\sup (D)$) Assume either $\bar{v}\left(0_{Y}\right) \neq+\infty$ or $\sup (D) \neq-\infty$. Then we have

$$
\sup (D)=\sup _{\varepsilon>0, H \in \mathcal{F}(T)} \inf _{x \in M}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in H\right\}
$$

Proof We know that $\sup (D)=v^{* *}\left(0_{Y}\right)($ see (2.2) $)$. Since the functions f and f_{t}, $t \in T$, are convex, the value function v is convex, too. By [2, Proposition 1], we then have $\sup (D)=\bar{v}\left(0_{Y}\right)$ and Lemma 2.1 concludes the proof.

Remark 2.3 Condition $\bar{v}\left(0_{Y}\right) \neq+\infty$ is in particular satisfied if $\inf (P) \neq+\infty$, that is $E \cap \operatorname{dom} f \neq \emptyset$.
Condition $\sup (D) \neq-\infty$ is satisfied if and only if there exists $\lambda \in \mathbb{R}_{+}^{(T)}$ and $r \in \mathbb{R}$ such that

$$
x \in M \Longrightarrow f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x) \geq r
$$

Remark 2.4 By (1.1), (2.1) and (2.2), we have

$$
\sup \left(D_{0}\right) \leq \sup (D) \leq \liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\}
$$

In [8, Proposition 3.1] it is claimed that for $X=\mathbb{R}^{n}, f$ and $f_{t}, t \in T$, are proper, lsc and convex, and $E \neq \emptyset$, it holds that

$$
\sup \left(D_{0}\right)=\liminf _{\varepsilon \downarrow 0} \inf \left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\}
$$

To the best of our knowledge, this fact has not been proved anywhere. We prove in Proposition 3.2 below an exact formula for its right-hand side.

3 Sup-Lagrangian duality

Let $h:=\sup _{t \in T} f_{t}$ be the sup-function of (P) which allows to represent its feasible set E with a single constraint. We associate with (P) another Lagrangian $L_{1}: X \times \mathbb{R}_{+} \longrightarrow \overline{\mathbb{R}}$, called sup-Lagrangian, such that

$$
L_{1}(x, s):= \begin{cases}f(x)+\operatorname{sh}(x), & \text { if } x \in \Delta_{1}:=\operatorname{dom} f \cap \operatorname{dom} h \text { and } s \geq 0, \\ +\infty, & \text { else. }\end{cases}
$$

Note that $\Delta_{1} \subset \Delta$. For each $x \in X$ we have

$$
\sup _{s \geq 0} L_{1}(x, s)=f(x)+\delta_{E}(x),
$$

and

$$
\inf _{x \in X} \sup _{s \geq 0} L_{1}(x, s)=\inf (P)
$$

The corresponding Lagrangian dual problem, say sup-dual problem, reads

$$
\left(D_{1}\right) \sup _{s \geq 0} \inf _{x \in \Delta_{1}}(f(x)+\operatorname{sh}(x)) .
$$

Let us introduce the sup-value function $v_{1}: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$ associated with (P) via L_{1}, namely,

$$
v_{1}(r):=\inf \{f(x): h(x) \leq r\}, r \in \mathbb{R}
$$

which is non-increasing and satisfies

$$
\begin{equation*}
\bar{v}_{1}(0)=\lim _{\varepsilon \downarrow 0} v_{1}(\varepsilon)=\lim _{\varepsilon \downarrow 0} \inf \left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\} \tag{3.1}
\end{equation*}
$$

Lemma $3.1 \sup (D) \leq \sup \left(D_{1}\right) \leq \inf (P)$.
Proof Let us prove the first inequality (the second being obvious). Given $\lambda \in \mathbb{R}_{+}^{(T)}$, one has to check that

$$
\inf _{x \in \Delta}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right) \leq \sup \left(D_{1}\right)
$$

If $\operatorname{supp} \lambda=\emptyset$, then

$$
\inf _{x \in \Delta}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right)=\inf _{x \in \Delta} f \leq \inf _{x \in \Delta_{1}} f \leq \sup \left(D_{1}\right)
$$

and we are done.
If supp $\lambda \neq \emptyset$, one has, for $s=\sum_{t \in T} \lambda_{t}$,

$$
\begin{aligned}
\sup \left(D_{1}\right) & \geq \inf _{x \in \Delta_{1}}(f(x)+s h(x)) \\
& \geq \inf _{x \in \Delta_{1}}\left(f(x)+s \sum_{t \in T} \frac{\lambda_{t}}{s} f_{t}(x)\right) \\
& \geq \inf _{x \in \Delta_{1}}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right) \\
& \geq \inf _{x \in \Delta}\left(f(x)+\sum_{t \in T} \lambda_{t} f_{t}(x)\right)
\end{aligned}
$$

Proposition 3.1 (Limiting formula for $\sup \left(D_{1}\right)$) Assume either $\bar{v}_{1}(0) \neq+\infty$ or $\sup \left(D_{1}\right) \neq-\infty$. Then we have

$$
\sup \left(D_{1}\right)=\lim _{\varepsilon \downarrow 0} \inf \left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\}
$$

Proof By (3.1), the right-hand side of (3.1) coincides with $\bar{v}_{1}(0)$. By definition of v_{1} we have (as for $v), v_{1}^{* *}(0)=\sup \left(D_{1}\right)$. Since v_{1} is convex and either $\bar{v}_{1}(0) \neq+\infty$ or $v_{1}^{* *}(0) \neq-\infty$, we then have, by [2, Proposition 1], $\sup \left(D_{1}\right)=\bar{v}_{1}(0)$ and we are done.

Proposition 3.2 (Limiting formula for $\inf (P)$) Assume the strong Slater condition

$$
\begin{equation*}
\exists \alpha>0, \exists a \in \operatorname{dom} f: \quad f_{t}(a) \leq-\alpha, \forall t \in T \tag{3.2}
\end{equation*}
$$

holds. Then we have

$$
\begin{equation*}
\inf (P)=\max _{s \geq 0} \inf _{x \in \Delta_{1}}(f(x)+\operatorname{sh}(x))=\liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\} \tag{3.3}
\end{equation*}
$$

Proof By definition of h we have

$$
\inf (P)=\inf \{f(x): h(x) \leq 0\}
$$

Note that (3.2) amounts to the usual Slater condition relative to h :

$$
\exists a \in \operatorname{dom} f: \quad h(a)<0
$$

Since the functions f and h are convex, we then have (see, e.g., [10, Lemma 1])

$$
\inf (P)=\max _{s \geq 0} \inf _{x \in \Delta_{1}}(f(x)+s h(x))=\max \left(D_{1}\right) .
$$

By (3.2) we have $\bar{v}_{1}(0) \leq v_{1}(0)<+\infty$. By Proposition 3.1] it follows that

$$
\sup \left(D_{1}\right)=\liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{t}(x) \leq \varepsilon, t \in T\right\}
$$

and we are done.
Let us revisit Example 1.2, where (3.3) fails. Any candidate a to be strong Slater point is feasible. Let a be a feasible solution of (P). Then $a=\left(a_{1}, 0\right)$, with $a_{1} \leq 0$, and $h(a) \geq \sup \left\{t^{-1} a_{1}: t=3,4, \ldots\right\}=0$. Thus, $h(a)=0$ and the strong Slater constraint qualification (3.2) fails. However, by Proposition 7, we have

$$
\sup \left(D_{1}\right)=\liminf _{\varepsilon \downarrow 0}\{f(x): h(x) \leq \varepsilon\}=\lim _{\varepsilon \downarrow 0}-\varepsilon=0
$$

and, finally,

$$
\begin{aligned}
& -1=\sup \left(D_{0}\right)=\sup (D)<\sup \left(D_{1}\right)=0=\min (P) \\
& =\inf \{f(x): h(x)=0\}=\lim _{\varepsilon \downarrow 0} \inf \{f(x): h(x) \leq \varepsilon\}
\end{aligned}
$$

Remark 3.1 In the case when T is finite, condition (3.2) reads

$$
\exists a \in \operatorname{dom} f: \quad f_{t}(a)<0, \forall t \in T
$$

that is the familiar Slater constraint qualification. One has also $\Delta_{1}=\left(\bigcap_{t \in T} \operatorname{dom} f_{t}\right) \cap$ dom f and, by Proposition 3.2, there exists $\bar{s} \geq 0$ such that

$$
\inf (P)=\inf _{x \in \Delta_{1}}(f(x)+\bar{s} h(x))=\inf _{x \in \Delta_{1}} \sup _{\nu \in S_{T}}\left(f(x)+\bar{s} \sum_{t \in T} \nu_{t} f_{t}(x)\right)
$$

where $S_{T}=\left\{\nu \in \mathbb{R}_{+}^{T}: \sum_{t \in T} \nu_{t}=1\right\}$ is the unit simplex in \mathbb{R}^{T}. By the minimax theorem [14, Theorem 2.10.1], with $A=S_{T}$ and $B=\Delta_{1}$, there exists $\bar{\nu} \in S_{T}$ such that

$$
\inf (P)=\inf _{x \in \Delta_{1}}\left(f(x)+\bar{s} \sum_{t \in T} \bar{\nu}_{t} f_{t}(x)\right) \leq \sup (D) \leq \inf (P)
$$

and, consequently, $\inf (P)=\max (D)$, which is the strong duality theorem 14, Theorem 2.9.3] without assuming a topological structure on the basic linear space X (see also [11, Remark 8]).

Concerning Example 1.1, let us note that

$$
\max \left(D_{0}\right)=0<1=\max (D)=\liminf _{\varepsilon \downarrow 0}\left\{f(x): f_{1}(x) \leq \varepsilon\right\}=\min (P),
$$

which also contradicts [8, Proposition 3.1].
Acknowledgement This research was partially supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and European Regional Development Fund (ERDF), Project PGC2018-097960-B-C22.

References

[1] Blair, C.E., Duffin, R.J., Jeroslow, R.G.: A limiting infisup theorem. J Optim Theory Appl 37, 163-175 (1982)
[2] Borwein, J.M.: A note on perfect duality and limiting Lagrangeans. Math. Programming 18, 330-337 (1980)
[3] Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer-Verlag, Berlin/Heidelberg (2010)
[4] Dinh, N., Goberna, M.A., López, M.A.: Relaxed Lagrangian duality in convex infinite optimization: reverse strong duality and optimality. Preprint. Available at http://arxiv.org/abs/2106.09299
[5] Duffin, R.J.: Convex analysis treated by linear programming. Math. Programming 4, 125-143 (1973)
[6] Duffin, R.J., Jeroslow, R.G.: The Limiting Lagrangian. Georgia Institute of Technology, Management Science Technical Reports No. MS-79-13 (1979)
[7] Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. J. Wiley, Chichester, U.K., (1998)
[8] Karney, D.F.: A duality theorem for semi-infinite convex programs and their finite subprograms. Math. Programming 27, 75-82 (1983)
[9] Karney, D.F., Morley, T.D.: Limiting Lagrangians: A primal approach. J Optim. Theory Appl. 48, 163-174 (1986).
[10] Lemaire, B., Volle, M.: Duality in DC programming. Generalized convexity, generalized monotonicity: recent results (Luminy, 1996), 331-345, Nonconvex Optim. Appl. 27, Kluwer, Dordrecht (1998)
[11] Luc, D.T., Volle, M.: Algebraic approach to duality in optimization and applications. Set-Valued Var. Anal., to appear.
[12] Pomerol, J.-Ch.: A note on limiting infisup theorems. Math. Programming 30, 238-241 (1984)
[13] Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia, P.A. (1974)
[14] Zălinescu, C.: Convex analysis in general vector spaces. World Scientific, River Edge, N.J. (2002)

[^0]: *Department of Mathematics, University of Alicante, Alicante, Spain (mgoberna@ua.es). Corresponding author.
 †Avignon University, LMA EA 2151, Avignon, France (michel.volle@univ-avignon.fr)

