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Abstract Generalized circumcenters have been recently introduced and employed to speed up classical
projection-type methods for solving feasibility problems. In this note, circumcenters are enforced in
a new setting; they are proven to provide inward directions to sets given by convex inequalities. In
particular, we show that circumcentric directions of finitely generated cones belong to the interior of
their polars. We also derive a measure of interiorness of the circumcentric direction, which then provides
a special cone of search directions, all being feasible to the convex region under consideration.
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1 Introduction

In this paper we introduce the concept of circumcenter of a finitely generated cone K ⊂ Rn, also referred
to as circumcentric direction, and we prove that it lies in K◦, the polar cone of K. This result enables us
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to get feasible directions to a convex set with nonempty interior of the form Ω := {x ∈ Rn | g(x) ≤ 0},
where g : Rn → Rm has convex and differentiable components.

The circumcentric direction allows us to move in Ω, and therefore, it might be of algorithmic interest.
In fact, the circumcentric direction d ∈ Rn with respect to Ω at a given point x̄ ∈ Ω is a feasible direction
to Ω at x̄, that is, x̄+ td ∈ Ω for all t > 0 sufficiently small. We will see that the circumcentric direction
d might be zero, but if it is nonzero, we will prove that we get an interior feasible direction, that is also
referred to as inward direction. In other words, if d 6= 0, we have x̄+ td belonging to the interior of Ω,
for all small enough t > 0. Our proof of this claim is derived based on a result in [13] for generalized
circumcenters. The circumcentric direction d arises as the solution of a linear system of equations formed
upon suitable bisectors relying on active gradients of the components of g. In addition to establishing
that d is an inward direction to Ω at the point x̄, we are able to explicitly measure its level of interiorness
with respect to Ω. In other words, once d is computed, we obtain a magnitude of how much it can be
perturbed in order to still enjoy the property of pointing inwards to Ω.

Circumcenters were firstly extended from elementary geometry to general Euclidean spaces in 2018
[13,14]. Since then, the subject of circumcenter iteration algorithms for solving feasibility problems has
evolved [1–11,15,16,18,22,23,25–30]. In all these recent references the so-called circumcentered-reflection
method (CRM) was employed to speed up classical algorithms including the method of alternating
projections (MAP) and the Douglas-Rachford method (DRM). The notion of circumcenter enforced in
those works remains similar to the one in Euclidean geometry. For a finite set S :=

{
u1, u2, . . . , up

}
one

looks for a point circ(S) equidistant to the points ui, i = 1, . . . , p, and which lies on the affine subspace
determined by them, denoted here by aff(S). We note that for an arbitrary finite set S, we have that
circ(S) might not be well-defined. Indeed, from elementary Euclidean geometry, we know that for three
distinct collinear points there is no correspondent circumcenter. On the other hand, if S comes from a
round of reflections through a finite number of affine subspaces, then [13, Lemma 3.1] guarantees the
good definition of circ(S). The good definition of circumcenters is also guaranteed when reflections are
substituted by isometries [8]. Lemma 3.1 in [13] will be key for the good definition of the circumcentric
direction and for deriving our results.

Having labelled the front actors of this paper allows us to have an overview of our main contributions.
If S is given by minus the normalized active gradients of g at a point x̄ ∈ Ω and letting d play the
role of the circumcenter circ(S), what occurs is that x̄ + td ∈ Ω, for all t > 0 sufficiently small, as
desired. If a cone K is generated by the finite set S, we will see that d ∈ K◦. More than that, and
perhaps surprisingly, d + v is still in K◦ for all v ∈ Rn satisfying ‖v‖ ≤ ‖d‖2, where ‖·‖ denotes the
Euclidean norm. The notation 〈·, ·〉 is for the scalar product, which induces the Euclidean norm. These
results are formalized in the next section. Section 3 discusses our contributions by means of examples
and propositions connecting pointed cones with nonzero circumcenters. To conclude our note, at the
end of Section 3, we propose some ideas for future work.

2 Circumcentric directions

Before addressing the actual content of our work, we present some basic definitions.

Definition 2.1 (polar and dual of a set). Let X ⊂ Rn. The polar of X is a set of Rn defined by

X◦ := {w ∈ Rn | 〈z, w〉 ≤ 0,∀z ∈ X}.

The dual of X is given by X∗ := −X◦.
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Of course, X◦ and X∗ are nonempty for the zero vector lies in them. Next, let us recall some notions
regarding cones.
Definition 2.2 (cone). A subset K of Rn is called a cone if it is closed under positive scalar multipli-
cation, i.e., tw ∈ K when w ∈ K and t > 0. A convex cone is a cone that is a convex set.

Definitions 2.1 and 2.2 clearly give us that for any set X ⊂ Rn both X◦ and X∗ are always cones
that are closed and convex.
Definition 2.3 (pointed cone). A cone K ⊂ Rn is said to be pointed if K ∩ (−K) = {0}.

There are equivalent statements for what is understood as a pointed cone K. Two of them are: K
contains no lines [21, Thm. 4.12]; and int(K◦) is nonempty [20, p. 213, 3.6(d)] and [32, Prop. 2].

For a finite number of vectors w1, . . . , wp ∈ Rn, a sum of the form
∑p
i=1 λiw

i is said to be a conic
combination of w1, . . . , wp if the scalars λ1, . . . , λp are all nonnegative. The cone generated by X ⊂ Rn,
denoted by cone(X), is the set of all conic combinations of elements of X. Note that cone(X) is convex
and, if X is nonempty, cone(X) contains the zero vector.
Definition 2.4 (finitely generated cone). A cone K of Rn is said to be finitely generated if there exists
a finite set S ⊂ Rn such that 0 /∈ S and cone(S) = K. A conic base of a finitely generated cone K is a
finite set BK ⊂ Rn with minimal cardinality such that cone(BK) = K.

In addition to being convex, a finitely generated cone is also closed. The definitions and remarks
above can be found, for instance, in [20].

We recall that a set Ω ⊂ Rn is a (convex) polyhedron, if it can be expressed as the intersection of a
finite family of closed half-spaces, that is,

Ω := {x ∈ Rn |
〈
ai, x

〉
≤ bi, ai ∈ Rn, bi ∈ R, for i = 1, . . . ,m}. (2.1)

With that said, we can define a polyhedral cone, which is a set that is simultaneously a cone and a
polyhedron. It is well known that a cone is polyhedral if, and only if, it is finitely generated. This can
be seen as a corollary of the Minkowski-Weyl theorem; see, for instance, [31, Thm. 3.52].

Another important concept regarding cones is the one of tangent cones.
Definition 2.5 (Tangent cone [24, Prop. A.5.2.1]). Let X be a nonempty closed convex set in Rn and
x ∈ X. The tangent cone of X at x is given by

TX(x) := cl ({λ(y − x) ∈ Rn | y ∈ X,λ ≥ 0}) .

The next result states that a tangent cone of a polyhedron is also a polyhedron.
Fact 2.6 (Tangent cone of polyhedron [31, Thm. 6.46]). Let Ω ⊂ Rn be a polyhedron defined as in
(2.1). Then, the tangent cone TΩ(x̄), at any point x̄ ∈ Ω, is a polyhedral cone and can be represented
as

TΩ(x̄) = {w ∈ Rn |
〈
ai, w

〉
≤ 0, for i ∈ J(x̄)},

where J(x̄) := {i |
〈
ai, x̄

〉
= bi} is the active index set of Ω at x̄.

We now define the circumcenter of a finite set S ⊂ Rn. Remind that aff(S) stands for the smallest
affine subspace containing S.
Definition 2.7 (circumcenter of p points). Let S :=

{
u1, u2, . . . , up

}
, where m is a positive integer

and u1, u2, . . . , up are in Rn. A vector d ∈ Rn is called the circumcenter of S if it satisfies the following
two conditions:
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(i) d ∈ aff(S), and
(ii)

∥∥d− u1
∥∥ =

∥∥d− u2
∥∥ = · · · = ‖d− up‖.

Our notation for a generalized circumcenter of a set S :=
{
u1, u2, . . . , up

}
is circ(S). Clearly, if

S = {u1}, then circ(S) = u1 and if S = {u1, u2}, we have circ(S) = 1
2 (u1 + u2). In the cases where

p > 2, circ(S) may not exist; see a discussion on properness of generalized circumcenters in [7]. If circ(S)
exists, it must be unique [7, Prop. 3.3] and reads as

circ(S) = u1 + α1
(
u2 − u1)+ · · ·+ αp−1

(
up − u1) , (2.2)

where (α1, . . . , αp−1) ∈ Rp−1 is any solution of the p− 1× p− 1 linear system of equations whose i-th
row is given by

p−1∑
j=1

αj
〈
uj+1 − u1, ui+1 − u1〉 = 1

2
∥∥ui+1 − u1∥∥2

. (2.3)

The p− 1 equations (2.3) determine a Gram matrix [7, 14].
We will see next that a sufficient condition for circ(S) to exist is that all vectors in S have the same

length. Moreover, in this case circ(S) will be characterized as the orthogonal projection of the origin
onto aff (S).

Recall that the orthogonal projection of a point y ∈ Rn onto a closed and convex set X ⊂ Rn
is given by PX(y) ∈ X if, and only if, 〈z − PX(y), y − PX(y)〉 ≤ 0, for all z ∈ X. This is, of course,
equivalent to PX(y) := arg minz∈X{‖y − z‖}.

Lemma 2.8 (characterization of circumcenters). Let S := {u1, u2, . . . , up} ⊂ Rn, where p is a positive
integer, and assume that all the vectors ui, i = 1, . . . , p, have the same length η ≥ 0. Then, the
circumcenter of S, circ(S) is proper and, moreover,
(i) circ(S) = Paff(S)(0);
(ii)

〈
circ(S), ui

〉
= ‖circ(S)‖2 ≥ 0 for all i = 1, . . . , p;

(iii) If η > 0, then
〈
circ(S) + v, ui

〉
≥ 0, for all v ∈ Rn such that ‖v‖ ≤ ‖circ(S)‖2

η and i = 1, . . . , p.

Proof. Note that by proving (i), we automatically get the well-definedness of the circumcenter. So, let
us proceed with the proof of this item. The idea is to employ Lemma 3.1 from [13], which has the
Pythagorean theorem at its core. For this, we are going to define the suitable subspaces V1, . . . , Vp−1,
where each Vj is the line connecting the origin with uj+uj+1

2 , where j = 1, . . . , p−1. Then, due to the fact
that u1, u2, . . . , up have the same length, it is easy to see that RVj (uj) = uj+1, for all j ∈ {1, 2, . . . , p−1}.
Indeed,

RVj
(uj) = 2PVj

(uj)− uj = 2
(
uj + uj+1

2

)
− uj = uj+1,

where the second equality follows from properties of projections onto subspaces, as〈
uj − uj + uj+1

2 ,
uj + uj+1

2

〉
=
〈
uj − uj+1

2 ,
uj + uj+1

2

〉
= 1

4

(∥∥uj∥∥2 −
∥∥uj+1∥∥2) = 1

4
(
η2 − η2) = 0.

Since 0 ∈ ∩pi=1Vi, Lemma 3.1 from [13] directly provides circ(S) = Paff(S)(0), which proves item (i).
From the characterization of projections onto affine sets, we have, for all z ∈ aff(S), that

〈z − circ(S), 0− circ(S)〉 = 0,
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which implies that
〈circ(S), z〉 = ‖circ(S)‖2 ≥ 0.

Since all ui’s are in aff(S), item (ii) follows.
Item (iii) is a consequence of the manipulations presented below. Let v be any vector in Rn satisfying

‖v‖ ≤ ‖circ(S)‖2

η . Then,〈
circ(S) + v, ui

〉
=
〈
circ(S), ui − circ(S) + circ(S)

〉
+
〈
v, ui

〉
=
〈
circ(S), ui − circ(S)

〉
+ ‖circ(S)‖2 +

〈
v, ui

〉
= ‖circ(S)‖2 +

〈
v, ui

〉
≥ ‖circ(S)‖2 − ‖v‖

∥∥ui∥∥
= ‖circ(S)‖2 − ‖v‖ η.

≥ ‖circ(S)‖2 − ‖circ(S)‖2

η
η

= 0.

The first two equalities above follow from inner product properties. The third one is by item (ii). The
first inequality is due to Cauchy-Schwarz and the fourth equality comes from the definition of η. The
second inequality is obtained by employing the hypothesis on the norm of v, which then yields the
result.

The previous lemma is key for developing the theory of circumcenters of cones, which begins with
the following definition.

Definition 2.9 (circumcentric direction of polyhedral cones). If K ⊂ Rn is a nontrivial polyhedral
cone and BK := {u1, . . . , up} is a normalized conic base of K, i.e., a conic base whose vectors have all
norm equal to one, we say that d := − circ(BK) is the circumcentric direction of K. If K = {0}, the
circumcentric direction d is zero. We also use the notation dcirc(K) for d.

The next proposition establishes the well-definedness of the circumcenter of a polyhedral cone.

Proposition 2.10 (good definition of circumcentric direction of polyhedral cones). Having a polyhedral
cone K ⊂ Rn, its circumcentric direction exists and is unique.

Proof. If K = {0}, the circumcentric direction is zero by definition. So, let K be nontrivial. Suppose
first that K is not pointed. Then, there exists x ∈ K ∩ (−K) such that x 6= 0, and thus we get

x =
p∑
j=1

αju
j , αj ≥ 0, j = 1 . . . , p, (2.4)

with
∑p
j=1 αj > 0. Moreover, we have that −x ∈ K, that is,

−x =
p∑
j=1

βju
j , βj ≥ 0, j = 1 . . . , p, (2.5)
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where
∑p
j=1 βj > 0. Summing (2.4) and (2.5) and dividing by

∑p
j=1(αj + βj) > 0 we have

0 =
∑p
j=1(αj + βj)uj∑p
j=1(αj + βj)

.

Because the coefficients on the right-hand side of the last equation add up to 1, we get that 0 belongs
to aff(BK), and Lemma 2.8(i) yields circ(BK) = Paff(BK)(0) = 0.

Assume now that K is pointed and let BK := {u1, . . . , up} be a normalized conic base of K. We
remark that what we call here a conic base is referred to in [21, pg. 176] as a complete set of extreme rays,
and thus every element of a conic base must be a generator of an extreme ray; see [21, Def. 4.2]. Then,
there exists only one set BK that we can call normalized conic base of K, that is, a conic base where all
its elements have norm equal to 1. Thus, uniqueness of the circumcentric direction is guaranteed. The
existence is due to Lemma 2.8(i).

We just have seen that the circumcentric direction of a polyhedral cone is well-defined. Note further
that the circumcentric direction must have size of at most 1 because we ask for normalized generators
in the definition. In fact, what really matters for the good definition of the circumcentric direction is
that the generators have all the same size. We take them with norm one just for simplicity.

We proceed next by showing that the circumcentric direction d of a polyhedral cone belongs to its
polar. In addition to that, we provide a ball centered in d with radius ‖d‖2 whose points still lie in the
polar. This elegant measure of interiorness is stated in the following theorem.

Theorem 2.11 (properties of circumcentric directions of polyhedral cones). Let K ⊂ Rn be a polyhedral
cone and d ∈ Rn its circumcentric direction. Then, d+v ∈ K◦, for all v ∈ Rn such that ‖v‖ ≤ ‖d‖2 and,
in particular, d ∈ K◦. Moreover, if d 6= 0 then d+ v ∈ int(K◦), for all v ∈ Rn, whenever ‖v‖ < ‖d‖2.

Proof. Let BK := {u1, . . . , up} be a normalized conic base of K and set d := − circ(BK). So, item
(iii) of Lemma 2.8 applies with BK playing the role of S and η = 1. Therefore,

〈
d+ v, ui

〉
≤ 0 for all

i = 1, . . . , p, if ‖v‖ ≤ ‖d‖2. For any z ∈ K, we get 〈d+ v, z〉 ≤ 0 because z is a conic combination
of the ui’s. Hence, d + v ∈ K◦ and, in particular, d ∈ K◦. Now, if d 6= 0 and ‖v‖ < ‖d‖2, we have〈
d+ v, ui

〉
≤ ‖v‖ − ‖d‖2 < 0, for all i = 1, . . . , p. So, 〈d+ v, z〉 < 0, for all z ∈ K, which implies that

d+ v ∈ int(K◦).

The theorem we just established can be used to get inward directions for convex regions. In this
regard, we start providing feasible directions for polyhedral sets.

Corollary 2.12. Let Ω = {x ∈ Rn | Ax ≤ b} where b ∈ Rm, A ∈ Rm×n has nonzero rows a1, . . . , am,
and x̄ be a given point in Ω. Define

J(x̄) := {j ∈ {1, . . . ,m} |
〈
aj , x̄

〉
= bj} and d := − circ

(
cone({aj}j∈J(x̄))

)
.

Then, there exists δ > 0 such that x̄+ t(d+ v) ∈ Ω for all t ∈ [0, δ] and v ∈ Rn satisfying ‖v‖ ≤ ‖d‖2.

Proof. By setting K := cone({aj}j∈J(x̄)) we get from Theorem 2.11 that d+ v ∈ K◦ with ‖v‖ ≤ ‖d‖2.
Now, it is well-known (see [17, Fact 2.9]) that the polyhedron Ω coincides locally with its tangent cone
at x̄, that is, there exists δ > 0 such that Ω ∩ Bδ(x̄) = (x̄ + TΩ(x̄)) ∩ Bδ(x̄). Furthermore, because of
Definition 2.1 and Fact 2.6, TΩ(x̄) is precisely K◦. Thus, we have Ω ∩ Bδ(x̄) = (x̄ + K◦) ∩ Bδ(x̄) and
the result follows.
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We now employ Theorem 2.11 to derive feasible directions upon the circumcentric direction for more
general convex sets.

Corollary 2.13. Let Ω = {x ∈ Rn | g(x) ≤ 0} where g : Rn → Rm has convex and differentiable com-
ponents, and x̄ be a given point in Ω. Assume also that Ω satisfies the Slater condition, i.e., there exists x̂
such that g(x̂) < 0. Define J(x̄) := {j ∈ {1, . . . ,m} | gj(x̄) = 0} and d = − circ

(
cone({∇gj(x̄)}j∈J(x̄))

)
.

Then, for each v ∈ Rn satisfying ‖v‖ < ‖d‖2, there exists δv > 0 such that x̄ + t(d + v) ∈ Ω for all
t ∈ [0, δv].

Proof. Set K := cone({∇gj(x̄)}j∈J(x̄)). If d := dcirc(K) is zero, then the result is trivial, so, assume
d 6= 0. As Slater condition is a constrained qualification, it guarantees that K◦ coincides with the
tangent cone of Ω at x̄ and also that K◦ has nonempty interior; see condition CQ5c and subsequent
comments in [20, pg. 307] . Hence, any direction in the interior of K◦, int(K◦), is a feasible direction
for Ω. On the other hand, Theorem 2.11 implies that d+ v ∈ int(K◦) if ‖v‖ < ‖d‖2. Thus, d+ v is an
interior feasible direction for Ω at x̄, and the result follows.

Getting inward directions to a convex region is a recurrent task in several optimization problems.
We have derived a novel and quite straightforward manner to do this by introducing circumcentric
directions of finitely generated cones.

The computation of circumcentric directions both in the polyhedral case of Corollary 2.12 and in the
more general convex setting of Corollary 2.13 relies on two tasks: obtaining a conic base of a suitable
polyhedral cone; and solving the linear system of equations (2.2). Active equations, as mentioned in
the aforementioned results, provide generators for the desired cone. Nevertheless, the first task might
be challenging in the presence of redundancy or degeneracy. Actually, getting rid of redundant or
degenerated constraints can be computationally expensive; for more details, see [12, Sec. 4.5]. Once a
conic base is available, concluding the second task is easy as it involves a well understood solvable linear
system of equations with unique solution [7].

In the next section, we present some remarks on our theory.

3 Discussion of results

We begin this section by pointing out the importance of considering a conic base in the definition of the
circumcentric for it to possess a genuine geometric characterization. If one considers a set of generators
instead of a base we may have ambiguity. Indeed, see the example below.
Example 3.1. Let K ⊂ R3 be the cone generated by

S :=
{

(1, 0, 0), (0, 1, 0), (0, 0, 1), (
√

2
2 ,
√

2
2 , 0)

}
.

We have that K = cone(S) = R3
+ and the only normalized conic base of K is given by

BK = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

However, the circumcentric direction of K satisfies

d = dcirc(K) = − circ(BK) = − 1
3 (1, 1, 1) 6= (0, 0, 0) = − circ(S).
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We have seen in this paper that d always lies in K◦. In the previous example −d coincidentally
belongs to K, and it is the barycenter of the convex hull of BK . Nevertheless, these two properties do
not hold in general, as pointed out later in Example 3.4

Our next remark is on the Slater assumption in Corollary 2.13. It is well-known that the Slater
condition is equivalent to the Mangasarian-Fromovitz constraint qualification (MFCQ) for convex in-
equalities [19, Prop. 3.3.8 and 3.3.9]. In turn, MFCQ is equivalent to asking for positive linear indepen-
dence of active gradients. With those facts in mind and taking into account the following proposition,
we necessarily would have a zero circumcentric direction in Corollary 2.13 without the existence of a
Slater point.

Proposition 3.2. Let S := {u1, u2, . . . , up} ⊂ Rn, where p is a positive integer, and assume that all
the vectors ui, i = 1, . . . , p, have the same length η ≥ 0. If S is not positively linearly independent, then
circ(S) = 0.

Proof. If the length of the vectors is zero, the result follows trivially. So, let us assume that their
length is positive. Recall that circ(S) is well defined and characterized as circ(S) = Paff(S)(0) due to
Lemma 2.8(i). Suppose that S is not positively linearly independent. Then, there exist nonnegative
scalars α1, . . . , αp where at least one of them is strictly positive such that α1u

1 + · · ·+αpu
p = 0. Since,∑p

i=1 αi > 0, we can divide the previous equality by this sum getting
α1∑p
i=1 αi

u1 + · · ·+ αp∑p
i=1 αi

up = 0.

By setting βj := αj∑p

i=1
αi

, we clearly have βj ≥ 0 for j = 1, . . . , p and
∑p
j=1 βj = 1. Hence, 0 belongs to

aff(S) and thus circ(S) = Paff(S)(0) = 0.

We observe that the converse of Proposition 3.2 is not true. Take, for instance, S = {v,−v} where v
is an arbitrary unit vector in Rn. Obviously, circ(S) = 0. Nonetheless, v and −v are positively linearly
independent. Next, we prove that if circ(S) 6= 0 then cone(S) is pointed.

Proposition 3.3. Let K ⊂ Rn be a finitely generated cone. If dcirc(K) 6= 0, then K is pointed.

Proof. If dcirc(K) 6= 0, Theorem 2.11 guarantees that −dcirc(K) ∈ int(K◦). Hence, int(K◦) is nonempty.
Bearing in mind that a closed convex cone is pointed if, and only if, its polar has nonempty interior,
we have that K is pointed.

We show in the following example that the converse of Proposition 3.3 does not hold.
Example 3.4. Take

u1 := (0,
√

2
2 ,
√

2
2 ), u2 := (

√
2

2 , 0,
√

2
2 ), u3 := (− 1

2 ,
1
2 ,
√

2
2 ),

and set S := {u1, u2, u3}. It is easy to verify that d := circ(S) = (0, 0,
√

2
2 ), and that d does not lie in the

convex hull of S. This implies that the set of unit vectors S̄ := {u1, u2, u3, u4} with u4 := d
‖d‖ = (0, 0, 1),

is positive linearly independent. Therefore, S̄ form a conic base for cone(S̄). However, despite cone(S̄)
being pointed, circ(S̄) = 0.

Although the reciprocal of Proposition 3.3 is not true, we have a special class of pointed cones for
which the circumcentric direction must be nonzero. The next result will lead to a corollary providing
this class.
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Proposition 3.5. Let S = {u1, . . . , up} be a set of linearly independent unit vectors. Then, circ(S) 6= 0.
In particular, cone(S) is pointed.

Proof. Suppose that circ(S) = 0. Then, Lemma 2.8(i) implies 0 ∈ aff(S), which means that there exist
scalars β1, . . . , βp such that

∑p
i=1 βi = 1 and

0 = β1u
1 + · · ·+ βpu

p.

This contradicts the linear independence of u1, . . . , up. Hence, circ(S) 6= 0, which guarantees that
cone(S) is pointed in view of Proposition 3.3.

Corollary 3.6. Let K ⊂ Rn be a finitely generated cone, BK = {u1, . . . , up} be a unitary conic base
of K and assume that BK is linearly independent. Then, K is pointed and dcirc(K) 6= 0.

In this paper, we have embedded the circumcenter in a new setting. Generalized circumcenters
serve now as inward directions to convex sets. The fact that circumcentric directions point towards the
interior of a given convex set together with our explicit measure of its interiorness are very attractive
features that may have an impact in practical algorithmic implementations. In this regard, one of our
ideas for the future is to explore circumcenters as search directions within methods for both smooth
and nonsmooth convex optimization. Moreover, based on Lemma 2.8(i) we intend to extend the notion
of circumcenters of finitely generated cones to more general cones.
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3. Araújo, G.H.M., Arefidamghani, R., Behling, R., Bello-Cruz, Y., Iusem, A., Santos, L.R.: Circumcentering approx-
imate reflections for solving the convex feasibility problem. Fixed Point Theory and Algorithms for Sciences and
Engineering 2022(1), 30 (2022). DOI 10.1186/s13663-021-00711-6

4. Arefidamghani, R.: Circumcentered-Reflection methods for the Convex Feasibility problem and the Common Fixed-
Point problem for firmly nonexpansive operators. Ph.D. thesis, IMPA, Rio de Janeiro (2022)

5. Arefidamghani, R., Behling, R., Bello-Cruz, J.Y., Iusem, A.N., Santos, L.R.: The circumcentered-reflection method
achieves better rates than alternating projections. Comput Optim Appl 79(2), 507–530 (2021). DOI 10.1007/
s10589-021-00275-6

6. Arefidamghani, R., Behling, R., Iusem, A.N., Santos, L.R.: A circumcentered-reflection method for finding common
fixed points of firmly nonexpansive operators. Journal of Applied and Numerical Optimization p. (to appear) (2022)

7. Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenters of finite sets in Hilbert spaces. Linear and Nonlinear
Analysis 4(2), 271–295 (2018)

8. Bauschke, H.H., Ouyang, H., Wang, X.: Circumcentered methods induced by isometries. Vietnam Journal of Math-
ematics 48, 471–508 (2020). DOI 10.1007/s10013-020-00417-z

9. Bauschke, H.H., Ouyang, H., Wang, X.: Best approximation mappings in Hilbert spaces. Math. Program. (2021).
DOI 10.1007/s10107-021-01718-y

10. Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenter mappings induced by nonexpansive operators. Pure and
Applied Functional Analysis 6(2), 257–288 (2021)

11. Bauschke, H.H., Ouyang, H., Wang, X.: On the linear convergence of circumcentered isometry methods. Numer Algor
87, 263–297 (2021). DOI 10.1007/s11075-020-00966-x

12. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, fourth edn. Wiley, New York
(2009). DOI 10.1002/9780471703778

13. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: Circumcentering the Douglas–Rachford method. Numer Algor 78(3),
759–776 (2018). DOI 10.1007/s11075-017-0399-5

14. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the linear convergence of the circumcentered-reflection method. Op-
erations Research Letters 46(2), 159–162 (2018). DOI 10.1016/j.orl.2017.11.018



10 Behling, Bello-Cruz, Lara-Urdaneta, Oviedo and Santos

15. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: The block-wise circumcentered–reflection method. Comput Optim Appl
76(3), 675–699 (2020). DOI 10.1007/s10589-019-00155-0

16. Behling, R., Bello-Cruz, Y., Iusem, A.N., Santos, L.R.: On the centralization of the circumcentered-reflection method.
arXiv:2111.07022 [math] (2021)

17. Behling, R., Bello-Cruz, Y., Santos, L.R.: Infeasibility and error bound imply finite convergence of alternating pro-
jections. SIAM Journal on Optimization 31(4), 2863–2892 (2021). DOI 10.1137/20M1358669

18. Behling, R., Bello-Cruz, Y., Santos, L.R.: On the Circumcentered-Reflection Method for the Convex Feasibility
Problem. Numer. Algorithms 86, 1475–1494 (2021). DOI 10.1007/s11075-020-00941-6

19. Bertsekas, D.P.: Nonlinear Programming, second edn. Athena Scientific, Belmont, USA (1999)
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24. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin, Heidelberg (2001). DOI

10.1007/978-3-642-56468-0
25. Lindstrom, S.B.: Computable Centering Methods for Spiraling Algorithms and their Duals, with Motivations from

the theory of Lyapunov Functions. arXiv:2001.10784 (2020)
26. Ouyang, H.: Circumcenter operators in Hilbert spaces. Master’s thesis, University of British Columbia, Okanagan,

CA (2018). DOI 10.14288/1.0371095
27. Ouyang, H.: Finite convergence of locally proper circumcentered methods. arXiv:2011.13512 [math] (2020)
28. Ouyang, H.: Bregman circumcenters: Applications. arXiv:2105.02308 [math] (2021)
29. Ouyang, H.: Bregman circumcenters: Monotonicity and forward weak convergence. Optim Lett (2022). DOI 10.1007/

s11590-022-01881-x
30. Ouyang, H., Wang, X.: Bregman Circumcenters: Basic Theory. J Optim Theory Appl 191(1), 252–280 (2021).

DOI 10.1007/s10957-021-01937-5
31. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, second edn. No. 317 in Grundlehren Der Mathematischen

Wissenschaften. Springer, Berlin (2004)
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