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Abstract

The notion of Fejér monotonicity is instrumental in unifying the convergence proofs
of many iterative methods, such as the Krasnoselskii-Mann iteration, the proximal point
method, the Douglas-Rachford splitting algorithm, and many others. In this paper, we
present directionally asymptotical results of strongly convergent subsequences of Fejér
monotone sequences. We also provide examples to show that the sets of directionally
asymptotic cluster points can be large and that weak convergence is needed in infinite-
dimensional spaces.
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1 Introduction

One of the most important tools in studying convergence of iterative methods in optimization
and convex analysis is Fejér monotonicity; see, e.g., [1, Chapters 5, 26, 28], [5], [2], [7], [8],
[6]. Recently, among many important advances, Rockafellar showed in [11] that in a finite-
dimensional Hilbert space the sequences generated by the proximal point algorithm enjoy
directionally asymptotic properties. In this paper, we study directional asymptotics of Fejér
monotone sequences in Hilbert spaces. Consequently, many iteration methods in [1] and
[5], whose convergence analysis relies on the Fejér monotonicity, have these directionally
asymptotic behaviour.

The paper is organized as follows. In Section 2, we provide some preliminary results
on Fejér monotone sequences useful in subsequent proofs. Our main results on directional
asymptotics of Fejér monotone sequences are presented in Section 3. In Section 4, we show
that the sets of directional asymptotics of Fejér monotone sequences can be large. We con-
clude the paper with an infinite-dimensional example illustrating weak without strong con-
vergence in Section 5.
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The notation that we employ is for the most part standard and follows [1]; however, a
partial list is provided for the reader’s convenience. Throughout this paper, we assume that

X is a real Hilbert space,

with inner product (-, -) and induced norm | - |. We use N := {0, 1,2, ...} for set of natural
numbers.
Let (x;)en be a sequence in X. We denote the set of (weak) cluster points of (x,)neN by

C((xn)nen) := {x € X | x is the weak limit of some subsequence of (X, )en }-

Of course, if X is finite-dimensional, then C((x)sen) is the same as the set of strong cluster
points of (x)ueN. We write x,, — x if (x,),en converges strongly to x, and x, — x if (x,)en
converges weakly to x. Let C be a subset of X and let (x,),en be a sequence in X. Then
(Xn)neN is Fejér monotone with respect to C if

(Vee C)(Vn e N) |xyi1 —¢f < lxn —cf,

and we also call C a Fejér monotone set of (x,),en. The corresponding support function of
C is defined by oc(x) := sup(C,x) while the corresponding distance function is dc(x) :=
inf |C — x|, for every x € X. The polar cone of C is C° := {u € X | oc(u) < 0}; note that
if z € C, then N¢(z) = (C — 2)© is the normal cone of C at x. For a set-valued monotone
operator A : X =3 X, the corresponding resolvent is J 4 := (Id +A)~!. Finally, the unit sphere is
abbreviated by

S:={xeX]||x| =1}

2 Auxiliary results

We start with some preparatory results on Fejér monotone sequences.
Lemma 2.1. Let (xy,)neN be a sequence in X. Then the following hold:

(i) The largest Fejér monotone set of (x,)neN is the (possibly empty) closed convex set
() {z € X[ 20 = 2011, 2) < xul® = |x]?},
nelN

and is closed convex.

(ii) If C is a Fejér monotone set of (x,)neN, then conv C, the closed convex hull of C, is a Fejér
monotone set of (Xn)neN-

(iii) If Cq, Cy are Fejér monotone sets of (x,)neN, then C1 U Cy is a Fejér monotone set of (X,)neN-

(iv) If C is a Fejér monotone set of (x,)neN, then C is a Fejér monotone set of every subsequence of
(%) neN-

Proof. (i): Let z € X and ne N. Then |x,11 —z| < |xn —z| & |x01 — 2> < |xn — 2|
< |xn1l? + 20 = 2{xn41,2) < Joul® + 22 = 20m, 2) = 24200 = Xu11,2) < 20?20
(ii)&(iii): These follow from (i). (iv): Obvious from the definition of Fejér monotonicity. |
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Lemma 2.2. Let C be a nonempty closed convex subset of X, let z € X, and let (x,),eN be a sequence
in X. Suppose that (x,)neN is Fejér monotone with respect to C. Then the following hold for all n, m
in N such that m > n + 1:

(VzeC) {tn—xp41,2—2) < %(Hxn — 2] — 41— ZHZ) (2.1a)
= (Xp41 — 2, Xn — Xpy1) + %Hxn - xn+1H2 (2.1b)
< 2041 = 2] |30 = xnga | + 3200 — 2i1 ] (2.10)
and
(VzeC) {(xp—2xmz—2)< %(Hxn —zZ|2 = |xm —Z|?). (2.2)

Proof. Letz e Candletk e {n,n+1,...,m}. Because (x,),enN is Fejér monotone with respect
to C, we have

0 < [xx—z|* =[x — 2|
= [|xx — x| + 2k — Xy 1, Xpp1 — 2)
= [xx — xpp1 | + 2 — xpp1, (g1 —2) — (2 —2)).
Therefore,
(k= X112 = 2) < 3|26 — xgep1 |2+ ok — X1, Xe1 — 2) (2.3a)

= 2|k — 2% — |xks1 — 2I?) (2.3b)

which yields (2.1a) and (2.1b). Next, (2.1c¢) is just Cauchy-Schwarz. Finally, (2.2) follows by
summing (2.3) from k = n to k = m and telescoping. |

We now localize the set of weak cluster points of a sequence.

Lemma 2.3. Let C be a nonempty subset of X and let (x,)neN be a sequence in X. Suppose that
m Uc(xn) < 0
n—00

Then
C ((xn)nelN) < C°.

Proof. Suppose that x € C((x4)nen) and to the contrary that x ¢ C®. Then o¢(x) > 0 and there
exists a weakly convergent subsequence (xy, )ueN Of (X1)zew such that x;, — x. The weak
lower semicontinuity of ¢ now implies

0 < oc(x) < lim o¢(xg,) < lim oc(xg,) < lim oc(x,) <0,
n—aoo n—00 n—0o0

which is absurd! [ |

Lemma 2.4. Suppose that X is finite-dimensional, let C be a nonempty closed subset of X, and let
(xXn)neN be a bounded sequence in X. Then

dc(xp) -0 < C((xn)ne]N) cC.
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Proof. “=": Let x be a cluster point in C((x)eN), say Xk, — x. The continuity of dc and the
assumption yield
dc(x) = lim de(xg,) = lim dc(xy) = 0.
Hence x € C because C is closed.
“<": Suppose to the contrary that lim, . dc(x,) > 0. Then there exists a subsequence
(XK, JneN Of (Xn)neN such that

lim dc(xg,) = ;E)T{)lodc(xn) > 0. (2.4)

n—aoo

Recall that (x;),en is bounded and X is finite-dimensional. Using Bolzano-Weierstrass and
after passing to another subsequence and relabeling, we may and do assume that x;, — x.
By assumption, x € C. But then d¢(xx,) — dc(x) = 0 which contradicts (2.4). [

We end this section with results on linear isometries.
Lemma 2.5. Let A : X — X be a linear isometry. Then the following hold:
(i) A is injective.
(ii) If T := 31d +3A, then (Vx € X) Tx L (x — Tx).
(ili) IfA* = A~1 = —A, then Ja = 31d —3Aand (Vx € X) Jax L (x — Jax).
Proof. Let x € X. (i): If Ax =0, then 0 = ||Ax| = |x|| and so x = 0.
(ii): Note that Id —T = % Id —%. Hence
4(Tx,x — Tx) = (x + Ax, x — Ax) = ||x|* — | Ax|]* = 0.

(iii): Clearly, +A is monotone and A? = —1Id. Hence, [3, Proposition 2.10] yields J4 =
21d—3A =1d T, where T = 3 Id +3A. Now apply (ii). u

Corollary 2.6. Let A : X — X be a linear operator such that A* = Al = —A let xg e X~ {0},
and set
(VnelN) x,41:=Jax, = %xn — %Axn.

Then x, — 0and (Vn € IN) x,,,1 # x,, and

(VneN) ( 2l In= Tt N g (2.5)
[xn1]” [ xn = xn4a

Proof. Clearly, A is a maximally monotone isometry. The formula for J4x, is a consequence
of Lemma 2.5(iii) which also yields (2.5) after we prove that the quotients are well defined
which we do next. Let x € X. Then (Id+A)"'x = Jux = 0= x = (Id+A)(0) = 0 and
(Id+A)'x = Ja4x =x e x = (Id +A)x & Ax = 0 = x = 0. We have shown that if x # 0, then
Jax # 0and J4x # x. A straightforward induction yields (Vn € N) x,, # 0 and x,, 11 # Xy, as
claimed. Finally, [4, Corollary 1.2] implies that x,, — 0. [

Remark 2.7. When X = R? and
A 0 1
\=1 0/’

then Corollary 2.6 recovers [11, the example on page 11]. Note that (see [10, page 206]) a
linear isometry need not be surjective.



3 Directional asymptotics of Fejér monotone sequences

We are now ready for our main results on the directionally asymptotic behaviour of Fejér
monotone sequences. The proofs significantly extend the reach of those brought to light by
Rockafellar in [11, Theorem 2.3].

Theorem 3.1. Let (xy,)qeN be a sequence in X that is Fejér monotone with respect to some nonempty
closed convex subset Z of X. Suppose that x, — z € X and that (¥n € IN) x,,1 # x, # z. Then

C((ﬁ)nd{q) - C(( |§Z = ;)neN) < (Z-2)5; (3.1)

in particular, if Z € Z, then we may replace (Z — z)° by Nz(z) in (3.1).

Proof. Let n € IN. Taking the supremum over z € Z in (2.1) yields
072 = Xns1) < [Xns1 = 2l |20 = Xnga | + 50 — x| (32)

Dividing (3.2) by |x; — x;,+1/ and using the positive homogeneity of o7_z, we have

Xn — Xp41 _
072 (T2=) < s = 2+ Fln = xnal. (33)
% = %]

Because x, — z and so x;, — x,,.1 — 0, we let n — o0 in (3.3) to learn that

lim O'Z_2<M> < 0. (3.4)

n—00 [xn = Xn 44

Combining (3.4) with Lemma 2.3, we obtain

Xn — Xn+1 - =

Next, let m > n + 1. Taking the supermum over z € Z in (2.2) yields
o720 — Xm) < 2 (|20 — 2| = ||Jxm — 2[%). (3.6)
Passing to the limit as m — oo and using the lower semicontinuity of 0z_z in (3.6), we obtain

07-z(xp —2) < im 07 5(xy — xp) < %20 — 2% (3.7)
m-—00

Dividing (3.7) by |x, — z| and using the positive homogeneity of oz_z, we have
Xn—2 _
UZ—z(h) < 3llxn — 2. (3.8)
n

Because x, — z, we let n — o0 in (3.8) and get

Tim O'Z_z<u> <0. (3.9)

n—a |xn = 2]

Combining (3.9) with our trusted Lemma 2.3, we obtain

Xn— 2 e
C ((T - 2|>neN> c (Z - 2)°. (3.10)
Altogether, (3.5) and (3.10) imply (3.1). |



Although ostensibly more general, the following result is actually an easy consequence of
Theorem 3.1:

Corollary 3.2. Let (x,)neN be a sequence in X that is Fejér monotone with respect to some nonempty
closed convex subset Z of X. Suppose that (xi, )neN is a subsequence of (x,)neN such that x;, — z €
X and that (Vvn € N) xi | # xi, # z. Then

X, — X -z

(e uen) (2 ) = 257 e

in particular, if Z € Z, then we may replace (Z — z)° by Nz(z) in (3.11).

Proof. Recalling Lemma 2.1(iv), we simply apply Theorem 3.1 to (x, )neN- |
When X is finite-dimensional, we have the following two nice results:

Corollary 3.3. Suppose that X is finite-dimensional. Let (x,),eN be a sequence in X that is Fejér
monotone with respect to some nonempty closed convex subset Z of X. Suppose that (xi, )neN iS a
subsequence of (Xn)neN such that xy, — z € Z and that (V¥n € N) xi .| # xi, # z. Then

Yhkn — Xt Xk, — z N
C(<|xk,Z — Xk, |>ne]N) - C<<|xk,, —Z|>neN) c Sn Nz(2);

equivalently,
. ~ Xkn =™ Xkpia _ : _ Yhkn — z _
Jim dsov (g —30p) =0 ond lim dsono (2 —57) = ©
Proof. Combine Corollary 3.2 with Lemma 2.4. [ |

Corollary 3.4 (no zigzagging). Suppose that X is finite-dimensional and let (x,),eN be a sequence
that is Fejér monotone with respect to some closed convex subset Z of X. Suppose that x, — z € Z,
that (Vn € IN) x,41 # Xy # Z, that intZ # @&, and that Nz(z) is a ray. Then

lim Y TE g Ny (2). (3.12)
=00 Xy — Xppa]  n=o0 [xn — 2]
Proof. Clear from Corollary 3.3 because S n Nz(Z) is a singleton when Nz(z) is a ray. [

4 Large sets of directionally asymptotic cluster points

In this section, we give an example illustrating that the sets of directionally asymptotic cluster
points can be large. It also shows that without the interiority assumption in Corollary 3.4,
(3.12) can go quite wrong.

We start with a fact from real analysis:

Fact 4.1 (Dirichlet). (See, e.g., [12, page 88]) Let « € R \. Q. Then the set {nx — |na| | n € N} is
dense in [0, 1].

For the remainder of this section, R, denotes the counterclockwise rotator in the Euclidean
plane by «.



Example 4.2. Suppose that X = R?, let0 < 0 ¢ %n]N, Then T := %Id +%R29 = cos(0)Ry is
firmly nonexpansive, with Z := Fix T = {0}. Let xp € X \ {0}, and set

(meN) x,41:=Txy. 4.1)

Then x,, > z:=0,and (Vn € IN) x,, 11 # x,, # zand {x, — X;, 11, X,+1) = 0. Moreover, we have
the following dichotomoy:

(i) 6 € 21Q and

xl’l — xn+1 x” . ..
C <<m> HEN) ul <<m> neN) is a finite subset of S.

(ii) 6 ¢ 2tQ and L { Fnm of( .
(i) =¢(()n) -

Proof. Because 0 ¢ 27tZ, we have Fix T = {0}. Note that

cosnf —sinnb

n __ n = n
T" = (cos0)"R,9 = (cosb) (sinnG cos né

) and x,, = T"xo.
Since 0 < |cosf| < 1 and R,y is an isometry, we have |T"| — 0. Thus x, — 0. By
Lemma 2.5(ii), we have (x, — x,11, X, +1) = 0. Moreover, |x,, 11| = | cos ORgxy| = | cos8||x,| <
|x| because xg = 0, so (Vn € IN) x,,11 # x5, and x,, # 0.

To study the set of cluster points of (T"xg/|T"xo|)neN, We consider two cases.
Case 1: cos 0 > 0. We have

T"xg X0 (cos nd —sin nG) X0

= v _ - _ ) — 4.2
Tixg] ~ X0Tg] ~ \sinnd  cosnd ) g 2

We proceed with two subcases.
Subcase 1: % € Q. Then 6 = 271% with k,/ € N and | # 0, and cosnf = cos 7(2k7) and
sinnf = sin 7(2k7). By using n = ml,ml +1,...,ml + 1 —1 with m € IN, the set

{Rng‘nEN} = {thkn/l\t:O,...,l—l}.

The sequence (R;p),eN has at most I cluster points. From (4.2) we see that (T"xo/|T"xo| ) neN
has at most I cluster points. In fact, if k = 2, then there are precisely ! cluster points.
Subcase 2: % ¢ Q. Then 6 = 2ta with w € Ry, . Q, and

cosnf = cosn(2ma) = cos(na)(27r) = cos(na — |nu|)(27), and

sinnf = sinn(27ta) = sin(na)(27) = sin(na — |na|)(27),

By Fact 4.1, {na — |n«| | n € N}is densein [0, 1]. Hence the set of cluster points of {R, | n € IN}
is {Rg | B € [0,27]}. By (4.2), the set of cluster points of (T"xo/|T"xo|)nen is S.
Case 2: cos 6 < 0. We have

T'xy " Xo a [cosnB —sinnb\ Xp
HT”on_(_l) R”"m_(_l) sinnf cosnb ) |xo| (4.3)




We proceed with two subcases.

Subcase 1: % € Q. Due to (—1)", we have to consider n being even and odd. When # is

even, write n = 2k with k € N,

_ [cosk(20) —sink(20)
n = (sink(ZG) cos k(20) ) '

Since 2% ¢ Q, similar arguments as in Case 1 subcase 1 show that (Ry(29))ren has a finite

27T

number of cluster points. When n is odd, let n = 2k + 1 and 6 = m27/l with k,I,m € IN and
I #0. If wesetk=tl+sfort,se Nand 0 <s <[ -1, then

(2k + 1)m?n = 2(t +ZS) i 1mZn = <2t + 28 l+ 1)m27‘c

so that oo 1 ne 1
cos(2k +1)6 = cos (%mZn), sin(2k +1)0 = sin (%mZn)

where 0 < s <[ —1. This shows that when 7 is odd, we have most I cluster points. Combining
the even and odd cases, the set {Rng ] ne lN} has at most a finite number of cluster points, so
is (T"xo/|T"x0[ ) nen by (4.3).

Subcase 2: % ¢ Q. Put 0 = a(271) with « ¢ Q. When n is even, write n = 2k with k € IN.
Then R,p = Ry(2g), similar arguments as in Case 1 subcase 2 show that the set of cluster points
of {Rip) | k€ N}is {Rg | 0 < B < 27}, because 2 € Ry, \ Q.

When 7 is odd, write n = 2k + 1 with k € IN. Since that

cos[(2k + 1)a27| = cos[k(2a)27t 4+ 2a7t| = cos[(k(2a) — |k(2w)]|)27T + 2a77], and

sin[(2k + 1)a27t] = sin[k(2a)27T + 2a77] = sin[(k(2a) — |k(2a)|)27T + 2a71],

and that
{k(2a) — [k(2a)] | k € N} is dense in [0, 1]

we see that the set of cluster points of {Rox11y9 | k € N} is {Rg | 2a7t < B < 2a7t + 271} Hence,
in both cases the set of cluster points of (T"xy/|T"xo|)nen is S.
Finally, we consider the set of cluster points of

< Xn — Xp41 )
Hxn — xn+1H nelN

Now
Id —R»y ) sinf cosf
d-T = 2 sin <— cos @ sinO)
. cos(f +3m/2) —sin(0+3m/2)\ .
= sind (sin(@ +3m/2) cos(6+3m/2) ) SinOR 94372
so that

Xpn — Xpa1 (Id —=T)xy,

2w = %1 1(1d =T)axa]

_ R(9+37T/2)H§—ZH’ if sinf > 0;
—R(9+3N/Z)H§—ZH, if sinf < 0.
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Then the set of cluster points of
Xn — Xn+1
(Ixn — X1 ) neN
is just £Rg43,/2) rotations of the set of cluster points of (x,/|x,|)nen. Consequently, the set

of cluster points of ((x;, — X,41)/|Xn — Xn+1])nen is a finite set if % € Q;and is S if % ¢Q. N1

Remark 4.3. We do not consider the case when 6 € %HN because then T = Id or 0 in which
case one has finite convergence of (x;),eN-

5 Missing the sphere: an infinite-dimensional example

It is interesting to ask whether in infinite-dimensional Hilbert spaces the nonempty sets of
weak cluster points in Theorem 3.1 lie in the sphere S. It turns out that the answer is negative,
and the sequence provided is obtained by iterating a resolvent. To this end, we assume in this
section that

X =10*({12..1),

with the standard Schauder basis e; := (1,0,0,...),e; := (0,1,0,0,...), and so on. We define
the right-shift operator by

R: X - X: (gl,gz,...) — (O,gl,gz,...),

Then R is a linear isometry with Fix R = {0}. We shall also require the following classical
identity

Fact 5.1 (Vandermonde’s identity). (See [9, Section 5.1].) Let m, n,r be in IN. Then

(") -5 ()
r S\ ) \r—k
Example 5.2. Define the firmly nonexpansive operator T: X — X by
1 1
T:=5I1d+3R,

set xp := e1, and (X)neN = (T"x0)neN With xg = e;. Then the following hold:

(i) (xn)nen is Fejér monotone with respect to Fix T = {0}, and x, — 0. Moreover, (Vn € IN)
xn+1 ?é xn # O

(ii) (VTZ € N) <xn+1z Xn — xn+1> =0.

<xn) and <xn_xn+1>
|2 ]|/ neN |20 — xp 11|/ neN

converge weakly — but not strongly —to 0 ¢ S.

(iii) Both



Proof. (i): It is well known that (x ), is Fejér monotone with respect to Fix T = {0}, because
T is nonexpansive. Since Rke; = k41, we have

1 1w (1) ¢ 1 W (n
xy = T"xp = 5, (Id +R)"xg = > <k)R X0 = o > (k)ekH. (5.1)
k=0 k=0
Hence, by Fact 5.1,
| |2_1i nz_l 2n\ 1 (2n)!
Tl = = \k C4n\n ) 4 (n!)?’

in particular, x,, # 0. x,11 # x, because x,,,1 contains a nonzero term of e, and e, 12 L exy1
forl <k<mn.
Now recall Stirling’s formula (see, e.g., [13, Theorem 5.44]) which states that

n
nl ~ \/27m1:—n (5.2)
for large 1, and which implies
]2 = l(Zn) C2n)!14272n)Q@2ne)* 1 1 0
" n)  41n))2 4" (V2mn)2(nfe)2r  ma/n

-
(The qualitative fact that x,, — 0 also follows from [1, Example 5.29] or [4, Corollary 1.2].)
q p y
(ii): Since R is an isometry, this follows from Lemma 2.5(ii).

(iii). For fixed k, we have from Stirling’s formula (5.2) that

(n) B n! 1 V2mn(n/e)" N n_k (53)
k) K(n—k! "k \/22(n—k)((n—k)/e)k K '

for large n. Hence

X 1 & (n L Y nk
I it 3 (e~ TV 0
2 = k = k!

kA 2"

because that (e )i is a total set in £2(IN) and that for each fixed k € IN the coefficient of ¢;
in x,/||x,| clearly converges to 0 as n — ; see, e.g., [10, Example 4.8-6].
Next,

1 & /n 1 "
Xn — Xp1 = on Z (k) €k+1 — PYES] ( k )ek+1- (5.4)
k=0 k=0

Since e,42 L exy1 for 0 < k < n, by Fact 5.1 and (5.1) we have

1 & (n 1 'S+l
(Xn, Xpt1) = <2_n Z (k) ek+1/W Z ( k )€k+1 (5.5a)



It follows from (5.1) and (5.5) that

20 = 21| = 2]+ |2 41]% = 2 Con, X1 (5.6a)
1 (2 1 [2(n+1) 11 /2n+1
_4_”<n)+4”+1(n+1 )—2547( n ) (5.6b)

11 /2n 1/2n+2 2n+1
~w ()3 () - ()] 660
1 2n 1 ’
BICESVT ( n ) = 21yl (5-6d)
1 1 1 1
T onymn - 2 mnd2 (5.6¢)
for large n. Combining (5.4), (5.6), and (5.3), we obtain
Xn—Xpil V2Pt & B V234 1
|0 — Xpsa|| on Ié) K ) k1 n+1 IZE) ) Ckr (5.7a)
"2 Tnd/ (n) V2T (41
< 2T (e = Y 71( )€k+1 (5.7b)
= 21 k = 2 k
o V2T VY 1)t 579
X T on Gkl T 1 k+1 .
= 21 k! P k!
— 0, (5.7d)

because for every fixed k € IN the coefficients of ey 1 in (x, — x,41)/|xn — Xy41| converge to 0
asn — oo.
In summary, both quotient limits converge weakly but not strongly to 0. u
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