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Abstract

In this paper, we focus on the local convergence rate analysis of the proximal iteratively
reweighted `1 algorithms for solving `p regularization problems, which are widely applied for
inducing sparse solutions. We show that if the Kurdyka- Lojasiewicz (KL) property is satisfied,
the algorithm converges to a unique first-order stationary point; furthermore, the algorithm has
local linear convergence or local sublinear convergence. The theoretical results we derived are
much stronger than the existing results for iteratively reweighted `1 algorithms.
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convergence rate

1 Introduction

In recent years, sparse optimization problems arises in a wide range of fields including machine
learning, image processing and compressed sensing (17; 10; 6; 9; 23; 18). A common technique to
enforce sparsity is to add the `p (0 < p < 1) regularization term to the objective function, which is
called the `p regularized problem

min
x∈Rn

F (x) := f(x) + λ‖x‖pp with ‖x‖pp :=

n∑
i=1

|xi|p (P)

where f : Rn → R is a continuously differentiable function, p ∈ (0, 1) and λ > 0 is the regularization
parameter. It is generally believed that `p can have superior ability to induce sparse solutions of a
system compared with traditional convex regularization techniques. For example, when p→ 0, this
problem approximates the `0-norm optimization problem, that is usually useful for image processing;
when p = 1, that is the well-known `1-norm regularized problem.

However, it is full of challenges to seek the solution of `p-norm optimization problems due to the
nonconvex and nonsmooth propery of `p-norm. In fact, (11) proved that finding the global minimal
value of the problem with `p-norm regularization term is strongly NP-Hard.
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Recently, effective methods have been proposed to construct smooth approximation models for
the `p regularization problem. Some works (6; 16; 7) focus on constructing Lipshcitz continuous
approximation to replace |xi|p. Other works (8) and (12) take the smoothing technique which
adds perturbation to each |xi| to form the ε-approximation of the `p-norm. In the later case, the
approximate objective function becomes

f(x) + λ

n∑
i=1

(|xi|+ ε)
p
, (1)

with ε > 0. Iteratively reweighted `1 methods (16; 19; 22) were proposed for solving approximation
(1). At each iteration, it replaces each component of the ε-approximation via linearizing (·)p at xk,
i.e.,

p(|xki |+ εi)
p−1|xi|. (2)

There is a tradeoff in the choice of ε. Large ε smoothes out many local minimizers, while small
values make the subproblems difficult to solve due to bad local minimizers. In order to approximate
(P) effectively, (16) improved these weights by dynamically updating perturbation parameter εi at
each iteration. Recently, it is shown in (21) that the general framework of iteratively reweighted `1
methods is equivalent to solving a weighted `1 regularization problem, based on which the global
convergence and O(1/k) worst-case complexity of optimality residual were analyzed.

In this paper, we focus on the local convergence rate analysis of the proximal iteratively reweighted
`1 methods for the `p regularization problem. This type of algorithms was first presented and
investigated in (15) with fixed ε > 0 and there was no convergence rate established. Our purpose is to
show that local linear convergence or sublinear convergence can be obtained under mild assumptions.
The Kurdyka- Lojasiewicz (K L) property (5; 4) is generally believed to capture a broad spectrum of
the local geometries that a nonconvex function can have and has been shown to hold ubiquitously
for most practical functions. It has been exploited extensively to analyze the convergence rate of
various first-order algorithms for nonconvex optimization (1; 13; 4; 24). However, it has not been
exploited to establish the convergence rate of iteratively reweighted methods. In this paper, we
exploit the K L property of f to provide a comprehensive study of the convergence rate of iteratively
reweighted `1 methods for `p regularization problems. We anticipate our study to substantially
advance the existing understanding of the convergence of iteratively reweighted methods to a much
broader range of nonconvex regularization problems.

1.1 Notation

We denote R and Q as the set of real numbers and rational numbers. In Rn, denote ‖ · ‖p as the `p

norm with p ∈ (0,+∞), i.e., ‖x‖p = (
∑n
i=1 |xi|p)

1/p
. Note that for p ∈ (0, 1), this does not define a

proper norm due to its lack of subadditivity. If function f : Rn → R̄ := R ∪ {+∞} is convex, then
the subdiferential of f at x̄ is given by

∂f(x̄) := {z | f(x̄) + 〈z, x− x̄〉 ≤ f(x), ∀x ∈ Rn}.

In particular, for x ∈ Rn, we use ∂‖x‖1 to denote the set {ξ ∈ Rn | ξi ∈ ∂|xi|, i = 1, . . . , n}.
Given a lower semi-continuous function f , the limiting subdifferential at a is defined as

∂̄f(a) := {z∗ = lim
xk→a,f(xk)→f(a)

zk, zk ∈ ∂F f(xk)}.

The Frechet subdifferential of f at a defined as

∂F f(a) := {z ∈ Rn | lim inf
x→a

f(x)− f(a)− 〈z, x− a〉
‖x− a‖2

≥ 0}.

The Clarke subdifferential ∂cf is the convex hull of the limiting subdifferential. It holds true that
∂f(a) ⊂ ∂̄f(a) ⊂ ∂cf(a). For convex functions, ∂f(a) = ∂F f(a) = ∂̄f(a) = ∂cf(a) and for differen-
tiable f , ∂f(a) = ∂F f(a) = ∂̄f(a) = ∂cf(a) = {∇f(a)}.
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For f : Rn → R and index sets A and I satisfying A ∪ I = {1, . . . , n}, let f(xI) be the function
in the reduced space R|I| by fixing xi = 0, i ∈ A. For a, b ∈ Rn, a ≤ b means the inequality holds for
each component, i.e., ai ≤ bi for i = 1, . . . , n. For closed convex set χ ⊂ Rn, define the Euclidean
distance of point a ∈ Rn to β as dist(a, χ) = minb∈χ ‖a− b‖2. Let {−1, 0,+1}n be the set of vectors
in Rn filled with elements in {−1, 0,+1}. The support of x ∈ Rn is defined as I(x) := {i | xi 6= 0}.
For a, b ∈ R, let a mod b denote the remainder of a divided by b.

2 Proximal iteratively reweighted `1 method

In this section, we present the Proximal Iteratively Reweighted `1 (PIRL1) methods and examine
their properties when applied to (P). The PIRL1 method is based on the smoothed approximation
of F by adding perturbation εi to each component of |x|

F (x, ε) := f(x) + λ

n∑
i=1

(|xi|+ εi)
p,

where ε ∈ Rn++ is the perturbation vector. At the kth iteration, PIRL1 solves the subproblem

min
x
∇f(xk)T (x− xk) +

β

2
‖x− xk‖2 + λ

n∑
i=1

wki |xi|

with β > Lf/2 and the weight wki is defined as wki := p(|xki |+ εki )p−1 with εi → 0.
The framework of the PIRL1 is presented in Algorithm 1.

Algorithm 1 Proximal Iteratively Reweighted `1 Methods (PIRL1)

1: Input: µ ∈ (0, 1), β > Lf/2, ε0 ∈ Rn++ and x0. Set k = 0
2: repeat
3: Compute weights: wki = p(|xki |+ εki )p−1.
4: Compute new iterate:

xk+1 ← argmin
x∈Rn

{
∇f(xk)T (x− xk) +

β

2
‖x− xk‖2 + λ

n∑
i=1

wki |xi|
}
. (3)

5: Choose εk+1 ≤ µεk.
6: Set k ← k + 1.
7: until convergence

We make the following assumptions about the functions in (P). formulation

Assumption 1. f is Lipschitz differentiable with constant Lf ≥ 0. The initial point (x0, ε0) is such
that L(F 0) := {x | F (x) ≤ F 0 := F (x0, ε0)} is contained in a bounded ball BR := {x | ‖x‖2 ≤ R}.

2.1 Basic properties

The first-order necessary optimality condition2 of (P) is given (16),

∇if(x∗) + λp|x∗i |p−1sign(x∗i ) = 0 for i ∈ I(x∗), (4)

which is equivalent to
xi∇if(x∗) + λp|x∗i |p = 0 for i = 1, . . . , n. (5)

We call any point satisfying (4) or (5) is stationary for F (x, 0).

Proposition 2. Assume {xk} is generated by Algorithm 1 and Assumption 1 holds. Let Γ be the
cluster point set of {xk}. We have the following

3



(a) F (xk+1, εk+1) ≤ F (xk, εk)− β̂‖xk+1 − xk‖22 with β̂ := β − Lf
2 and {xk} ⊂ L(F 0) ⊂ BR.

(b) ∃ constant ζ such that F (x∗, 0) = ζ, ∀x∗ ∈ Γ.

(c)
∞∑
k=0

‖xk+1 − xk‖22 < +∞.

(d) All points in Γ are stationary for F (x, 0).

Proof. (a). Lipschitz differentiability of f gives

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
Lf
2
‖xk+1 − xk‖22 (6)

The concavity of ap on R++ gives ap1 ≤ a
p
2 + pap−1

2 (a1 − a2) for any a1, a2 ∈ R++. Hence we have

(|xk+1
i |+ εki )p ≤ (|xki |+ εki )p + p(|xki |+ εki )p−1(|xk+1

i | − |xki |)
= (|xki |+ εki )p + wki (|xk+1

i | − |xki |).

Summing the above inequality over i yields

n∑
i=1

(|xk+1
i |+ εki )p ≤

n∑
i=1

(|xki |+ εki )p +

n∑
i=1

wki (|xk+1
i | − |xki |). (7)

The optimality condition of subproblems implies there exists ξk+1 ∈ ∂‖xk+1‖1 such that

∇f(xk) + βk(xk+1 − xk) + λwk ◦ ξk+1 = 0. (8)

The definition of subgradient implies |yi| ≤ |xi|+ ξi(yi − xi) with ξi ∈ ∂|yi|. Thus, we have

F (xk+1, εk+1)− F (xk, εk)

= f(xk+1) + λ

n∑
i=1

(|xk+1
i |+ εki )p −

(
f(xk) + λ

n∑
i=1

(|xki |+ εki )p
)

≤ ∇f(xk)T (xk+1 − xk) +
Lf
2
‖xk+1 − xk‖22 + λ

n∑
i=1

wki (|xk+1
i | − |xki |)

≤ ∇f(xk)T (xk+1 − xk) +
Lf
2
‖xk+1 − xk‖22 + λ

n∑
i=1

wki ξ
k+1
i (xk+1

i − xki )

= (∇f(xk) + β(xk+1 − xk) + λwk ◦ ξk+1)T (xk+1 − xk)− (β − Lf
2

)‖xk+1 − xk‖22

= − (β − Lf
2

)‖xk+1 − xk‖22,

(9)

where the first inequality follows from (6) and (7) and the last equality is due to (8). Therefore, (a)

holds true with β̂ = β − Lf/2.
(b). Monotonicity of {F (xk, εk)} gives ζ := lim

k→∞
k∈S

F (xk, εk) = F (x∗, 0) for any x∗ ∈ Γ with

subsequence {xk}S → x∗.
(c). From (a), we have

β̂

t∑
k=0

‖xk+1 − xk‖22 ≤ F (x0, ε0)− F (xt+1, εt+1).

Then, taking the limit as t→∞,

β̂

∞∑
k=0

‖xk+1 − xk‖22 ≤ F (x0, ε0)− lim
t→∞

F (xt+1, εt+1) <∞.
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(d). Let x∗ be a limit point with {xk}S → x∗. The optimal condition of the kth subproblem
implies

∇if(xk−1) + β(xki − xk−1
i ) + λp(|xk−1

i |+ εk−1
i )p−1sign(xki ) = 0, ∀i ∈ I(xk).

Taking the limit on S, we have for each i ∈ I(x∗),

0 = lim
k→∞
k∈S

∇if(xk−1) + β(xki − xk−1
i ) + λp(|xk−1

i |+ εk−1
i )p−1sign(xki )

= lim
k→∞
k∈S

∇if(xk) + β(xk+1
i − xki ) + λp|x∗i |p−1sign(x∗i )

= lim
k→∞
k∈S

∇if(xk) + λp|x∗i |p−1sign(x∗i )

=∇if(x∗) + λp|x∗i |p−1sign(x∗i ).

Here the second equality is from εki → 0 for all i ∈ I(x∗). Therefore, x∗ is a stationary point of
F (x, 0).

Algorithm 1 belongs to the framework of iteratively reweighted `1 methods proposed in (21).
From (21), the following properties hold true.

Theorem 3. (21, Theorem 1) Assume Assumption 1 holds and let {(xk, εk)} be a sequence generated
by Algorithm 1. Define constant C = supx∈BR ‖∇f(x)‖2 + 2Rβ. Then we have the following

(i) If w(xk̃i , ε
k̃
i ) > C/λ for some k̃ ∈ N, then xki ≡ 0 for all k > k̃. Conversely, if there exists k̂ > k̃

for any k̃ ∈ N such that xk̂i 6= 0, then wki ≤ C/λ for all k ∈ N.

(ii) There exist index sets I∗ ∪ A∗ = {1, . . . , n} and k̄ > 0, such that ∀ k > k̄, I(xk) ≡ I∗ and
A(xk) ≡ A∗.

(iii) For any i ∈ I∗, there holds that

|xki | >
(
C

pλ

) 1
p−1

− εki > 0, i ∈ I∗. (10)

Therefore, {|xki |, i ∈ I∗, k ∈ N} are bounded away from 0 after some k̂ ∈ N.

(iv) For any cluster point x∗ of {xk}, it holds that I(x∗) = I∗, A(x∗) = A∗ and

|x∗i | ≥
(
C

pλ

) 1
p−1

, i ∈ I∗. (11)

The above theorem shows locally the support of the iterates remains unchanged and the nonzeros
are bounded away from 0. The next theorem shows that the signs of iterates stay stable locally.

Theorem 4. (21, Theorem 2) Let {xk} be a sequence generated by Algorithm 1 and Assumption 1
is satisfied. There exists k̄ ∈ N, such that the sign of {xk} are fixed for all k > k̄, i.e., sign(xk) ≡ s
for some s ∈ {−1, 0,+1}n.

2.2 Kurdyka- Lojasiewicz property

(2) have proved a series of convergence results of descent methods for semi-algebraic problems under
the assumption that the objective satisfies the Kurdyka- Lojasiewicz (KL) property. In fact, this
assumption covers a wide range of problems such as nonsmooth semi-algebraic minimization problem
(4). The definition of KL property is given below.
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Definition 5 (Kurdyka- Lojasiewicz property). The function f : Rn → R ∪ {+∞} is said to have
the Kurdyka- Lojasiewicz property at x∗ ∈ dom∂̄f if there exists η ∈ (0,+∞], a neighborhood U of x∗

and a continuous concave function φ : [0, η)→ R+ such that:

(i) φ(0) = 0,

(ii) φ is C1 on (0, η),

(iii) for all s ∈ (0, η), φ′(s) > 0,

(iv) for all x in U ∩ [f(x∗) < f < f(x∗) + η], the Kurdyka- Lojasiewicz inequality holds

φ′(f(x)− f(x∗))dist(0, ∂̄f(x)) ≥ 1.

If f is smooth, then condition (iv) reverts to (2)

‖∇(φ ◦ f)(x)‖ ≥ 1.

Since for sufficiently large k, the iterates {xkI∗} remains in the same orthant of R|I∗| and are
bounded away from the axis, or equivalently,

{xkI∗} ∈ Ω ⊂ R|I
∗|

s

where Ω is in the interior of an orthant and is bounded away from the axis. To further analyze
the property of iterates {(xk, εk)}, denote δi =

√
εi . Therefore, we can write F (x, δ) as a function

of (x, δ) for simplicity. We can assume the reduced function F (xI∗ , δA∗) has the KL property at
(x∗I∗ , 0I∗). In fact, we only need to make assumption on f . To see this, we introduce the concept of
semi-algebraic functions, which is a weak condition and can cover most common functions.

Definition 6 (Semi-algebraic functions). A subset of Rn is called semi-algebraic if it can be written
as a finite union of sets of the form

{x ∈ Rn : hi(x) = 0, qi(x) < 0, i = 1, . . . , p},

where hi, qi are real polynomial functions. A function f : Rn → R ∪ {+∞} is semi-algebraic if its
graph is a semi-algebraic subset of Rn+1.

Semi-algebraic functions satisfy KL property with φ(x) = cs1−θ, for some θ ∈ [0, 1)∩Q and some
c > 0 (5; 3). This non-smooth result generalizes the famous  Lojasiewicz inequality for real-analytic
function (14). Finite sums of semi-algebraic functions are semi-algebraic; for p ∈ Q,

∑
i∈I∗(|xi|+εi)p

is semi-algebraic around (x∗I∗ , 0A∗) by (20). Therefore, we only need to assume f(xI∗) is semi-
algebraic in a neighborhood around x∗.

We state this assumption formally below.

Assumption 7. Suppose p ∈ Q and f(xI∗) is semi-algebraic in R|I
∗|

s , where x∗ is a limit point of
{xk} generated by the PIRL1 methods.

For simplicity of the following analysis and without loss of generality, we assume I∗ = {1, ..., n}
and A∗ = ∅, so that for sufficiently large k, the iterates {xkI∗} remains in the same orthant are
bounded away from the axis.

3 The uniqueness of limit points

We investigate the uniqueness of limit points under KL property of F .

Lemma 8. Let {xk} be a sequence generated by Algorithm 1. The following statements hold.
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(i) There exists D1 > 0 such that for all k

‖∇F (xk, δk)‖2 ≤ D1(‖xk − xk−1‖2 + ‖δk−1‖1 − ‖δk‖1),

and lim
k→∞

‖∇F (xk, δk)‖2 = 0.

(ii) {F (xk, δk)} is monotonically decreasing, and there exists β̂ > 0 such that

F (xk+1, δk+1)− F (xk, δk) ≥ β̂‖xk+1 − xk‖22.

(iii) F (x∗, 0) = ζ = lim
k→∞

F (xk, δk) for all x∗ ∈ Γ, where Γ is the set of the cluster points of {xk}.

Proof. (i) The gradient of F at (xk, δk) is

∇xF (xk, δk) = ∇f(xk) + λwk ◦ sign(xk),

∇δF (xk, δk) = 2λwk ◦ δk.
(12)

We first derive an upper bound for ‖∇xF (xk, δk)‖2. The first-order optimality condition of the
(k − 1)th subproblem at xk is

∇f(xk−1) + βk(xk − xk−1) + λwk−1 ◦ sign(xk) = 0.

Hence, we have

∇xF (xk, δk) = ∇f(xk)−∇f(xk−1)− βk(xk − xk−1) + λ(wk − wk−1) ◦ sign(xk). (13)

By the Lipschitz property of f , the first two terms in (13) is bounded by

‖∇f(xk)−∇f(xk−1)− βk(xk − xk−1)‖2 ≤ (Lf + β)‖xk − xk−1‖2.

Now we give an upper bound for the third term. It follows from Lagrange’s mean value theorem
that ∃ zki between |xki |+ (δki )2 and |xk−1

i |+ (δk−1
i )2, such that∣∣(wki − wk−1

i ) · sign(xki )
∣∣ =

∣∣wki − wk−1
i

∣∣
=
∣∣p(|xki |+ (δki )2)p−1 − p(|xk−1

i |+ (δk−1
i )2)p−1

∣∣
=
∣∣p(1− p)(zki )p−2(|xki | − |xk−1

i |+ (δki )2 − (δk−1
i )2)

∣∣
≤ p(1− p)(zki )p−2(|xki − xk−1

i |+ (δk−1
i )2 − (δki )2)

≤ p(1− p)(zki )p−2(|xki − xk−1
i |+ 2δ0

i (δk−1
i − δki ))

≤ p(1− p)
(
pλ

C

) p−2
1−p

(|xki − xk−1
i |+ 2δ0

i (δk−1
i − δki )),

where the first equality is by the fact that xki 6= 0 and the last inequality by observing the following.
From Theorem 3(i), we know

|xki |+ (δki )2 = (
wki
p

)
1
p−1 ≥ (

C

pλ
)

1
p−1 = (

pλ

C
)

1
1−p

|xk−1
i |+ (δk−1

i )2 = (
wk−1
i

p
)

1
p−1 ≥ (

C

pλ
)

1
p−1 = (

pλ

C
)

1
1−p ,

(14)

hence

(zki )p−2 ≤
(
pλ

C

) p−2
1−p

.

7



Now we can obtain an upper bound for the third term in (13),

‖(wk − wk−1) ◦ sign(xk)‖2 ≤ ‖(wk − wk−1) ◦ sign(xk)‖1

=

n∑
i=1

∣∣(wki − wk−1
i ) · sign(xki )

∣∣
≤

n∑
i=1

p(1− p)
(
pλ

C

) p−2
1−p

(|xki − xk−1
i |+ 2δ0

i (δk−1
i − δki ))

≤ D̄
(
‖xk − xk−1‖1 + 2‖δ0‖∞(‖δk−1‖1 − ‖δk‖1)

)
≤ D̄

(√
n‖xk − xk−1‖2 + 2‖δ0‖∞(‖δk−1‖1 − ‖δk‖1)

)
,

(15)

where D̄ := p(1− p)
(
pλ
C

) p−2
1−p

. Putting together the bounds for all three terms in (13), we have

‖∇xF (xk, δk)‖2 ≤ (Lf + β)‖xk − xk−1‖2 + 2D̄‖δ0‖∞(‖δk−1‖1 − ‖δk‖1). (16)

On the other hand,
‖∇δF (xk, δk)‖2 ≤ ‖∇δF (xk, δk)‖1

=

n∑
i=1

2λwki δ
k
i

≤
n∑
i=1

2λCλ

√
µ

1−√µ
(δk−1
i − δki )

≤
2C
√
µ

1−√µ
(‖δk−1‖1 − ‖δk‖1),

(17)

where the second inequality is by Theorem 3(i) and δk ≤ √µδk−1. Overall, we obtain from (16) and
(17) that Part (i) holds true by setting

D1 = max
(
β + Lf , 2C̄‖δ0‖∞ +

2C
√
µ

1−√µ

)
.

Part (ii) and (iii) follows directly from Proposition 2(a) and 2(b), respectively.

Now we are ready to prove the global convergence under KL property.

Theorem 9. Let {xk} be a sequence generated by Algorithm 1 and F is a KL function at (x∗, 0)
with x∗ ∈ Γ. Then {xk} converges to a stationary point of F (x, 0); moreover,

∞∑
k=0

‖xk+1 − xk‖2 <∞.

Proof. By Proposition 2, every cluster point is stationary for F (x, 0), it is sufficient to show that
{xk} has a unique cluster point.

By Lemma 8, F (xk, δk) is monotonically decreasing and converging to ζ. If F (xk, δk) = ζ after
some k0, then from Lemma 8(ii), we know xk+1 = xk for all k > k0, meaning xk ≡ xk0 ∈ Γ, so that
the proof is done.

We next consider the case that F (xk, δk) > ζ for all k. Since F has the KL property at every
(x∗, 0) ∈ Γ̄, there exists a continuous concave function φ with η > 0 and neighborhood U = {(x, δ) ∈
Rn × Rn : dist((x, δ), Γ̄) < τ} such that

φ′(F (x, δ)− ζ)dist((0, 0),∇F (x, δ)) ≥ 1 (18)

for all (x, δ) ∈ U ∩ {(x, δ) ∈ Rn × Rn : ζ < F (x, δ) < ζ + η}.
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Let Γ̄ ⊂ R2n be the set of limit points of {(xk, δk)}, i.e., Γ̄ := {(x∗, 0) | x∗ ∈ Γ}, by Proposition
2(ii), we have

lim
k→∞

dist((xk, δk), Γ̄) = 0.

Hence, there exist k1 ∈ N such that dist((xk, δk), Γ̄) < τ for any k > k1. On the other hand,
since {F (xk, δk)} is monotonically decreasing and converges to ζ, there exists k2 ∈ N such that
ζ < F (xk, δk) < ζ + η for all k > k2. Letting k̄ = max{k1, k2} and noticing that F is smooth at
(xk, δk) for all k > k̄, we know from (18) that

φ′(F (xk, δk)− ζ)‖∇F (xk, δk)‖2 ≥ 1, for all k ≥ k̄. (19)

It follows that for any k ≥ k̄,[
φ(F (xk, δk)− ζ)− φ(F (xk+1, δk+1)− ζ)

]
·D1(‖xk − xk−1‖2 + ‖δk−1‖1 − ‖δk‖1)

≥
[
φ(F (xk, δk)− ζ)− φ(F (xk+1, δk+1)− ζ)

]
· ‖∇F (xk, δk)‖2

≥ φ′(F (xk, δk)− ζ) · ‖∇F (xk, δk)‖2 ·
[
F (xk, δk)− F (xk+1, δk+1)

]
≥ F (xk, δk)− F (xk+1, δk+1)

≥ β̂‖xk+1 − xk‖22,

where the first inequality is by Lemma 8(i), the second inequality is by the concavity of φ, and the
third inequality is by (19) and the last inequality is by Lemma 8(ii). Rearranging and taking the
square root of both sides, and using the inequality of arithmetic and geometric means inequality, we
have

‖xk − xk+1‖2 ≤

√
2D1

β̂
[φ(F (xk, δk)− ζ)− φ(F (xk+1, δk+1)− ζ)]

×
√
‖xk − xk−1‖2 + (‖δk−1‖1 − ‖δk‖1)

2

≤ D1

β̂

[
φ(F (xk, δk)− ζ)− φ(F (xk+1, δk+1)− ζ)

]
+

1

4

[
‖xk − xk−1‖2 + (‖δk−1‖1 − ‖δk‖1)

]
.

Subtracting 1
4‖x

k − xk+1‖2 from both sides, we have

3

4
‖xk+1 − xk‖2 ≤

D1

β̂

[
φ(F (xk, δk)− ζ)− φ(F (xk+1, δk+1)− ζ)

]
+

1

4
(‖xk − xk−1‖2 − ‖xk+1 − xk‖2 + ‖δk−1‖1 − ‖δk‖1).

Summing up both sides from k̄ to t, we have

3

4

t∑
k=k̄

‖xk+1 − xk‖2 ≤
D1

β̂

[
φ(F (xk̄, δk̄)− ζ)− φ(F (xt+1, δt+1)− ζ)

]
+

1

4
(‖xk̄ − xk̄−1‖2 − ‖xt+1 − xt‖2 + ‖δk̄−1‖1 − ‖δt‖1).

Now letting t → ∞, we know ‖δt‖1 → 0 and ‖xt+1 − xt‖2 → 0 by Proposition 2(c), and that
φ(F (xt+1, δt+1)− ζ)→ φ(ζ − ζ) = φ(0) = 0. Therefore, we have

∞∑
k=k̄

‖xk+1 − xk‖2 ≤
4D1

3β̂
φ(F (xk̄, δk̄)− ζ) +

1

3
(‖xk̄ − xk̄−1‖2 + ‖δk̄−1‖1) <∞. (20)

Hence {xk} is a Cauchy sequence, and consequently it is a convergent sequence.
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4 Local convergence rate

We have shown that there is only one unique limit point of {xk} under KL property. Now we
investigate the local convergence rate of Algorithm 1 by assuming that φ in the KL definition taking
the form φ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. By the discussion in §2.2, this additional
requirement is satisfied by the semialgebraic functions, which is also commonly satisfied by a wide
range of functions.

Theorem 10. Suppose {xk} is generated by Algorithm 1 and converges to x∗. Assume that F is a
KL function with φ in the KL definition taking the form φ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0.
Then the following statements hold.

(i) If θ = 0, then there exists k0 ∈ N so that xk ≡ x∗ for any k > k0;

(ii) If θ ∈ (0, 1
2 ], then there exist γ ∈ (0, 1), c1 > 0 such that

‖xk − x∗‖2 < c1γ
k (21)

for sufficiently large k;

(iii) If θ ∈ ( 1
2 , 1), then there exist c2 > 0 such that

‖xk − x∗‖2 < c2k
− 1−θ

2θ−1 (22)

for sufficiently large k.

Proof. (i) If θ = 0, then φ(s) = cs and φ′(s) ≡ c. We claim that there must exist k0 > 0 such
that F (xk0 , δk0) = ζ. Suppose by contradiction this is not true so that F (zk) > ζ for all k. Since
lim
k→∞

xk = x∗ and the sequence {F (xk, δk)} is monotonically decreasing to ζ by Lemma8. The KL

inequality implies that all sufficiently large k,

c‖∇F (xk, δk)‖2 ≥ 1,

contradicting ‖∇F (xk, δk)‖2 → 0 by Lemma 8(i). Thus, there exists k0 ∈ N such that F (xk, δk) =
F (xk0 , δk0) = ζ for all k > k0. Hence, we conclude from Lemma8(ii) that xk+1 = xk for all k > k0,
meaning xk ≡ x∗ = xk0 for all k ≥ k0. This proves (i).

(ii)-(iii) Now consider θ ∈ (0, 1). First of all, if there exists k0 ∈ N such that F (xk0 , δk0) = ζ,
then using the same argument of the proof for (ii), we can see that {xk} converges finitely. Thus,
we only need to consider the case that F (xk, δk) > ζ for all k.

Define Sk =
∑∞
l=k ‖xl+1 − xl‖2. It holds that

‖xk − x∗‖2 = ‖xk − lim
t→∞

xt‖2 = ‖ lim
t→∞

t∑
l=k

(xl+1 − xl)‖2 ≤
∞∑
l=k

‖xl+1 − xl‖2 = Sk.

Therefore, we only have to prove Sk also has the same upper bound as in (21) and (22).
To derive the upper bound for Sk, by KL inequality with φ′(s) = c(1− θ)s−θ, for k > k̄,

c(1− θ)(F (xk, δk)− ζ)−θ‖∇F (xk, δk))‖2 ≥ 1. (23)

On the other hand, using (8)(i) and the definition of Sk, we see that for all sufficiently large k,

‖∇F (xk, δk))‖2 ≤ D1(Sk−1 − Sk + ‖δk−1‖1 − ‖δk‖1) (24)

Combining (23) with (24), we have

(F (xk, δk)− ζ)θ ≤ D1c(1− θ)(Sk−1 − Sk + ‖δk−1‖1 − ‖δk‖1).
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Taking a power of (1 − θ)/θ to both sides of the above inequality and scaling both sides by c, we
obtain that for all k > k̄

φ(F (xk, δk)− ζ) = c
[
F (xk, δk)− ζ

]1−θ
≤ c
[
D1c(1− θ)(Sk−1 − Sk + ‖δk−1‖1 − ‖δk‖1)

] 1−θ
θ

≤ c
[
D1c(1− θ)(Sk−1 − Sk + ‖δk−1‖1)

] 1−θ
θ

,

(25)

From (20), we have

Sk ≤ 4D1

3β̂
φ(F (xk, δk)− ζ) +

1

3
(‖xk − xk−1‖2 + ‖δk−1‖1). (26)

Combining (25) and (26), we have

Sk ≤ C1[Sk−1 − Sk + ‖δk−1‖1]
1−θ
θ +

1

3
(Sk−1 − Sk + ‖δk−1‖1)

≤ C1[Sk−2 − Sk + ‖δk−1‖1]
1−θ
θ +

1

3
[Sk−2 − Sk + ‖δk−1‖1]

(27)

where C1 = 4D1c

3β̂
(D1 · c(1− θ))

1−θ
θ . It follows that

Sk +

√
µ

1− µ
‖δk‖1

≤ C1[Sk−2 − Sk + ‖δk−1‖1]
1−θ
θ +

1

3
[Sk−2 − Sk + ‖δk−1‖1] +

√
µ

1− µ
‖δk‖1

≤ C1[Sk−2 − Sk + ‖δk−1‖1]
1−θ
θ +

1

3
[Sk−2 − Sk + ‖δk−1‖1] +

µ

1− µ
‖δk−1‖1

≤ C1[Sk−2 − Sk + ‖δk−1‖1]
1−θ
θ + C2[Sk−2 − Sk + ‖δk−1‖1],

(28)

with C2 := 1
3 + µ

1−µ and the second inequality is by the update δk ≤ √µδk−1.

For part (ii), θ ∈ (0, 1
2 ]. Notice that

1− θ
θ
≥ 1 and Sk−2 − Sk + ‖δk−1‖1 → 0.

Hence, there exists sufficient large k such that[
Sk−2 − Sk + ‖δk−1‖1

] 1−θ
θ ≤ Sk−2 − Sk + ‖δk−1‖1,

we assume the above inequality holds for all k ≥ k̄. This, combined with (28), yields

Sk +

√
µ

1− µ
‖δk‖1 ≤ (C1 + C2)

[
Sk−2 − Sk + ‖δk−1‖1

]
(29)

for any k ≥ k̄. Using δk ≤ µδk−1, we can show that

δk−1 ≤
√
µ

1− µ
(δk−2 − δk). (30)

Combining (29) and (30) gives

Sk +

√
µ

1− µ
‖δk‖1 ≤ (C1 + C2)

[(
Sk−2 +

√
µ

1− µ
‖δk−2‖1

)
−
(
Sk +

√
µ

1− µ
‖δk‖1

)]
.
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Rearranging this inequality gives

Sk +

√
µ

1− µ
‖δk‖1 ≤

C1 + C2

C1 + C2 + 1

[
Sk−2 +

√
µ

1− µ
‖δk−2‖1

]
≤
(

C1 + C2

C1 + C2 + 1

)b k2 c [
Sk mod 2 +

√
µ

1− µ
‖δk mod 2‖1

]
≤
(

C1 + C2

C1 + C2 + 1

) k−1
2
[
S0 +

√
µ

1− µ
‖δ0‖1

]
.

Therefore, for any k ≥ k̄,

‖xk − x∗‖2 ≤ Sk +

√
µ

1− µ
‖δk‖1 ≤ c1γk

with

c1 = (S0 +

√
µ

1− µ
‖δ0‖)

(
C1 + C2

C1 + C2 + 1

)− 1
2

and γ =

√
C1 + C2

C1 + C2 + 1
,

which complets the proof of (ii).
For part (iii), θ ∈ ( 1

2 , 1). Notice that

1− θ
θ

< 1 and Sk−2 − Sk + ‖δk−1‖1 → 0.

Hence, there exists sufficient large k such that

Sk−2 − Sk + ‖δk−1‖1 ≤
[
Sk−2 − Sk + ‖δk−1‖1

] 1−θ
θ

,

we assume the above inequality holds for k ≥ k̄. This, combined with (28), yields

Sk +

√
µ

1− µ
‖δk‖1 ≤ (C1 + C2)

[
Sk−2 − Sk + ‖δk−1‖1

] 1−θ
θ

.

This, combined with (30), yields

Sk +

√
µ

1− µ
‖δk‖1 ≤ (C1 + C2)

[
Sk−2 +

√
µ

1− µ
‖δk−2‖1 − (Sk +

√
µ

1− µ
‖δk‖1)

] 1−θ
θ

. (31)

Raising to a power of θ
1−θ of both sides of the above inequality, we see

[
Sk +

√
µ

1− µ
‖δk‖1

] θ
1−θ ≤ C3

[
Sk−2 +

√
µ

1− µ
‖δk−2‖1 − (Sk +

√
µ

1− µ
‖δk‖1)

]
(32)

with C3 := (C1 + C2)
θ

1−θ .
Consider the “even” subsequence of {k̄, k̄ + 1, . . .} and define {∆t}t≥N1

with N1 := dk̄/2e, and

∆t := S2t +
√
µ

1−µ‖δ
2t‖1. Then for all t ≥ N1, we have

∆
θ

1−θ
t ≤ C3(∆t−1 −∆t) (33)

The remaining part of our proof is similar to (1, Theorem 2) (starting from (1, Equation (13))).

Define h : (0,+∞) → R by h(s) = s−
θ

1−θ and let T ∈ (1,+∞). Take k ≥ N1 and consider the case
that h(∆k) ≤ Th(∆k−1) holds. By rewriting (33) as

1 ≤ C3(∆k−1 −∆k)∆
− θ

1−θ
k ,

12



we obtain that
1 ≤ C3(∆k−1 −∆k)h(∆k)

≤ TC3(∆k−1 −∆k)h(∆k−1)

≤ TC3

∫ ∆k−1

∆k

h(s)ds

≤ TC3
1− θ
1− 2θ

[∆
1−2θ
1−θ
k−1 −∆

1−2θ
1−θ
k ].

Thus if we set u = 2θ−1
(1−θ)TC3

> 0 and ν = 1−2θ
1−θ < 0 one obtains that

0 < u ≤ ∆ν
k −∆ν

k−1. (34)

Assume now that h(∆k) > Th(∆k) and set q = ( 1
T )

1−θ
θ ∈ (0, 1). It follows immediately that

∆k ≤ q∆k−1 and furthermore - recalling that ν is negative - we have

∆ν
k ≥ qν∆ν

k−1 and ∆ν
k −∆ν

k−1 ≥ (qν − 1)∆ν
k−1.

Since qν − 1 > 0 and ∆t → 0+ as t → +∞, there exists ū > 0 such that (qν − 1)∆ν
t−1 > ū for all

t ≥ N1. Therefore we obtain that
∆ν
k −∆ν

k−1 ≥ ū. (35)

If we set û = min{u, ū} > 0, one can combine (34) and (35) to obtain that

∆ν
k −∆ν

k−1 ≥ û > 0

for all k ≥ N1. By summing those inequalities from N1 to some t greater than N1 we obtain that
∆ν
t −∆ν

N1
≥ û(t−N1), implying

∆t ≤ [∆ν
N1

+ û(t−N1)]1/ν ≤ C4t
− 1−θ

2θ−1 , (36)

for some C4 > 0.
As for the “odd” subsequence of {k̄, k̄ + 1, . . .}, we can define {∆t}t≥dk̄/2e with ∆t := S2t+1 +

√
µ

1−µ‖δ
2t+1‖1 and then can still show that (36) holds true.

Therefore, for all sufficiently large and even number k,

‖xk − x∗‖2 ≤ ∆ k
2
≤ 2

1−θ
2θ−1C4k

− 1−θ
2θ−1 .

For all sufficiently large and odd number k, there exists C5 > 0 such that

‖xk − x∗‖2 ≤ ∆ k−1
2
≤ 2

1−θ
2θ−1C4(k − 1)−

1−θ
2θ−1 ≤ 2

1−θ
2θ−1C5k

− 1−θ
2θ−1 .

Overall, we have

‖xk − x∗‖2 ≤ c2k−
1−θ
2θ−1

where
c2 := 2

1−θ
2θ−1 max(C4, C5).

This completes the proof of (iii).

5 Numerical results

In this section, we demonstrate the local convergence rate of PIRL1 in practice. We test PIRL1 on
sparse signal recovery experiments and observe its performance. The test problems can be formulated
as
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min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖pp, (37)

where matrix A ∈ Rm×n is generated uniformly at random from i.i.d. standard Gaussian entries.
We set Lf = 1 by orthonormalizing the rows of A. The observation y ∈ Rm is generated by the
sparse signal xtrue and Gaussian noise e ∼ N(0, σ2), that is y = Axtrue + e. The objective of the
experiments is to reconstruct a length n sparse signal x from m observations. All experiments start
from a randomized initialized x0 and use the same termination criterion

max
i=1,...,n

|xi∇if(x) + λp|xi|p| ≤ opttol,

In the experiments, we set σ = 10−3,m = 1024, n = 2048, and the xtrue contains 128 randomly
placed ±1 spikes.

Our purpose is to demonstrate the evolution of ‖xk − x∗‖2 and verify whether the bounds (21)
and (22) in Theorem 10 can be witnessed. Therefore, we first run the algorithm with sufficiently
small tolerance opttol = 10−12 and the final iterate x∗ used as the surrogate of the real solution
xopt, since in this case ‖xopt − x∗‖2 is deemed sufficiently small. In this way, we can use

‖xk − x∗‖2 ≤ ‖xk − xopt‖2 + ‖xopt − x∗‖2 ≈ ‖xk − xopt‖2

to examine the local behavior of PIRL1. The algorithm is rerun with opttol = 10−8 meaning xk is
sufficiently close to the optimal solution. The last 100 iterations of log10(‖xk − x∗‖2) is plotted in
Figure 1, where T represents the last iteration for each run. To see how performance is affected by
different p and λ, we repeat this procedure for cases with p = 0.2, 0.5, 0.8 and λ = 0.0001, 0.001, 0.01.
In each case, we randomly generate 5 problems.

(a) λ = 0.0001, p = 0.2. (b) λ = 0.0001, p = 0.5. (c) λ = 0.0001, p = 0.8.

(d) λ = 0.001, p = 0.2. (e) λ = 0.001, p = 0.5. (f) λ = 0.001, p = 0.8.

(g) λ = 0.01, p = 0.2. (h) λ = 0.01, p = 0.5. (i) λ = 0.01, p = 0.8.

Figure 1: The last 100 iterations of log10(‖xk − x∗‖2).
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From Figure 1, we can see that PIRL1 exhibits linear convergence for all problems in all cases,
meaning the bound (21) is always witnessed. This may indicate that the KL property can be satisfied
for a wide range of test problems, and PIRL1 can then achieve local linear convergence in many cases.

6 Conclusion

In this paper, we have analyzed the global convergence and local convergence rate of the proximal
iteratively reweighted `1 method for solving `p regularization problems under the KL property. We
have shown that the iterates generated by this method have a unique limit point. It has a locally
linear convergence or sublinear convergence under KL property. It should be noticed that our analysis
can be easily extended to other types of nonconvex regularization problems under the assumption of
the KL property for the loss function.
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