
ar
X

iv
:2

11
2.

03
33

6v
2 

 [
m

at
h.

O
C

] 
 2

3 
M

ay
 2

02
3

Computing Tighter Bounds on the n-Queens
Constant via Newton’s Method

Parth Nobel∗ Akshay Agrawal Stephen Boyd

Department of Electrical Engineering, Stanford University

350 Jane Stanford Way
Stanford, CA 94305

December 6, 2021

Abstract

In recent work Simkin shows that bounds on an exponent occurring in the

famous n-queens problem can be evaluated by solving convex optimization

problems, allowing him to find bounds far tighter than previously known. In

this note we use Simkin’s formulation, a sharper bound developed by Knuth,

and a Newton method that scales to large problem instances, to find even

sharper bounds.

1 Introduction

Let Q(n) denote the number of ways that n queens can be arranged on an n × n
chessboard in such a way that none is threatening another, i.e., no two queens are
in the same row, column, or diagonal. Recent work by Simkin [11] has shown that

lim
n→∞

Q(n)1/n

n
= e−α,

where α is a constant, that we refer to as the n-queens constant, characterized
as the optimal value of an infinite dimensional convex optimization problem. For
background on the problem and previously derived bounds on Q(n), see [1].

∗Corresponding author: ptnobel@stanford.edu

1

http://arxiv.org/abs/2112.03336v2


In [11], Simkin establishes that α ∈ [1.94, 1.9449], a strong tightening of the
best previously known bounds α ∈ [1.58, 3] [6, 7]. His method finds lower and
upper bounds by solving two convex optimization problems. Knuth later formulated
another convex optimization problem which also gives an upper bound on α [5].

In this note we solve the convex optimization problems associated with Simkin’s
lower bound and Knuth’s upper bound, using a version of Newton’s method that
scales to large problem instances, to establish that

α ∈ [1.944000752, 1.944001082].

This agrees with previous conjectures that α ≈ 1.944 [13]. In terms of the gap, i.e.,
difference of known upper and lower bounds, Simkin improved it from the previous
value around 1.4 to around 5×10−3, and we have improved that to around 3.3×10−7.

Simkin’s numerical lower bound is found as a lower bound on the optimal value of
a convex optimization problem whose optimal value is a lower bound on the n-queens
constant. This problem is parameterized by n, the size of the chessboard used to
interpret the problem. We let Ln denote the optimal objective value of this problem.
In [5], Knuth introduces a convex optimization problem whose optimal value is an
upper bound on the n-queens constant. It is also parameterized by n, and we let
Un denote its optimal value. Simkin’s numerical upper bound is found by solving a
related convex optimization problem which upper bounds Knuth’s problem.

Simkin’s numerical bounds are a lower bound on L17 and an upper bound on
U12, obtained by approximately solving these two problems. These problems involve
a few hundred variables and constraints. In contrast, we use Newton’s method to
solve the problems, which has two advantages. First, we solve the problem to high
accuracy, so almost nothing is lost when we move from an approximate solution to
a lower or upper bound on the optimal value. Second, our method scales to much
larger n, which gives us tighter bounds on the n-queens constant.

Our numerical bounds are L2048 and U1024, obtained by solving the two problems
to high accuracy. The lower bound problem contains almost 17 million variables and
over 12000 constraints; the upper bound problem contains over 4 million variables
and over 14000 constraints. In this note we explain how a version of Newton’s method
can be used to solve such large problems. (The numbers n = 1024 and n = 2048 are
chosen as the largest powers of two that we can evaluate on the desktop computer
we used to carry out the computations.)

2



2 The convex problems

The bounds Ln and Un are the optimal values of convex optimization problems of
the form

minimize f(x)
subject to Ax = b,

(1)

where x ∈ Rp is the variable, A ∈ Rq×p, b ∈ Rq specify the constraints, and the
objective function f : Rp

++ → R is smooth and strictly convex. (R++ denotes the
set of positive numbers.) These problems are feasible, and so have a unique solution.

In these optimization problems, f , A, and b are parametrized by n, but to lighten
the notation we suppress this dependence in our description of the method. Full
descriptions of f , A, and b for the lower bound and upper bound problems are given
in the appendix. Here, we summarize some of their attributes.

Lower bound problem. For the lower bound problem, we have p = 4n2 + 4n
variables and q = 6n − 1 constraints. The objective f is separable, i.e., a sum of
functions of xi, so its Hessian ∇2f(x) is diagonal. The constraint coefficient matrix
A is full rank and sparse, with at most 4n nonzero entries in each row, and at most
4 nonzero entries in each column. The entries of A are all 0 or 1.

Upper bound problem. For the upper bound problem, we have p = 4n2+8n−4
variables and q = 14n− 6 constraints. The objective f is block separable, a sum of
functions of pairs of variables, where the pairs are disjoint, so its Hessian ∇2f(x) is
block diagonal, with 1× 1 and 2× 2 blocks. Here too A is full rank and sparse, with
at most 4 nonzero entries per column, and at most 2n + 1 nonzero entries per row.
Its entries are all either 0 or 1 or 2n.

3 Infeasible start Newton method

In this section we summarize the infeasible start Newton method described in [2,
§10.3.2] (which also contains a convergence proof), and explain how to compute the
search directions in a scalable way. We also discuss how to compute appropriate
bounds on optimal values of the problems.

3



3.1 Optimality condition and residuals

The necessary and sufficient optimality conditions for (1) are

∇f(x) + AT ν = 0, Ax− b = 0,

where ν ∈ Rq is a dual variable or Lagrange multiplier. For x ∈ R
p
++ and ν ∈ Rq

we define the dual and primal residuals as

rd(x, ν) = ∇f(x) + ATν, rp(x, ν) = Ax− b, (2)

and the (primal-dual) residual r(x, ν) = (rd(x, ν), rp(x, ν)). Thus the optimality
condition can be expressed as r(x, ν) = 0.

3.2 Infeasible start Newton method

The method is iterative, with iterates denoted as (x(k), ν(k)), where k is the iteration
number. The iterates will satisfy x(k) ∈ R

p
++, so the residual r(k) = r(x(k), ν(k)) is

defined (and will converge to zero as k → ∞). We initialize our algorithm with
x(0) ∈ R

p
++, which need not satisfy Ax(0) = b.

Newton step. For the kth iterate the Newton step (∆x(k),∆ν(k)) ∈ Rp × Rq is
the solution of the linear equations

r(x(k), ν(k)) +Dr(x(k), ν(k))(∆x(k),∆ν(k)) = 0,

where Dr is the derivative or Jacobian of the residual. (We will show later that
these equations always have a unique solution.) The lefthand side is the first order
Taylor approximation of r(x(k) +∆x(k), ν(k) +∆ν(k)), so if the Newton step is added
to the current iterate, we obtain primal and dual variables for which the Taylor
approximation is zero.

We write the equations defining the Newton step as

[

∇2f(x(k)) AT

A 0

] [

∆x(k)

∆ν(k)

]

= −

[

rd(x
(k), ν(k))

rp(x
(k), ν(k))

]

. (3)

The coefficient matrix is invertible, since its top left block is invertible and its bottom
left block is wide and full rank; see, e.g., [3, §16.2] or [2, §10.1.1].

From the top block equations in (3) we have

∆x(k) = −∇2f(x(k))−1
(

rd(x
(k), ν(k)) + AT∆ν(k)

)

. (4)

4



Substituting this into the bottom block of equations we obtain the set of equations
(

A∇2f(x(k))−1AT
)

∆ν(k) = rp(x
(k), ν(k))−A∇2f(x(k))−1rd(x

(k), ν(k)), (5)

with positive definite coefficient matrix S = A∇2f(x(k))−1AT . To find the Newton
step, we first solve the set of equations (5) to obtain ∆ν(k), and then evaluate ∆x(k)

using (4).

Line search and update. The next iterate has the form

x(k+1) = x(k) + t(k)∆x(k), ν(k+1) = ν(k) + t(k)∆ν(k),

where t(k) is a positive step length. Choosing t(k) is referred to as a line search. Our
line search is one specifically for the infeasible start Newton method, described in [2,
§10.3.2]; for more general discussion of line search methods, see, e.g., [8, Chap. 3].

To find t(k) we first find t̃ = min(0.95tmax, 1), where

tmax = min

{

x
(k)
i

−∆x
(k)
i

∣

∣

∣

∣

∣

∆x
(k)
i < 0

}

is the largest possible step for which x(k) + t∆x(k) ∈ R
p
+. We take t(k) = βℓt̃, where

β ∈ (0, 1) is a parameter and ℓ is the smallest positive integer for which

‖r(x(k) + βℓt̃∆x(k), ν(k) + βℓt̃∆ν(k))‖2 ≤ (1− αβℓt̃)‖r(x(k), ν(k))‖2

holds, where α ∈ (0, 1/2) is a parameter. (It can be shown that such an integer exists
[2, §10.3.1].) If ‖r(x(k+1), ν(k+1))‖2 < ǫ, we terminate, where ǫ is a positive tolerance.

We use the common line search parameter values α = 0.01 and β = 0.9, and the
tolerance ǫ = 10−9, which is far smaller than would be needed in any engineering or
statistics application.

Efficient computation. The computational effort in each step is, predominantly,
solving the linear equations (5). Since we intend to use our algorithm on problem
instances where forming and storing the q × q matrix S = A∇2f(x(k))−1AT is not
practical, we use an indirect iterative method to solve these equations [10]. There are
many such methods, mostly based on Krylov subspaces, such as conjugate gradients
[4]. The particular method we use is MINRES [9]. Like other indirect methods, it
requires only a method to evaluate the mapping y 7→ Sy for a vector y. We evaluate
this mapping as

Sy = A
(

∇2f(x(k))−1
(

ATy
))

,

5



i.e., successive multiplications by AT , ∇2f(x(k))−1, and A, without forming or storing
the matrix S. (Simply storing S for the specific problems we will solve would require
many terabytes of memory.)

3.3 Bounds on optimal values

To bound the n-queens constant α, we need a lower bound on Ln and an upper bound
on Un. Newton’s method is able to solve the lower bound and upper bound problems
to high accuracy, so the optimal values we compute could simply be rounded down
or up to obtain these bounds. Here we discuss ways to more carefully compute these
bounds on the optimal values. To find an upper bound on Un, it suffices to find a
feasible x and evaluate the objective at that point.

Lower bounds on Ln. We follow Simkin and use standard Lagrangian duality to
find a lower bound on Ln. The dual function of (1) is

h(ν) = νT b− f ∗(ATν),

where f ∗ is the conjugate function of f [2, §3.3]. For any ν, h(ν) is a lower bound on
the optimal value of the problem (1). For the lower bound problem we can explicitly
find f ∗ as

f ∗(y) =

p
∑

i=1

exp (yi − 1)− 4 logn− 2 log 2− 3

via considering the structure of f as given in §A.2 and a straightforward application
of results given in [2, §3.3.1]. To obtain a lower bound on Ln, we solve the problem
using Newton’s method and then evaluate h(ν) for the ν found. (Since we solve
these problems to high accuracy, the lower bound on Ln obtained is very close to the
upper bound on Ln found, which is f(x).)

Rational approximation. The bounds described above are found using floating
point computations. To make the upper bound fully precise, we find a rational
approximation of x that is exactly feasible and evaluate the objective, carefully using
an upper bound on the (transcendental) objective function. For the lower bound, we
find a rational approximation of ν and evaluate a lower bound on the dual function.
We have not taken these steps, because our floating point solutions are so accurate
that it would have a negligible effect on our final numerical bounds.

6



4 Results

Lower bound. We computed L2048 by solving a problem with p = 16785408 vari-
ables and q = 12288 constraints. This required 21 iterations, with a total time of
around 517 seconds on a M1 Mac Mini. We obtained the lower bound

1.944000752019729 = L2048.

Upper bound. We computed U1024 by solving a problem with p = 4202492 vari-
ables and q = 14332 constraints. To speed up finding the solution, we started New-
ton’s method from (x, ν) that solve the approximate upper bound problem (A.4),
which has a simpler objective and so was faster to compute. This required 6 itera-
tions to solve the approximate problem, and a further 7 iterations to solve the exact
problem. The total time was around 56 seconds on a M1 Mac Mini. We obtained
the upper bound

1.9440010813092217 = U1024.

Our code is available at https://github.com/cvxgrp/n-queens.

Acknowledgements

We thank Don Knuth for introducing us to this problem and substantial help in
navigating the various lower and upper bounds. We thank Michael Simkin for his
comments and suggestions on an earlier draft of this note.

Parth Nobel was supported in part by the National Science Foundation Grad-
uate Research Fellowship Program under Grant No. DGE-1656518. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foun-
dation. This research was partially supported by ACCESS — AI Chip Center for
Emerging Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.

7

https://github.com/cvxgrp/n-queens


References

[1] Jordan Bell and Brett Stevens. A survey of known results and research areas
for n-queens. Discrete Mathematics, 309(1):1–31, 2009.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Alge-
bra: Vectors, Matrices, and Least Squares. Cambridge University Press, 2018.

[4] Magnus Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of the National Bureau of Standards, 49(6):409–4361,
1952.

[5] Don Knuth. Xqueens and Xqueenons, 2021.
https://cs.stanford.edu/~knuth/papers/Xqueens-and-Xqueenons.pdf.

[6] Zur Luria. New bounds on the number of n-queens configurations, 2017.
arXiv:1705.05225 [math.CO].

[7] Zur Luria and Michael Simkin. A lower bound for the n-queens problem, 2021.
arXiv:2105.11431 [math.CO].

[8] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2006.

[9] Christopher Paige and Michael Saunders. Solution of sparse indefinite systems
of linear equations. SIAM Journal of Numerical Analysis, 12(4):617–629, 1975.

[10] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[11] Michael Simkin. The number of n-queens configurations, 2021. arXiv:2107.13460
[math.CO].

[12] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 9.4), 2021. https://www.sagemath.org.

[13] Cheng Zhang and Jianpeng Ma. Counting solutions for the n-queens and Latin-
square problems by Monte Carlo simulations. Physical review. E, Statistical,
nonlinear, and soft matter physics, 79, 2009.

8



A Details of convex problems

In this appendix we give the details of the lower and upper bound problems, as well
as an approximate upper bound problem. We define the variables in their natural
notation, leaving it to the reader to re-arrange these into a single vector variable x.
In a similar way, we describe the linear constraints in their natural notation, leaving
it to the reader to translate these into Ax = b.

A.1 Common notation

In this section we describe variables and notation that are shared by the lower and
upper bound problems.

Chessboard triangle variables. In both problems, the variable x consists of 4
n × n matrices N,E, S,W , and some additional slack variables. The i, jth entry in
N,E, S,W is interpreted as a value associated with the North, East, South, or West
triangle, respectively, formed by dividing each square of an n× n chessboard into 4
right triangles. We index these matrices starting at 0, diverging from the notation
used in [11, 5] which use indexing that begins at 1. Figure 1 shows the n = 8 case.

Diagonal sum operators. We introduce operators Dk : Rn×n → R and Ak :
Rn×n → R defined for k ∈ {−n,−n + 1,−n + 2, . . . ,−1, 0, 1, . . . , n − 2, n − 1, n},
where Dk(Z) is the sum of the kth diagonal of Z, and Ak(Z) is the sum of the kth
anti-diagonal of Z. For example D0Z =

∑n−1
i=0 Zii = trZ, D1Z =

∑n−1
i=1 Zi,i−1, and

A−1Z =
∑n−1

i=1 Zn−i,i. Note that DnZ = D−nZ = 0. These are illustrated in figure
1: D−2N is the sum of the entries in the North triangles the red line passes through,
and A1E is the sum of the entries in the East triangles the blue line passes through.

Negative entropy. Following [5], we define the function g : R+ → R as g(x) =
x log x for x > 0, and g(0) = 0. (This is the negative entropy function [2, p.72].)

A.2 Lower bound problem

This problem formulation is taken from [11, Claim 6.3], except that Simkin maximizes
a concave function and we minimize its negative, a convex function.

9



N0,7

S0,7

W0,7 E0,7

N0,6

S0,6

W0,6 E0,6

N0,5

S0,5

W0,5 E0,5

N0,4

S0,4

W0,4 E0,4

N0,3

S0,3

W0,3 E0,3

N0,2

S0,2

W0,2 E0,2

N0,1

S0,1

W0,1 E0,1

N0,0

S0,0

W0,0 E0,0

N1,7

S1,7

W1,7 E1,7

N1,6

S1,6

W1,6 E1,6

N1,5

S1,5

W1,5 E1,5

N1,4

S1,4

W1,4 E1,4

N1,3

S1,3

W1,3 E1,3

N1,2

S1,2

W1,2 E1,2

N1,1

S1,1

W1,1 E1,1

N1,0

S1,0

W1,0 E1,0

N2,7

S2,7

W2,7 E2,7

N2,6

S2,6

W2,6 E2,6

N2,5

S2,5

W2,5 E2,5

N2,4

S2,4

W2,4 E2,4

N2,3

S2,3

W2,3 E2,3

N2,2

S2,2

W2,2 E2,2

N2,1

S2,1

W2,1 E2,1

N2,0

S2,0

W2,0 E2,0

N3,7

S3,7

W3,7 E3,7

N3,6

S3,6

W3,6 E3,6

N3,5

S3,5

W3,5 E3,5

N3,4

S3,4

W3,4 E3,4

N3,3

S3,3

W3,3 E3,3

N3,2

S3,2

W3,2 E3,2

N3,1

S3,1

W3,1 E3,1

N3,0

S3,0

W3,0 E3,0

N4,7

S4,7

W4,7 E4,7

N4,6

S4,6

W4,6 E4,6

N4,5

S4,5

W4,5 E4,5

N4,4

S4,4

W4,4 E4,4

N4,3

S4,3

W4,3 E4,3

N4,2

S4,2

W4,2 E4,2

N4,1

S4,1

W4,1 E4,1

N4,0

S4,0

W4,0 E4,0

N5,7

S5,7

W5,7 E5,7

N5,6

S5,6

W5,6 E5,6

N5,5

S5,5

W5,5 E5,5

N5,4

S5,4

W5,4 E5,4

N5,3

S5,3

W5,3 E5,3

N5,2

S5,2

W5,2 E5,2

N5,1

S5,1

W5,1 E5,1

N5,0

S5,0

W5,0 E5,0

N6,7

S6,7

W6,7 E6,7

N6,6

S6,6

W6,6 E6,6

N6,5

S6,5

W6,5 E6,5

N6,4

S6,4

W6,4 E6,4

N6,3

S6,3

W6,3 E6,3

N6,2

S6,2

W6,2 E6,2

N6,1

S6,1

W6,1 E6,1

N6,0

S6,0

W6,0 E6,0

N7,7

S7,7

W7,7 E7,7

N7,6

S7,6

W7,6 E7,6

N7,5

S7,5

W7,5 E7,5

N7,4

S7,4

W7,4 E7,4

N7,3

S7,3

W7,3 E7,3

N7,2

S7,2

W7,2 E7,2

N7,1

S7,1

W7,1 E7,1

N7,0

S7,0

W7,0 E7,0

Figure 1: A chessboard with all of its triangles labeled. This chessboard is used to

interpret the n = 8 problem. The red line represents one of the diagonals of the chessboard.

The blue line represents one of the anti-diagonals of the chessboard.

10



Slack variables. We introduce the following slack variables,

dk =
1

n
−Dk(S +W )−Dk+1(N + E), k ∈ {−n,−n + 1, . . . , n− 1},

and

ak =
1

n
−Ak(S + E)−Ak+1(N +W ), k ∈ {−n,−n + 1, . . . , n− 1}.

The quantities dk and ak are the sums along the diagonals and anti-diagonals, respec-
tively, of the chessboard. In figure 1, d−1 includes contributions from all triangles
the red line passes through and a0 includes contributions from triangles the blue line
passes through.

These equations form 4n entries in A, b.

Objective. The objective function is

n−1
∑

i=0

n−1
∑

j=0

(g(Ni,j) + g(Ei,j) + g(Si,j) + g(Wi,j))+

n−1
∑

k=−n

(g(dk) + g(ak))+4 logn+2 log 2+3.

Constraints. Simkin also introduces the constraints
n−1
∑

j=0

Ni,j + Ei,j + Si,j +Wi,j =
1

n
, i ∈ {0, 1, . . . , n− 1},

and
n−1
∑

i=0

Ni,j + Ei,j + Si,j +Wi,j =
1

n
, j ∈ {0, 1, . . . , n− 1}.

These constraints are linearly dependent, with co-rank one, so we delete the first
constraint with i = 0 to obtain a total of 2n− 1 constraints that we include in A, b.

Properties. This problem has n2 entries in each of N,E, S,W and 2n entries in
each of d, a. Accordingly, the total number of variables is p = 4n2 + 4n. We have
4n constraints affecting the slack variables, and 2n − 1 constraints affecting only
N,E, S,W for a total of q = 6n− 1 constraints.

The objective is a sum of the negative entropy of individual optimization vari-
ables, making it separable and strictly convex.

The constraint with the most variables are the row and column constraints, which
involve 4n variables. Each triangle is in at most 1 column constraint, 1 row constraint,
1 diagonal constraint, and 1 anti-diagonal constraint. Therefore, each column of A
can have at most 4 entries.

11



A.3 Upper bound problem

We use Knuth’s formulation of the Xqueenon problem [5], except that he maximizes
a concave function and we minimize its negative, a convex function.

Slack variables. We introduce the slack variables

dSWk = 1−
1

2n
Dk (S +W ) , k ∈ {−n + 1,−n+ 2, . . . , n− 1},

dNE
k = 1−

1

2n
Dk (N + E) , k ∈ {−n+ 1,−n + 2, . . . , n− 1},

aSEk = 1−
1

2n
Ak (S + E) , k ∈ {−n+ 1,−n + 2, . . . , n− 1},

and

aNW
k = 1−

1

2n
Ak (N +W ) , k ∈ {−n+ 1,−n + 2, . . . , n− 1}.

These equations form 8n− 4 entries in A, b.

Objective. For ease of notation, let

dSW
−n = dNE

n = aSE
−n = aNW

n = 1.

Our objective function is

3 + L0(N,E, S,W ) + L−(d
SW , dNE) + L+(a

SE, aNW ),

where

L0(N,E, S,W ) =
1

4n2

n−1
∑

i=0

n−1
∑

j=0

(g(Ni,j) + g(Ei,j) + g(Si,j) + g(Wi,j)) ,

L−(d
SW , dNE) =

1

n

n
∑

k=−n+1

∫ 1

0

g
(

(1− y)dSWk−1 + ydNE
k

)

dy,

and

L+(a
SE, aNW ) =

1

n

n
∑

k=−n+1

∫ 1

0

g
(

(1− y)aSEk−1 + yaNW
k

)

dy.

Using a symbolic solver, we were able to generate closed-form expressions for the
integrals and their partial derivatives [12].

In order to make the matrix block-diagonal, dSWk and dNE
k must be interleaved in

x. Similar interleaving applies to aSEk and aNW
k .

12



Constraints In addition to the 8n − 4 equations involving the slack variables,
Knuth requires the following conditions on N and S,

n−1
∑

j=0

Ni,j = n, i ∈ {0, 1, . . . , n− 1},

n−1
∑

j=0

Si,j = n, i ∈ {0, 1, . . . , n− 1},

and
n−1
∑

i=0

Ni,j + Si,j = 2n, j ∈ {0, 1, . . . , n− 1}.

As any of these equations are linearly dependent on all the others, we choose to
eliminate the first column constraint on N .

On E and W , Knuth requires

n−1
∑

i=0

Ei,j = n, j ∈ {0, 1, . . . , n− 1},

n−1
∑

i=0

Wi,j = n, j ∈ {0, 1, . . . , n− 1},

and
n−1
∑

j=0

Ei,j +Wi,j = 2n, i ∈ {0, 1, . . . , n− 1}.

As with N and S, one of these equations is linearly dependent, and we choose to
eliminate the first row constraint on E.

Properties. This problem has n2 entries in each of N,E, S,W and 2n− 1 entries
in each of dSWk , dNE

k , aSEk , aNW
k . This forms a total of p = 4n2 + 8n− 4 variables. We

also have the 8n− 4 constraints involving the slack variables and 6n− 2 of the other
constraints for a total of q = 14n − 6 constraints. The objective is block separable
as each variable appears in only one term of the objective function and no term has
more than two variables. The rows of A with the most entries are the entries along
the diagonal and anti-diagonal, which contain 2n entries of N,E, S,W and 1 slack
variable. Each column of A has at most 4 non-zero entries: 1 from its row constraint,
1 from its column constraints, 1 from its diagonal term, and 1 from its anti-diagonal
term. Columns associated with slack variables have one non-zero entry.

13



A.4 Approximate upper bound problem

In the initial phase of computing Un we solve a problem with a diagonal Hessian that
approximates the upper bound problem. We do this by applying Jensen’s inequality
to the integrals in the diagonal and anti-diagonal terms of the objective.

After applying this approximation, the integral terms of the objective function
become

g

(

1

2
dSWk−1 +

1

2
dNE
k

)

,

and

g

(

1

2
aSEk−1 +

1

2
aNW
k

)

.

We introduce new slack variables dk = 1
2
dSWk−1 +

1
2
dNE
k and ak = 1

2
aSEk−1 +

1
2
aNW
k and

then replace the integral terms with g(dk) and g(ak) appropriately.
All other constraints and terms of the objective function are the same.

14


	Introduction
	The convex problems
	Infeasible start Newton method
	Optimality condition and residuals
	Infeasible start Newton method
	Bounds on optimal values

	Results
	Details of convex problems
	Common notation
	Lower bound problem
	Upper bound problem
	Approximate upper bound problem


