
Modeling Approaches for Addressing Simple Unrelaxable
Constraints with Unconstrained Optimization Methods

Jeffrey Larson1, Misha Padidar1,2, and Stefan M. Wild1

1Mathematics and Computer Science Division, Argonne National Laboratory
jmlarson@anl.gov; wild@anl.gov

2Center for Applied Mathematics, Cornell University
map454@cornell.edu

November 14, 2022

Abstract
We explore novel approaches for solving nonlinear optimization problems with unrelaxable bound

constraints, which must be satisfied before the objective function can be evaluated. Our method refor-
mulates the unrelaxable bound-constrained problem as an unconstrained optimization problem that is
amenable to existing unconstrained optimization methods. The reformulation relies on a domain warp-
ing to form a merit function; the choice of the warping determines the level of exactness with which the
unconstrained problem can be used to find solutions to the bound-constrained problem, as well as key
properties of the unconstrained formulation such as smoothness. We develop theory when the domain
warping is a multioutput sigmoidal warping, and we explore the practical elements of applying uncon-
strained optimization methods to the formulation. We develop an algorithm that exploits the structure
of the sigmoidal warping to guarantee that unconstrained optimization algorithms applied to the merit
function will find a stationary point to the desired tolerance.
Keywords: unrelaxable constraints, merit function, constrained optimization, optimization

1 Introduction
This paper addresses nonlinear bound-constrained optimization problems

min
y∈Ω=[l,u]

f(y), (PROB)

where f is a differentiable scalar-valued objective function and y is an n-dimensional vector of decision
variables. The decision space (or “feasible region”) Ω is a key factor here because we assume that the
constraints defining Ω are unrelaxable [1] and therefore the objective function f cannot be evaluated
at points outside Ω. Such constraints arise in settings including those where numerical simulations,
differentiable algebraic equations, and other complex systems are known to not produce meaningful
output when certain unrelaxable constraints are violated. For example, negative concentration levels in
a chemical system and negative probabilities of transmission in an epidemiological simulation are readily
modeled as belonging to regions that an optimization algorithm should never probe. Many approaches
for constrained optimization (e.g., penalty and filter methods) do not natively support such unrelaxable
constraints, making always-feasible algorithms (beyond interior-point and projection-based approaches)
an active area of research [2, 3].

Here we explore the use of a “domain warping”, Φ : Rn → Ω (defined in Section 2), to develop
a merit function f̃ that alleviates the dependence on unrelaxable constraints so that solutions to the
unconstrained optimization problem

min
x∈Rn

f̃(x) := f(Φ(x)) (WPROB)

can be transformed into solutions to PROB through the domain warping. We adopt the term “domain
warping” from the image processing community; see, for example, [4, Figure 3]. We leverage the domain
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Figure 1: Rosenbrock function mapped to the unit domain [0, 1]2 (top left) and merit functions under the
sigmoidal, projection, and reflection domain warpings. The sigmoidal warping forms the merit function in
eq. (1), the projection warping uses a distance penalty in the merit function eq. (PPM), and the reflection
warping forms the merit function f(R(x)) defined in Section 2. The red star denotes the local minimum.

warping to develop an analog of classical penalty approaches [5] that applies to problems with unrelaxable
bound constraints. While various domain warpings are available, we focus on a multioutput sigmoidal
warping. This formulation enjoys smoothness, is easy to use, can solve PROB accurately, and can leverage
the vast suite of unconstrained optimization solvers, including those that can exploit specialized objective
function forms. Furthermore, we develop an algorithm that exploits the structure of the sigmoidal warping
to generate a sequence of solutions of WPROB whose warped limit points satisfy the Karush–Kuhn–
Tucker (KKT) conditions for PROB. Under mild conditions we prove convergence as well as convergence
rates of this algorithm when gradient descent is used as a subproblem solver.

In Section 2 we describe the fundamentals of using domain warpings to reformulate PROB. The
choice of domain warping is critical because it affects the solution set of WPROB and thus the level of
exactness with which solutions to WPROB can be transformed into solutions to PROB, as well as key
properties of the unconstrained formulation such as smoothness; see Figure 1. We show in Section 3 that
the sigmoidal warping can be used to find interior solutions to PROB exactly and boundary solutions in
a limiting sense. We also explore the practical elements of applying typical unconstrained optimization
algorithms to WPROB. After summarizing related work in Section 4, we present our numerical results
in Section 5 to illustrate the performance on bound-constrained optimization problems. Additional
algorithmic considerations based on the effect of the sigmoidal warping are described in Appendix E.

Throughout the paper, we employ the following core assumptions.

Assumption 1 f : Ω→ R can be evaluated only at y in Ω.

Assumption 2 f is continuously differentiable on its domain, and the ith partial derivative of f is
Li-Lipschitz continuous for i = 1, . . . , n (f is L-smooth with L =

√∑
L2
i ; see Definition 2).

Assumption 3 Since any bound-constrained region with finite bounds satisfying li < ui for i = 1, . . . , n
can be rescaled to the unit cube, without loss of generality we assume that Ω is the unit cube [0, 1]n.

We use bold variables to indicate vectors and vector-valued mappings (e.g., x, Φ). We use the
componentwise product of vectors x � y with entries [x � y]i = xiyi and componentwise quotients
x
y

with entries [x
y

]i = xi
yi
. We also compare vectors with inequalities: x > y if and only if xi > yi

for i = 1, . . . , n. For sequences of vectors xk, we index the components with double index notation
xk,i = [xk]i. We use 1 to denote the vector of all ones and ei to denote the vector of zeros with a one in
component i. We denote the complement of an index set I ⊆ {1, . . . , n} by Ic. The space Rn++ denotes
the strictly positive orthant of Rn. The norm ‖ · ‖ denotes the Euclidean norm.
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Figure 2: Three domain warpings – projection π, reflection R, and sigmoidal S – over the one-dimensional
domain [−1, 2].

2 Merit Functions Based on Domain Warping
By defining a continuous map, which we call a domain warping, or simply “warping”, Φ : Rn → Ω, we
can construct a merit function f̃(x) = f(Φ(x)) that can be used to find the minima of PROB, assuming
a suitable warping is chosen. The primary focus of this paper is the vector-valued sigmoidal warping
S(x) = 1/(1 + e−σ�x) parameterized by σ ∈ Rn++. The principal benefit of the sigmoidal warping is
that it is smooth and thus the resulting merit function

f̃σ(x) = f(S(x)) (1)

used in WPROB is smooth (when f is smooth) and moreover the unconstrained problem can be solved
by smooth optimization techniques. The sigmoidal warping benefits from being invertible and therefore
also maps onto Int(Ω) = (0, 1)n. While this implies that there is no point x in the unconstrained domain
that S maps to the boundary of Ω, the merit function f̃σ can nonetheless be used to find boundary-lying
KKT points of PROB: we show in Theorem 2 that as a sequence of points yk ∈ Int(Ω) approaches a
boundary KKT point of PROB, the corresponding sequence xk = S−1(yk) in the unconstrained domain
approaches a stationary point of the merit function. While the sigmoidal warping applies only to bound-
constrained regions, analogs of the sigmoidal warping can be developed for nonnegativity constraints;
simplexes; quadrilaterals; any smooth, invertible mappings of the former; and Cartesian products of these
regions (see Appendix D).

Although we work with the sigmoidal warping, similar alternatives (e.g., tanh, arctan) are also smooth
and invertible and map onto (0, 1)n. These maps can be characterized as smooth, componentwise, strictly
increasing, bijective maps from Rn onto Int(Ω), possessing bounded derivatives.

In general, we do not need to restrict properties such as the smoothness, injectivity, or surjectivity of
the domain warping; rather, we explore how these choices affect the solution set and practical elements
of optimizing WPROB. For bound-constrained problems we compare with two other warpings: the
projection π(x) onto the decision set and the reflection warping R(x) = 2

∣∣x
2
− bx

2
+ 1

2
c
∣∣, otherwise

known as a triangle wave with period two. Figure 1 shows three merit functions for PROB when f is the
Rosenbrock function under the three choices of domain warping (sigmoidal, reflection, and projection).
The projection and reflection warpings are nonsmooth, noninvertible, but surjective warpings. Although
the nonsmoothness gives these warpings access to the boundary of the domain, when used in a merit
function, they require a penalty on the distance d to the decision set (i.e., f(Φ(x))+d(x)) to ensure that
all optima lie in Ω. Furthermore, the countably infinite non-differentiabilities generated by the reflection
warping R pose practical problems for optimization. Figure 2 shows one-dimensional plots of the three
domain warpings.

Choosing Φ to be the projection warping and including a distance penalty results in the projected
penalty merit (PPM) function from [6]:

f̃π(x) = f(π(x)) + d(x). (PPM)

We numerically investigate the performance of this merit function in Section 5. Because this projection
is constant along the normal cone NΩ(x) of Ω at a boundary point x, a distance penalty is necessary to
guarantee that the set of boundary-lying (Clarke) stationary points of the merit function are solutions
to PROB. With the distance penalty, the solutions to WPROB are exactly the solution set of PROB, in
that they share the same local minima and Clarke stationary points [6, 7]. From a practical standpoint,
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using the projection warping can be cumbersome because the reformulation is now nonsmooth along the
boundary of Ω, making high-fidelity resolution of minima along the boundary potentially difficult. A
benefit of the projection warping is that it can be readily used for any convex Ω, because the projection
is uniquely defined.

Similar to the projection warping, the reflection warping is an identity mapping for x ∈ Ω and also
induces nonsmoothness in the objective at the boundary of Ω. The reflection warping differs in that it
is periodic; therefore, even, periodic objective functions such as cos(2πx) are repeated exactly on each
interval [k, k+1] for k ∈ Z. In other words, when f is even and periodic on Ω, the reflection warping tiles
the unconstrained domain R with copies of PROB. In addition, the reflection warping applies only for
particular choices of Ω such as bound-constrained regions and half-planes. From a practical standpoint,
the reflection warping R does not provide significant benefits over the projection warping, and so we do
not discuss it further.

3 Using the Sigmoidal Warping
We now detail the effects of using the sigmoidal warping within the merit function f̃σ in WPROB. In
Section 3.1 we propose an iterative scheme for updating the σ parameter, similar to a penalty method,
that guarantees convergence of a sequence of solutions of WPROB to KKT points of PROB on the
interior or boundary of Ω. In Section 3.2 we prove the convergence of this method as well as bound the
convergence rate, under mild assumptions.

First, we discuss basic properties of the sigmoidal warping. To map the unconstrained domain onto
(0, 1)n, we apply the one-dimensional sigmoidal warping s(x) to each entry of the vector x, thus forming
the vector-valued map S(x), where

S(x)i = s(xi) :=
1

1 + e−σixi
. (2)

The one-dimensional sigmoidal warping s has derivatives

s′(x) = σs(x)(1− s(x)) and s′′(x) = σ2s(x)(1− s(x))(1− 2s(x)),

and so the first- and second-order derivatives of the merit function f̃σ are

∇f̃σ(x) = Jσ(x)∇f(S(x)) = σ � S(x)� (1− S(x))�∇f(S(x)) (3)

D2f̃σ(x) = Hσ(x) diag (∇f(S(x))) + Jσ(x)D2f(S(x))Jσ(x), (4)

where the diagonal Jacobian Jσ(x) has diagonal σ�S(x)�(1−S(x)) and the diagonal second-derivative
matrix Hσ(x) has diagonal σ2 � S(x)� (1− S(x))� (1− 2S(x)). Importantly, the eigenvalues of the
Jacobian are strictly positive when σ > 0, making Jσ(x) positive definite for any x. Because the
sigmoidal warping has Lipschitz-continuous derivatives and ∂f is Lipschitz continuous, the derivatives of
f̃σ are also Lipschitz continuous, with a constant that depends on σ.

Lemma 1 If f and ∇f are L̂- and L-Lipschitz continuous, respectively, then ∇f̃σ is L̃-Lipschitz con-
tinuous for L̃ = 1

2
(σ2

maxL̂+ σmaxL) and σmax = maxi σi.

Proof: For any x,u ∈ Rn with y = S(x) and v = S(u),

‖∇f̃σ(x)−∇f̃σ(u)‖ = ‖σ � y � (1− y)�∇f(y)− σ � v � (1− v)�∇f(v)‖
≤ σmax‖y � (1− y)�∇f(y)− v � (1− v)�∇f(v)‖
≤ σmax‖(y � (1− y)− v � (1− v))�∇f(y)‖

+ σmax‖v � (1− v)� (∇f(y)−∇f(v))‖.

We further extend the bound by using L̂-Lipschitz continuity of f to bound ∇f(y), the upper bound
v � (1− v) ≤ 1

4
, and L-Lipschitz continuity of ∇f :

≤ σmaxL̂‖(y � (1− y)− v � (1− v))‖+
σmax

4
‖∇f(y)−∇f(v)‖

≤ σmaxL̂‖(y � (1− y)− v � (1− v))‖+
σmaxL

4
‖x− u‖.
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A Lipschitz bound of S(x) � (1 − S(x)) is σmax/2, which can be computed by upper bounding the
eigenvalues of the Jacobian. We arrive at our final expression:

≤ 2σ2
maxL̂+ σmaxL

4
‖x− u‖ ≤ 1

2

(
σ2
maxL̂+ σmaxL

)
‖x− u‖.

�
A downside of the sigmoidal warping is that it does not preserve convexity. Even if f is (strongly)

convex, f̃σ may not be (strongly) convex. Despite not preserving convexity, this warping preserves
interior minima and stationary points. The following theorem establishes a one-to-one mapping between
interior stationary points of f and stationary points of f̃σ.

Theorem 1 Let f and Ω satisfy Assumption 2 and Assumption 3 and let σ > 0. A point y∗ on the
interior of Ω is a stationary point of f if and only if its warped point x∗ = S−1(y∗) is a stationary point
of f̃σ.

Proof: By Assumption 3 and eq. (2), there is a one-to-one mapping between points y∗ in the interior of
Ω and x∗ in Rn. By Assumption 2, the first derivative of f̃σ exists and is ∇f̃σ(x∗) = Jσ(x∗)∇f(y∗). For
any x ∈ Rn the null space of the Jacobian Jσ(x) is {0} since σ > 0. Thus ∇f̃σ(x∗) = Jσ(x∗)∇f(y∗) = 0
if and only if ∇f(y∗) = 0. �

Unfortunately, f̃σ cannot exactly reproduce the behavior of f at the boundary of Ω. The inverse
domain warping S−1 : (0, 1)n → Rn is S−1(x) = log(x/(1 − x))/σ. Effectively, the boundary of Ω
maps to ±∞. In theory x would have to become infinitely large for S(x) to recover a boundary point,
including KKT points of PROB. In practice, however, x need not become particularly large since x can
approximate boundary points of Ω from the shrunken domain, [a, 1 − a]n for 0 < a < 1/2, which maps
to a finite interval under the domain warping. We can measure the size of the effective domain of x by
bounding the norm of points x ∈ Rn when S(x) is a distance a from the boundary.

Remark 1 Let y ∈ [a, 1− a]n with 0 < a < 1/2; then,
∥∥S−1(y)

∥∥
∞ ≤ log

(
1− a
a

)
.

While it is necessary for an entry xk,i → ±∞ for yk,i to converge to a point on the ith boundary, the
preceding remark implies that xk,i is bounded if yk,i remains a finite nonzero distance from the boundary.
For instance, if S(x) is at least a distance 10−3 from a boundary point in infinity norm, then x has a
largest entry of no more than 6.9. Furthermore, if we restrict y to be at least a distance of 10−16 from
the boundary, we know that ‖S−1(y)‖∞ < 37.

Although our approach cannot exactly produce KKT points of f on the boundary of Ω, the gradient
of f̃σ does approach zero as S(x) approaches a KKT point. In the following theorem we show that KKT
points of PROB are limiting stationary points of the merit function f̃σ. The implication is that uncon-
strained optimization techniques that converge to stationary points of f̃σ will be able to approximate
KKT points of PROB arbitrarily well.

Theorem 2 Let f and Ω satisfy Assumption 2 and Assumption 3 and let σ > 0. Let y∗ ∈ Ω be a KKT
point of PROB and {yk} ∈ Int(Ω) be a sequence of points that converge to y∗ with {xk = S−1(yk)}
being the corresponding points in Rn. Then ∇f̃σ(xk)→ 0.

Proof: The case where y∗ ∈ Int(Ω) is shown by a direct application of Theorem 1 to the sequence
{xk}. We therefore consider the case where there is a nonempty set of indices I where y∗i for i ∈ I are on
the boundary of Ω. By Assumption 3, y∗i ∈ {0, 1} for all i ∈ I. The sequence {xk} then diverges for the
components in I: xk,i → sign(2y∗i − 1)∞ for i ∈ I. By the definition of S, the partial derivative of the
warping converges to zero in each of these components as xk,i → sign(2y∗i − 1)∞. That is, s′(xk,i) → 0
for i ∈ I. The remaining components of {xk} converge, by continuity of s, to xk,i → s−1(y∗i ) for i ∈ Ic.

Now that we know the limits of the sequences {xk} and {yk}, we will find the limits of the partial
derivative sequences ∂if(yk), for which we appeal to the KKT conditions. Since y∗ is a KKT point,
there exists a Lagrange multiplier λ∗ such that the KKT conditions hold (see Theorem 6 in Appendix A)
in particular, the Lagrange multiplier satisfies dual feasibility sign(λ∗i ) ∈ {sign(2y∗i − 1), 0} for i ∈ I,
complementary slackness λ∗i = 0 for i ∈ Ic, and the stationary condition ∂if(y∗) + λ∗i = 0 for all i.
Because ∂if is continuous by Assumption 2, the sequence of partial derivatives {∂if(yk)} converges to
∂if(y∗). Furthermore, by the KKT conditions, ∂if(yk)→ ∂if(y∗) = −λ∗i for all i.

Now that we have the limit of the sequence {∂if(yk)}, we can compute the limit of the sequence
{∂if̃σ(xk)}. First, consider the components i ∈ Ic. For these components, the partial derivative at the
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KKT point satisfies ∂if(y∗) = −λ∗i = 0. Because ∂if is continuous, s′ is continuous, and compositions
and products of continuous functions are continuous, ∂if̃σ is continuous. Thus the sequence of partial
derivatives {∂if̃σ(xk)} with ∂if̃σ(xk) = σiyk,i(1− yk,i)∂if(yk) converges to σiy∗i (1− y∗i )∂if(y∗) = 0 for
i ∈ Ic. Moreover, for i ∈ Ic the sequence ∂if̃σ(xk)→ 0.

Now consider the components, i ∈ I, of the stationary point y∗ that lie on the boundary of Ω. We
show that {∂if̃σ(xk)} converges to zero. As yk,i → y∗i , for any ρ > 0 there exists an N such that for all
k ≥ N , ‖yk − y∗‖∞ ≤ ρ. By Lipschitz continuity of ∂if with constant Li (Assumption 2), |∂if(yk)| ≤
|∂if(y∗)|+ Li |yk,i − y∗i |. Substituting the Lagrange multiplier gives us |∂if(yk)| ≤ |λ∗i |+ Li |yk,i − y∗i |.
With these, we can bound the value of ∂if̃σ(xk):∣∣∣∂if̃σ(xk)

∣∣∣ = s′(xk,i) |∂if(yk)| ≤ s′(xk,i)(|λ∗i |+ Li |yk,i − y∗i |)

= σiyk,i (1− yk,i) (|λ∗i |+ Li |yk,i − y∗i |)
≤ ρσi (|λ∗i |+ Liρ) .

Thus, as yk,i approaches y∗i (i.e., ρ → 0), the sequence {∂if̃σ(xk)} approaches zero, implying that the
sequence ∂if̃σ(xk)→ 0. Thus, ∇f̃σ(xk)→ 0. �

While Theorem 2 demonstrates that f̃σ can be used to find boundary-lying KKT points of PROB,
it is not yet clear how accurately we can resolve these KKT points by optimizing f̃σ. The following
theorem bounds the error in the KKT stationary condition in terms of

∣∣∣∂f̃σ∣∣∣ and the parameter σ. This
bound shows that when approaching a minimum near or on the boundary of Ω, the partial derivatives
of f̃σ may approach zero prematurely. However, the bound also shows that the parameter σ can control
the error in the stationary condition, similar to a penalty parameter in a penalty method.

Theorem 3 For i = 1, . . . , n, if σ > 0 and the partial derivatives satisfy
∣∣∣∂if̃σ(x)

∣∣∣ ≤ δi, then |∂if(y)| ≤
δi

σiyi(1− yi)
at y = S(x).

If additionally |∂if(y)| > 0 and y∗ ∈ Ω is a KKT point of PROB, under Assumption 2 and Assump-
tion 3, with corresponding Lagrange multiplier λ∗, then, for entries of y∗ that lie on the boundary of Ω,

|∂if(y) + λ∗i | ≤
Liδi

|∂if(y)|σi∆i
, where ∆i = |1− yi − y∗i |.

Proof: We begin by proving the first bound stated in the theorem. Since σ > 0, the partial derivative
of f at y is bounded by

|∂if(y)| =

∣∣∣∣∣∂if̃σ(x)

s′(xi)

∣∣∣∣∣ ≤ δi
s′(xi)

=
δi

σiyi(1− yi)
. (5)

Now we prove the bound on the boundary components of the KKT point, namely, y∗i . We use the fact

that for components y∗i that lie on the boundary of Ω, |yi − y∗i | =
s′(xi)

σi |1− yi − y∗i |
, which can be verified

by using s′(xi) = (1 − yi)yiσi, y∗i ∈ {0, 1} (by Assumption 3), and noting that (1 − yi)yi 6= 0 since
y = S(x) is obtained through the sigmoidal warping. Then, we can bound the value of the stationary
condition using the Lipschitz continuity of ∂if (Assumption 2):

|∂if(y) + λ∗i | = |∂if(y)− ∂if(y∗)| ≤ Li |yi − y∗i | =
Lis
′(xi)

σi |1− yi − y∗i |

=
Li∂if̃σ(x)

∂if(y)σi |1− yi − y∗i |

≤ Liδi
|∂if(y)|σi∆i

, (6)

using the definition of ∆i. �

The bound on the stationary condition, eq. (5), shows that decreasing the value of
∣∣∣∂if̃σ(x)

∣∣∣ can
decrease the value of |∂if(y)|. However, it also shows that as yi approaches the boundary of Ω, the
bound on |∂if(y)| increases, as the denominator yi(1−yi) will approach zero. For example, if the goal of
the optimization is to find an approximate stationary point to within a gradient tolerance of |∇f(y)| ≤ δ,
but the stationary point y∗ is a distance of 0.1 from the boundary, then eq. (5) states that optimizing
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the objective f̃σ to a tolerance of δ will result in a stationary condition satisfaction no worse than 12 δ
σ
.

Therefore, in order to satisfy the stationary condition to a tolerance δ for interior stationary points, σ
should be increased to at least 12. For a fixed value of δ, increasing σ improves the first error bound.

In Theorem 3 we see an analogous effect of σ on the error in the stationary condition relative to a
boundary-lying KKT point of PROB. Equation (6) shows that the violation of the stationary condition
|∂if(y) + λ∗i | relative to a KKT point y∗ is increased if |∂if(y)| becomes small when yi approaches a
boundary-lying entry of the KKT point. Again, however, if increased sufficiently, σ can counter these
adverse effects.

Particularly when a minimum lies on or near the boundary of Ω it is useful to increase σ to improve
approximate satisfaction of the KKT conditions. Below we develop an algorithm that finds KKT points
of PROB to a desired tolerance by iteratively increasing σ.

3.1 Iterative Updating of σ
While the sigmoidal warping does not map onto the boundary of Ω, the merit function f̃σ can still be
used to approximate any stationary point of PROB arbitrarily well. As Theorem 3 highlights, however,
resolving stationary points can be challenging because optimizing f̃σ to a gradient tolerance δ will
not necessarily find a point x satisfying |∂f(S(x))| ≤ δ or analogous KKT satisfaction. The gradient
∇f̃σ(x) = σ�S(x)� (1−S(x))�∇f(x) will become small when either the gradient of f becomes small
or S(x) approaches the boundary of Ω. Theorem 3 not only elucidates this behavior but also shows
that the parameter σ can be used as a control to improve the satisfaction of the KKT conditions of
PROB. Similar to the increase of the penalty parameter in penalty methods, convergence to a stationary
point can benefit from iteratively increasing σ. In Algorithm 1 we introduce a framework for solving
WPROB that adaptively increases the entries of σ to guarantee convergence of a sequence of approximate
stationary points of f̃σ to the warping of a KKT point of PROB, whether on the interior or boundary
of Ω. A key benefit of using this framework is that any unconstrained optimization routine can be used
as a subproblem solver to find approximate stationary points of f̃σ; a convergence proof of Algorithm 1
when using gradient descent is provided in Theorem 4.

At the core of Algorithm 1 is an update rule, which defines a sequence {σk} that controls the domain
warping, affects the sequence of iterates {x∗k} taken to the KKT point, and is ultimately responsible for
the convergence properties of the algorithm. At each iteration, Algorithm 1 minimizes f̃σk to a preset
tolerance δ to find a point x∗k and warped point y∗k = S(x∗k), before increasing σk and reoptimizing.
Theorem 4 shows that the only requirements to guarantee convergence when using gradient descent as
a subproblem solver are for σk → ∞ and for the ratio of the smallest to the largest value of σ to be
bounded below: mini,j{σk,i, σk,j} > κ for some fixed κ > 0. Within these flexible requirements, the
choice of update rule can significantly affect the rate of convergence. We later explore one update rule,
UPRULE, that achieves good practical performance when used in Algorithm 1, and we bound the number
of iterations of Algorithm 1 when using UPRULE in Theorem 5.

Algorithm 1: Adaptive warping (AdaWarp)
Input: Interior point y0 ∈ Int(Ω), σ0 > 0, tolerance δ > 0
Result: Approximate stationary point y∗k

1 for k = 0, 1, . . . do
2 Compute starting point xk = S−1(yk) using σ = σk;
3 Obtain x∗k by approximately solving minx f̃σk (x), starting from xk, to a gradient tolerance ‖∇f̃σk (x

∗
k)‖ ≤ δ, and

with f̃σk (x
∗
k) ≤ f̃σk (xk);

4 Compute y∗k = S(x∗k) using σ = σk;
5 Select parameter σk+1 > σk
6 Update yk+1 = y∗k;

First note that by continuity of f and s, and invertibility of s, there always exists a point x∗k that
satisfies Step 3 of Algorithm 1: that is, a point satisfying a gradient tolerance ‖∇f̃σk (x∗k)‖ ≤ δ and
nonincreasing function value f̃σk (x∗k) ≤ f̃σk (xk). Explicitly, by Assumption 2 and Assumption 3 there
is a KKT point y∗ of PROB with f(y∗) ≤ f(S(xk)). By continuity of f a ball exists around y∗ such
that all points within the ball and Ω satisfy the requirements of Step 3 of Algorithm 1. Thus, Step 3
of Algorithm 1 is viable. Moreover, the conditions in Step 3 can be satisfied by many gradient-based
optimization routines.
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3.2 Convergence and Complexity of Algorithm 1
In Theorem 4 we prove that every limit point of Algorithm 1 is indeed a KKT point of PROB if gradient
descent is used as a subproblem solver, {σk} diverges to ∞, and the ratio of σk,i/σk,j stays bounded for
all i, j, k. Simple updates rules such as an exponential increase satisfy these requirements. However, rules
that adaptively update the entries of σk based on the iterates x∗k, such as UPRULE, have the potential to
perform much better because they can balance the conditioning of the objective in orthogonal directions
based on the magnitude of x∗k,j . We analyze the convergence rate of Algorithm 1 under UPRULE in
Theorem 5.

Theorem 4 Let f and Ω satisfy Assumption 2 and Assumption 3. Let {σk > 0} → ∞ and let the
ratio of the smallest to the largest value of σk be bounded below, that is, mini,j{σk,i/σk,j} ≥ κ > 0 for
all k. Then, all limit points of Algorithm 1 are KKT points of PROB if gradient descent is used as a
subproblem solver with a constant step size αk = 1/L̃k, where L̃k is the Lipschitz constant of ∇f̃σk .

Proof: See Appendix B. �
Although the statement of Theorem 4 holds only for gradient descent with a constant step size, it can

readily be extended to the case with an adaptive step size. Furthermore, in the numerical experiments
in Section 5, we use L-BFGS in place of gradient descent because of its improved practical performance.
Theorem 4 provides conditions under which Algorithm 1 generates subsequences that converge to a KKT
point of PROB. The rate of convergence, however, will depend on the rule for increasing σk.

We propose a rule that adaptively updates entries of σk based on the array of distances ηk from the
current iterate y∗k to Bndry(Ω); that is, ηk,i = min{y∗k,i, 1− y∗k,i}. Our rule also employs an exponential
increase parameter γ ≥ 1 that ensures that all components of σ increase at a baseline desired rate.
Moreover, the rule ensures that the ratio of the smallest to the largest elements of σk+1 is lower bounded
by a preset value of κ. Entries of σk increase by the rule σk+1 = γ√

ηk
�σk unless this value violates the

lower bound on the ratio of the smallest to the largest elements of σk+1. In this case, entries of σk+1 that
violate the ratio are updated by κ−1 mini{ γ√

ηk,i
σk,i}. Explicitly, under the update rule, σk is increased

at each iteration by

σk+1,j =


γ
√
ηk,j

σk,j if
σk,j√
ηk,j

≤ κ−1 mini{
σk,i√
ηk,i
}

κ−1 mini{ γ√
ηk,i

σk,i} otherwise.
(UPRULE)

To ensure that limit points of Algorithm 1 are KKT points of PROB, UPRULE guarantees that the
ratio of the smallest to the largest entry of σk be bounded below by κ > 0. This leads to a complicated
expression to define the rule. If Algorithm 1 is set to terminate after reaching a finite stopping tolerance,
such as an ε-stationary tolerance for some fixed ε > 0 (see definition 1), then the bound on the ratio of
the smallest to the largest entries of σk will be implicitly enforced, allowing UPRULE to be simplified.
In order for Algorithm 1 to reach a finite ε-stationary tolerance, σk does not need to diverge, and so the
ratio of the smallest to the largest entry of σk will always be bounded below by some κ. Moreover, in
this scenario there will exist κ such that

σk,j√
ηk,j

≤ κ−1 mini{
σk,i√
ηk,i
} is always satisfied during the course of

Algorithm 1, simplifying UPRULE to σk+1 = γ√
ηk
�σk. In the numerical experiments, we use precisely

this simplified update rule.
Other simple update rules, such as an exponential increase σk+1 = γσk, could be used in place of

UPRULE. However, we find that the proposed rule performs well in practice because of its ability to
stabilize the ill-conditioning that appears as some entries of y∗k approach the boundary and others remain
interior.

While UPRULE guarantees under Theorem 4 that limit points of Algorithm 1 are KKT points of
PROB, we have yet to develop a bound on the number of iterations under this update rule to converge
to a desired stopping tolerance. To arrive at this result, in Theorem 5, we make the following mild
assumption about the performance of Algorithm 1 under the update rule.

Assumption 4 There exists ξ ∈ (0, 1) so that ∆k,j = minj
∣∣1− y∗k,j − z∗j ∣∣ ≥ ξ for any limit point z∗ on

the boundary of Ω produced by the sequence of iterates {y∗k} from Algorithm 1 using UPRULE to update
σk.

The assumption states that the sequence produced by Algorithm 1 under UPRULE can never ap-
proach the boundary opposite limit points of the sequence. This mandates that limit points of the
sequence cannot be on opposing boundaries, and it bounds the distance between limit points. This
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assumption is relatively mild, since in practice we expect that the sequence produced by the algorithm
will cluster near a single stationary point in the domain.

Assumption 4 provides us with the foundation to count the number of iterations required for Algo-
rithm 1 to reach a desired stopping criterion. For this bound-constrained optimization problem, a reason-
able stopping criterion for the solution y∗k of Algorithm 1 is ε-stationarity (Definition 1 in Appendix A).
Alternatively, another common measure, the norm of the projected gradient ‖π(y∗k − ∇f(y∗k)) − y∗k‖,
could be used. In Theorem 5 we compute a bound on the number of iterations required for Algorithm 1
to terminate to a desired ε-stationarity tolerance.

Theorem 5 Let tolerances ε, δ > 0 be given, along with UPRULE’s increase parameter γ ≥ 1, and
σ0 > 0, and let y0 be a feasible initial point to PROB under Assumptions 2 and 3. Let L = maxj{Lj}
be the largest Lipschitz constant of ∂jf , and let ξ be defined as in Assumption 4.

Let Assumption 4 hold, and suppose that Algorithm 1 is run with the update rule UPRULE and
gradient descent as a subproblem solver with a 1/L̃k step size at the kth iteration of Algorithm 1, where
L̃k is the Lipschitz constant of ∇f̃σk . If there exist ν > 0 such that the sequence {y∗k,j} stays uniformly
bounded at least a distance ν from the boundary in at least one component j, Algorithm 1 will find an
ε-stationary point in at most

N = max

{
log

(
δ

εν(1− ν)

)
/ log(

√
2γ), log

(
Lδ

ξε2

)
/ log(

√
2γ)

}
iterations. If a ν exists for all components j, then the bound reduces to

N = log

(
δ

εν(1− ν)

)
/ log(

√
2γ).

If no ν exists, then Algorithm 1 finds an ε-stationary point within N iterations, where

N = log

(
Lδ

ξε2

)
/ log(

√
2γ).

Proof: See Appendix B. �
While Theorem 5 bounds the number of iterations to ε-stationarity, this bound can at times be

uninformative because of the limits of finite computational precision. For instance, when converging to
an interior stationary point at a distance ν = 10−8 from the boundary, with γ = 1 and δ = ε, the bound
shows that the algorithm must take at most N = 54 iterations, long before which the σ parameter would
have reached a numerical overflow. We find that this is not an issue because Algorithm 1 can typically
achieve high orders of accuracy much sooner than the bound predicts. Theorem 5 not only bounds the
number of iterations required to reach a desired KKT violation but also gives insight into how to select
the δ parameter that governs the accuracy of the subproblem solve: a larger δ results in more iterations.
To cancel out the effects of δ and ε in the bound, we can set δ = ε for the “interior-minimum” case or
δ = ε2 when converging to a minimum on the boundary.

Empirically we find that the choice of σ0 greatly affects the path taken by Algorithm 1 and its
rate of convergence. Iterates that rapidly approach the boundary far from a boundary minimum may
converge slowly, whereas iterations that take a more central path tend to preserve a fast rate of approach;
see Figure 3. Mathematically, it is not trivial to predict the value of σ0 that will lead to the best
convergence. In practice we suggest testing a few orders of magnitude such as {10−3, 10−2, 10−1, 1, 10}.
In the numerical experiments, we find that a small σ0 = 10−3 value tends to perform well on a CUTEst
test problem set [8] when using Algorithm 1 and that σ = 1 performs well when σ is not updated at
all. As discussed in Appendix E.1, setting σ0 = (S(x)� (1− S(x)))−1 will nullify the effect that the
sigmoidal warping has on the first gradient step. While this is a principled selection, in practice we find
that using a well-chosen constant σ0 is often superior.

Additional algorithmic considerations are discussed in Appendix E.

4 Related Optimization Work
Because of the simple nature of bound-constrained decision sets, many optimization routines [9–13]
have been adapted to handle the constraints directly by projecting iterates onto the decision set. The
projection operation does occasionally posses other names such as “snap to boundary” [13]. One such
state-of-the-art routine, L-BFGS-B, leverages an approximate second-order model to rapidly resolve
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Figure 3: Effect of σ0 on Algorithm 1 when minimizing f , an axis-aligned convex quadratic with minima at
(1.1, 1.1) and Hessian eigenvalues 100, 2, over the unit cube. (Left) The three choices of σ0 lead to starkly
different paths across the constrained domain toward the constrained optima at (1, 1). Approaching the
boundary prematurely, such as by σ0 = 0.001, slows convergence of the method and requires many function
evaluations to converge. On the other hand, motion along a central path, such as the path taken by σ0 = 100,
approaches the minima efficiently. (Right) The corresponding objective value over the three optimizations.
All runs were terminated when the norm of the gradient was less than 10−6.

minima. We compare Algorithm 1 against an implementation of L-BFGS-B in the numerical experiments,
with favorable performance. A sophisticated class of second-order interior-point methods [5, 14–16] takes
the algorithmic developments a step further by leveraging a barrier function to ensure that iterates of
the algorithm remain strictly on the interior of the domain.

Penalty function-based methods [5, 17] have also been used to solve nonlinear constrained optimization
problems. The popular quadratic penalty approach allows for constrained optimization problems to be
reformulated as a sequence of smooth unconstrained optimization problems, the solutions of which can
converge to solutions of the original constrained problem. The quadratic penalty approach, however,
suffers from poor conditioning because of the requirement that the penalty parameter be increased to
infinity in order to ensure convergence to a feasible point. To ameliorate this, one can use an exact penalty
approach or augmented Lagrangian methods [5, 11], which apply a penalty term to the Lagrangian rather
than the objective. Including an explicit estimate of the Lagrange multiplier improves convergence and
conditioning of the sequence of unconstrained problems.

Penalty and augmented Lagrangian methods, however, cannot solve optimization problems with gen-
eral unrelaxable constraints. Penalty and augmented Lagrangian methods leverage the fact that the
objective can be evaluated outside the feasible region, and thus they cannot solve problems with unre-
laxable constraints. Some augmented Lagrangian methods [18], however, can solve bound-constrained
problems through the use of specialized solvers because they explicitly solve bound-constrained subprob-
lems rather than include bound constraints in the Lagrangian.

Recent work has developed algorithmic approaches for handling unrelaxable constraints by the ex-
treme barrier approach [19, 20], including mesh adaptive direct search algorithms [21]. A further al-
gorithmic approach by Hough and Roberts [3] leverages the projection operator to handle unrelaxable
constraints within a trust-region method. A thorough discussion of trust-region algorithms for problems
with unrelaxable constraints is given in [2].

Recently, Galvan et al. [6] developed a general theory for projection-based penalty functions applied
to optimization problems with unrelaxable convex decision sets. The projection-based penalty approach
formulates a merit function f̃π using the projection π(x) of x onto Ω and the distance d(x) to Ω, PPM,
which can be used to exactly find the Clarke stationary points [6, 7] of the original problem. While
PPM enjoys wide applicability, the composition with the projection operator induces nonsmoothness in
the merit function, which poses a practical problem for numerical optimization routines. In Section 2
we looked at the projection operator as one specific domain warping, and in Section 5 we numerically
investigate the performance of this method.
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5 Numerical Experiments
We now compare the performance of Algorithm 1 against a state-of-the-art bound-constrained solver
L-BFGS-B [9], to approximate an upper bound on the performance of Algorithm 1, and against the
projected penalty approach from [6], to benchmark performance against a nonsmooth penalty reformu-
lation of PROB. To be clear, our goal is not to show that Algorithm 1 is a dramatic improvement over
state-of-the-art bound-constrained solvers, such as L-BFGS-B, but that a straightforward method run-
ning on an unfailingly simple modification of the objective can be used to solve optimization problems
with unrelaxable bound constraints to a high accuracy and with reasonable efficiency. The code and data
generated during the current study are available from the corresponding author on request.

We use data profiles [22] to measure the fraction of problems that an algorithm can solve to a given
accuracy in a given number of function evaluations. For a problem set P and a tolerance τ , the data
profile for an algorithm a is

da(α) =
1

|P | size
{
p ∈ P

∣∣∣∣ tp,a
n+ 1

≤ α
}
,

where tp,a is the number of function evaluations taken by the algorithm to solve problem p ∈ P to
accuracy τ .

We measure “solving a problem” in terms of relative KKT tolerance, which we define to be the value
of the stationary condition at the given point, normalized to the norm of the objective’s gradient at
the nominal starting point y0. That is, y satisfies a relative KKT tolerance of τ if y is ε-stationary
and ε

‖∇f(y0)‖
≤ τ . Thus, tp,a is the first iteration k where yk is τ‖∇f(y0)‖-stationary. In Figure 4 we

consider τ ∈ {10−2, 10−4}.
For testing, we use the set of all CUTEst problems [8] with dimension 3 ≤ n ≤ 1000, finite bound

constraints with li < ui, and no other additional constraints; see Appendix C for a list of problem
names and attributes. For problems with bounds [l,u] 6= [0, 1]n, we use the augmented domain warpings
A(Φ(x)) where A is the linear map from the unit cube to the bounds l,u: A(y) := y � (u − l) + l.
Note that this mapping has no effect on the analysis presented in Section 3, since f can be redefined as
f(A(·)).

The set of algorithms we build data profiles for are the NLopt implementation [23] of L-BFGS-B
applied to PROB, a nonsmooth quasi-Newton method [24] applied to the PPM formulation from [6],
Algorithm 1 for updating the σ parameter under UPRULE and using L-BFGS as a subproblem solver,
and NLopt’s implementation of BFGS [5] applied to f̃σ(x) using a constant value of σ.

At each iteration the nonsmooth quasi-Newton method applied to PPM is supplied with a subgradi-
ent [25] direction dk. If xk is on the interior of Ω, the subgradient dk is the gradient ∇f(xk); if xk is a
boundary point, then dk = −(π(xk −∇f(xk))−xk) is the negative projected gradient; if xk is exterior
to Ω, then dk = Dπ(xk)∇f(π(xk)) + xk−π(xk)

‖xk−π(xk)‖
, where the second term is a normal direction to Ω at

π(xk) and where the diagonal generalized Jacobian [7] matrix Dπ(x) is nonzero only in components xi
equal to a bound constraint. While [6] intended the variables of PPM to be xk ∈ Rn, these points may
violate the unrelaxable constraints. Thus we opt to create the data profiles in Figure 4 and [26] using
the projected iterates π(xk) instead.

The data profiles, Figure 4, show that L-BFGS-B and Algorithm 1 (labeled AdaWarp) perform
similarly well, solving almost all problems to a high accuracy quickly, while the optimizations of f̃σ with
a constant value of σ and the nonsmooth penalty approach (labeled PPM) perform somewhat worse.
These results validate both the value of using a smooth domain warping and the improvement in solution
resolution gained by updating σ. The data profile with the relatively low tolerance τ = 0.01 shows that
L-BFGS-B and Algorithm 1 solve nearly all problems expediently; PPM also solves almost all problems,
although at a slower rate; and optimizations of f̃σ with a constant value of σ solve only a fraction of the
problems, although relatively quickly. When considering the data profile for a higher accuracy Figure 4
(right), relative KKT tolerance of 10−4, we see that L-BFGS-B and Algorithm 1 can once again solve a
variety of problems to a high accuracy quickly; however, L-BFGS-B does not solve all the problems in the
set to the desired accuracy. The reason is that on a small subset of problems, the NLopt implementation
of L-BFGS-B stopped prematurely because of an internal stopping tolerance, measuring the relative
difference in function values, which could not be turned off. The performance of PPM drops because
nonsmooth optimization problems are difficult to resolve to high orders of accuracy. For data profiles
using only subsets of the problem set, see [26].
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Figure 4: Data profile for a relative KKT tolerance of τ = 10−2 (left) and τ = 10−4 (right) for L-BFGS-B,
Algorithm 1 under UPRULE and σ0 = 10−3 (labeled AdaWarp), BFGS optimizing f̃σ with a fixed σ (labeled
σ = 0.001, 1.0, 10.0), and the projection-based penalty method from [6] (labeled PPM). When solving to
a high accuracy, 10−4, L-BFGS-B and Algorithm 1 outperform all other methods. The projected penalty
method also performs well but is not able to resolve solutions to a high accuracy as fast as the smooth
methods can. Minimizing f̃σ with a fixed value of σ can solve subsets of the problem rapidly but ultimately
cannot resolve all problems well without the update of the σ parameter.

6 Conclusion
We explored the use of a domain warping to develop an analog of the classical penalty approach that
applies to problems with unrelaxable finite bound constraints. The domain warping alleviates the de-
pendence on unrelaxable constraints such that highly specialized unconstrained optimization solvers can
be used to generate solutions to the unrelaxable problem. Our formulation enjoys smoothness, is easy to
use, and can solve unrelaxable problems reasonably efficiently. This approach is fundamentally different
from previous modeling approaches considered because it does not require a penalty term and optimizes
over the interior of the domain. The domain warping detailed here applies only to problems with finite
bound constraints. We conjecture that analogous warpings exist for decision sets defined by general
bounded polyhedron (polytopes) and convex sets, with future research addressing settings where such
warpings open up avenues of applying specialized algorithms that may otherwise ignore these types of
constraints. Such approaches are needed in sciences where problems with simple linear unrelaxable con-
straints, such as xi ≤ xi+1, naturally appear; examples range from ordering particle accelerator elements
[27] to pandemic alert staging [28]. We hope researchers extend this work to develop smooth modeling
approaches for optimization problems with general nonlinear and convex unrelaxable constraints.
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A Mathematical Background
We use the Karush–Kuhn–Tucker (KKT) conditions to measure whether a point is indeed a solution, or
an approximate solution, to PROB. These measures also allow us to consider to what degree the original
and reformulated problem are similar.

The KKT conditions are necessary conditions for a first-order stationary point of a constrained
optimization problem. For the bound-constrained optimization problem PROB the KKT conditions [5]
are as follows.

Theorem 6 (KKT) If y∗ ∈ Ω is a solution of PROB under Assumptions 2 and 3, then the KKT
conditions are satisfied: There exist Lagrange multipliers λ,µ ∈ Rd such that dual feasibility holds λ,µ ≤
0, the stationary condition holds ∇f(y∗) +

∑n
i=1 λiei −

∑n
i=1 µiei = 0, and complementary slackness

holds λiy∗i = 0, µi(1− y∗i ) = 0 for i = 1, . . . , n.

We now define approximate stationary points through a notion of approximate satisfaction of the
KKT conditions, which we call ε-stationarity.

Definition 1 (ε-Stationary) y∗ ∈ Ω is an ε-stationary point for PROB under Assumptions 2 and 3 if
the following conditions are satisfied: There exist Lagrange multipliers λ,µ ∈ Rn such that dual feasibility
holds λ,µ ≤ 0, the stationary condition approximately holds |∇f(y∗) +

∑
λiei −

∑
µiei| ≤ ε1, and

complementary slackness approximately holds |λ� y∗| ≤ ε1, |µ� (1− y∗)| ≤ ε1.

Definition 2 (L-smooth) A function f is L-smooth if the gradient exists and is Lipschitz continuous,
that is, for any x,y ∈ Ω

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

A useful property of L-smooth functions is that they have a quadratic upper bound.
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Property 1 (Quadratic Upper Bound) If f is L-smooth, then for any x,y ∈ Ω it satisfies the
following inequality [29]:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2.

B Convergence and Complexity Proofs
Proof: [Proof of Theorem 4] We denote the iterates of Algorithm 1 as x∗k,y

∗
k. We use superscripts

m to denote the iterates of an instance of gradient descent within iteration k. Thus, in iteration k of
Algorithm 1, gradient descent with a constant step size produces the sequence xm+1

k = xmk − 1

L̃k
∇f̃σk (xmk )

and ymk = S(xmk ) using σ = σk.
We first show that at each iteration of Algorithm 1, gradient descent will stop with ‖∇f̃σk (xmk )‖ ≤ δ.

Any two consecutive iterates xmk and xm+1
k produced by gradient descent will satisfy the following

sufficient decrease condition

f̃σk (xm+1
k ) ≤ f̃σk (xmk ) +∇f̃σk (xmk )T (xm+1

k − xmk ) +
L̃k
2
‖xm+1

k − xmk ‖2

= f̃σk (xmk )− 1

2L̃k
‖∇f̃σk (xmk )‖2 (7)

as a consequence of the quadratic upper bound (see Property 1). Notice that because f is bounded below
on Ω, f̃σk is bounded below (by min{f(x) : x ∈ Ω}). As a consequence, ‖∇f̃σk (xmk )‖ must converge to
zero as m→∞, because otherwise eq. (7) would contradict this lower bound. This implies that gradient
descent will terminate after finding an iterate satisfying the stopping tolerance ‖∇f̃σk (x

Nk
k )‖ ≤ δ after

Nk iterations.
Having shown that gradient descent converges for any iteration of Algorithm 1, we now show that for

sufficiently large k the decrease in objective value achieved over any gradient descent step depends only
on σk through the domain warping. To this end we must remove the effect of the Lipschitz constant L̃k
in eq. (7), which is dependent on σk. Lemma 1 expresses the Lipschitz constant as L̃k = 1

2
(σ2

max,kL̂ +

σmax,kL), where L, L̂ are constants and σmax,k = maxj{σk,j}. For the remainder of the proof suppose
that k is large enough that σk ≥ 1. Then we can upper bound the Lipschitz constant via L̃k =
1
2
(σ2

max,kL̂+ σmax,kL) ≤ 1
2
σ2
max,k(L̂+ L) = 1

2
σ2
max,kC for C = L̂+ L.

We rewrite the sufficient decrease condition eq. (7) in terms of ymk and uncover the presence of σk.
To do so, we expand the derivative terms, lower bound ‖σ‖ in terms of σmin,k = minj{σk,j}, and use the
Lipschitz constant bound

f(ym+1
k ) ≤ f(ymk )− 1

σ2
max,kL̂+ σmax,kL

‖σk � ymk � (1− ymk )�∇f(ymk )‖2

≤ f(ymk )−
σ2
min,k

σ2
max,kC

‖ymk � (1− ymk )�∇f(ymk )‖2.

With the lower bound of κ on σmin,k/σmax,k we arrive at a sufficient decrease condition that is affected
by σk only through the domain warping:

f(ym+1
k ) ≤ f(ymk )− κ2

C
‖ymk � (1− ymk )�∇f(ymk )‖2. (8)

This bound not only holds between iterates within the same step k of Algorithm 1 but also can connect
steps of Algorithm 1. We emphasize that the last iterate (in the original domain) yNk

k = S(x
Nk
k ) found

by gradient descent will be equal to the iterate y∗k of Algorithm 1 as well as the first iterate of the gradient
descent after σ is updated, that is,

y
Nk
k = y∗k = y0

k+1. (9)

(The same cannot be said for the warped counterparts, because xNk
k and x0

k+1 are not warped under the
same value of σ.) By eq. (9),

f(y1
k+1) ≤ f(y0

k+1)− κ2

C
‖y0

k+1 � (1− y0
k+1)�∇f(y0

k+1)‖2

= f(y
Nk
k )− κ2

C
‖yNk

k � (1− yNk
k )�∇f(y

Nk
k )‖2.
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Because consecutive iterates generated by gradient descent and Algorithm 1 satisfy this quadratic growth
condition, we relabel the sequence of points {ymk } as {ŷl}. We exclude the points yNk

k from the sequence
{ŷl} so they do not appear twice (since they are equal to y0

k+1). Similarly we make the sequences {x̂l},
{σl}, and {αl}. Thus, for sufficiently large l such that σl ≥ 1, consecutive iterates of the sequence {ŷl}
satisfy the quadratic growth condition

f(ŷl+1) ≤ f(ŷl)−
κ2

2C
‖ŷl � (1− ŷl)�∇f(ŷl)‖2. (10)

The objective function f is bounded below on Ω, which implies that the term ŷl � (1 − ŷl) � ∇f(ŷl)
from eq. (10) must converge to zero. Equivalently, for each component j, either ŷl,j converges to the
boundary or ∂jf(ŷl)→ 0. While this decrease condition implies that the limit points of gradient descent
will be stationary for f̃σ, it does not imply that the KKT conditions for PROB will be satisfied in the
limit. For that, we will appeal to properties of the gradient descent step sequence.

Because {ŷl} is a bounded sequence, the Bolzano–Weierstrass theorem guarantees that there exists
a convergent subsequence, ŷli → z ∈ Ω. We will show that any limit point z of {ŷl} must be a KKT
point.

If j is a component such that ∂jf(ŷli) → 0, then the KKT conditions are satisfied in component
j at z. So, let j be a component such that ∂jf(ŷli) does not converge to zero. This implies that ŷli
converges to the boundary, namely, zj = 0 or 1. Without loss of generality, assume zj = 1. For sake of
contradiction assume ∂jf(z) > 0.

By continuity of ∂jf , there exists a β > 0 such that if ‖ŷli−z‖∞ ≤ β, then ∂jf(ŷli) > 0. Furthermore,
by the convergence of ŷli → z there exists anM such that for all li > M , ‖ŷli−z‖ ≤ β and consequently
∂jf(ŷli) > 0. When ∂jf(ŷli) > 0, the gradient descent step implies that

x̂li+1,j < x̂li,j − αliσli,j ŷli,j(1− ŷli,j)∂jf(ŷli) < x̂li,j .

Monotonicity of the sigmoidal warping ensures that ŷli+1,j < ŷli,j and hence that ŷli+1,j is further from
zj than ŷli+1,j ; that is, zj − ŷli+1,j > zj − ŷli,j .

This process continues inductively so long as ∂jf(ŷli) > 0, which holds for all li > M ; that is,
for any li > M , zj − ŷli+1,j > zj − ŷli,j . Thus, the distance from ŷli,j to zj is bounded below by
|zj − ŷli,j | > |zj − ŷM,j |, which implies that {ŷli,j} does not converge to zj . This is a contradiction, and
so it must hold that ∂jf(z) ≤ 0.

Now that we have shown that the derivatives at the boundary point z have the appropriate sign,
the KKT conditions holds: There exists a dual feasible λj ≥ 0 such that the stationary condition holds,
namely, ∂jf(z) + λj = 0, and complementary slackness holds (because zj lies on the boundary of Ω). �

Proof: [Proof of Theorem 5] To prove this claim, we will show that σk increases sufficiently such that
the bounds in Theorem 3 imply ε-stationarity.

As a first case, suppose there exist components j such that the sequence {y∗k,j} is bounded away from
the boundary of Ω; in other words, for all k > 0 the sequence lies in y∗k,j ∈ [ν, 1 − ν], where ν ∈ (0, 1).
For k > 0, UPRULE sets the parameter σk to have components σk,j = γk∏k−1

l=0
√
ηl,j

. Notice that we have

assumed here that σk+1 = γ√
ηk
� σk. When iterating to a finite tolerance, σk does not need to diverge,

and so a value of κ always exists such that minu,v{σk,u/σk,v} > κ for all k. Since ηk,j is the minimum
distance from y∗k,j to the boundary, it is bounded above ηk,j ≤ 1/2 for all k. By Theorem 3 and using∣∣∣∂j f̃σ(y∗k)

∣∣∣ < δ as guaranteed by Algorithm 1, the value of the partial derivatives is bounded by

|∂jf(y∗k)| ≤ δ

σk,jy∗k,j

(
1− y∗k,j

) ≤ δ
∏k−1
l=0

√
ηl,j

γkν(1− ν)
≤ δ

(
√

2γ)kν(1− ν)
.

This bound ensures that for all k ≥ log( δ
εν(1−ν) )/ log(

√
2γ) steps, y∗k is ε-stationary in component j, that

is, |∂jf(y∗k)| ≤ ε. If {y∗k,j} is uniformly bounded away from the boundary in all components, then {y∗k}
will contain an ε-stationary point within

N = log

(
δ

εν(1− ν)

)
/ log(

√
2γ)

iterations.
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Now consider the set of components j such that the sequence {y∗k,j} is not contained within a compact
set [ν, 1 − ν] for ν ∈ (0, 1). As discussed in the proof of Theorem 4, this implies that a subsequence of
{y∗k,j} converges to a component z∗j of a stationary point such that z∗j is on the boundary of Ω. Using
Assumption 4 and Theorem 3, we find that the error in the stationary condition with respect to the
component z∗j with Lagrange multiplier λ∗j is bounded by

∣∣∂jf(y∗k) + λ∗j
∣∣ ≤ Ljδ

|∂jf(y∗k)|σk,j∆k,j
=

Ljδ
∏k−1
l=0

√
ηl,j

|∂jf(y∗k)| γk∆k,j
≤ Ljδ

|∂jf(y∗k)| (
√

2γ)kξ
.

This bound ensures that for all k ≥ log(
Ljδ

ξε2
)/ log(

√
2γ) either

∣∣∂jf(y∗k) + λ∗j
∣∣ ≤ ε or |∂jf(y∗k)| ≤ ε. In

either case, ε-stationarity is satisfied in component j.
Moreover, within

N = max

{
log

(
δ

εν(1− ν)

)
/ log(

√
2γ), log

(
Lδ

ξε2

)
/ log(

√
2γ)

}
iterations, {y∗k} contains an ε-stationary point. If no components of the sequence {y∗k} stay uniformly
bounded away from the boundary, then the bound simplifies to

N = log

(
Lδ

ξε2

)
/ log(

√
2γ).

�

C CUTEst Problems
For testing, we use the set of all CUTEst problems [8] with dimension 3 ≤ n ≤ 1000, finite bound
constraints (not including equality constraints), and no other additional constraints. The problems are
listed in Table 1.

A few of these problems (DEVGLA2B, GENROSEB, HS25, HS45, MAXLIKA, POWELLBC) had
nominal starting points with one or more components outside or on the bound constraints. In this case,
we translated the components that were not interior to the bounds orthogonally into the feasible region
by 0.1% of the bound width. The affine mapping (u− l)�y+ l was used to map points on the unit cube
to the bound-constrained domains [l,u]. This totals 40 problems, of which we estimate, through the use
of a bound-constrained solver, that 18 have solutions on the boundary of the domain. The distribution
of problem dimensions is given in Table 2.

D Domain Warpings for Other Decision Sets
In this appendix we discuss variations of the sigmoidal warping that map onto other decision sets. Table 3
shows domain warpings M : Rn → Γ, similar to the sigmoidal warping, for decision sets Γ defined by
nonnegativity constraints, simplexes, and the unit cube. For decision sets that are a Cartesian product
of the prior, the warping can be defined as a Cartesian product as well. Furthermore, if a decision set
Γ̂ can be defined as a smooth invertible map T (y) : Γ→ Γ̂, then the domain warping can be defined as
Φ(x) = T (M(x)).

E Algorithmic Considerations
We now discuss algorithmic considerations that will develop insights through the structure of f̃σ. First,
we investigate the role that σ plays in reshaping gradient steps. Next, we describe a steepest-descent
method that adapts to the structure of the sigmoidal warping S (steepest-descent [30, Ch.9] refers to
methods that take a step in the steepest direction with respect to a not-necessarily Euclidean norm).

E.1 Effect of the sigmoidal warping on gradient steps
Many first-order optimization algorithms find the next iterate by minimizing a quadratic model of the
objective, such as

mk(x) = f̃σ(xk) +∇f̃σ(xk)T (x− xk) +
1

2α
‖x− xk‖2. (11)
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Table 1: The 40 bound-constrained CUTEst problems used to create the data profiles in Figure 4. The
columns show the problem name, problem type (Q for quadratic, S for sum of squares, O for other), problem
dimension n, and approximate number of active constraints at the local optima. The number of active
constraints was determined by running L-BFGS-B to a gradient tolerance of 10−6 to find a local optimum;
then the number of activities was computed as the number of components of the optimum with a distance
to a boundary less than 0.1% of the componentwise domain width.

Problem Type n Active Constraints
BQPGABIM Q 46 13
BQPGASIM Q 50 14
CHEBYQAD S 100 0
DEVGLA1B S 4 0
DEVGLA2B S 5 2
DGOSPEC O 3 2
DIAGIQB Q 1000 573
DIAGIQE Q 1000 1000
DIAGIQT Q 1000 7
DIAGNQB Q 1000 735
DIAGNQE Q 1000 676
DIAGNQT Q 1000 496
DIAGPQB Q 1000 0
DIAGPQE Q 1000 0
DIAGPQT Q 1000 0

FBRAIN2LS S 4 1
GENROSEB S 500 494
HADAMALS O 380 19

HART6 O 6 0
HS110 S 10 0
HS25 S 3 1
HS38 O 4 0
HS45 O 5 5

LEVYMONT S 100 0
LEVYMONT10 S 10 0
LEVYMONT6 S 3 0
LEVYMONT7 S 4 0
LEVYMONT8 S 5 0
LEVYMONT9 S 8 0

MAXLIKA O 8 3
POWELLBC O 1000 32

POWERSUMB S 4 0
PROBPENL O 500 0

QINGB S 5 0
S368 O 8 2

SANTALS S 21 0
SINEALI O 1000 0
SPECAN S 9 0

STRTCHDVB S 10 0
TRIGON1B S 10 0

Table 2: Distribution of problem dimensions n.
n 3 4 5 6 8 9 10 21 50 100 380 500 1000

Number of problems 3 5 4 1 3 1 5 1 1 2 1 2 11

The model in eq. (11) yields a step along the negative gradient direction via the rule xk+1 = xk −
α∇f̃σ(xk). While this routine may make consistent improvement with respect to f̃σ, the corresponding
sequence yk = S(xk) may make poor improvement toward the optima y∗ in the original domain. The
sequence yk can be approximated to first order by

yk+1 ≈ yk − ασ � yk � (1− yk)�∇f̃σ(xk)

= yk − ασ2 � y2
k � (1− yk)2 �∇f(yk).

If the product σiyk,i(1− yk,i) is small for some component i, then the component yk+1,i will not change
substantially through the iteration, even when |∂if(yk)| is large. This naturally occurs when yk,i ap-
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Table 3: Decisions sets Γ and domain warpingsM : Rn → Γ from the unconstrained domain to the decision
set, with warping parameter σ ∈ Rn

++. From left to right the decision sets are nonnegativity constraints,
nonempty bounded simplexes parameterized by a ∈ Rn

++ and b ∈ R++, and the unit cube. The theory from
Section 3 should be extendable to these domain warpings with minor modifications.

Decision Set y ≥ 0 y ≥ 0, aTy ≤ b 0 ≤ y ≤ 1

Warping eσ�x beσ�x

1+aT eσx
1

1+e−σ�x

proaches the boundary as a byproduct of the sigmoidal warping, which forces all elements yk to be within
Ω. Furthermore, we can see how this affects the improvement in the objective throughout this iteration
through, once again, a first-order Taylor expansion:

f(yk+1) ≈ f(yk)− α[σ � yk � (1− yk)�∇f(yk)]T∇f̃σ(xk)

= f(yk)− α∇f(yk)Tσ2 � y2
k � (1− yk)2 �∇f(yk).

This approximation suggests that if a single entry yk,i is near the boundary and another entry yk,j is
sufficiently interior and σ is not set appropriately, then the gradient descent step would be inefficient,
since the step direction dk = σ�yk� (1−yk)�∇f(yk) would be nearly orthogonal to ∇f(yk). Setting
σ with the sequence σk = (yk � (1−yk))−1 will optimally align the gradient ∇f̃σ(yk) with ∇f(yk) and
could improve the convergence rate of the method with respect to f . However, particularly when the
sequence yk is approaching the boundary, this could significantly reduce the step size α, since the step
would be in the direction ∇f(yk), which is likely to be nearly orthogonal to the boundary when near a
boundary optima. On the other hand, if σ was a fixed constant, the gradient descent step direction would
be naturally rotated to point along the boundary. In the following section we formalize this intuition
and package it into a steepest-descent routine.

E.2 Steepest descent with sigmoidal norm

Figure 5: Steepest-descent steps from eq. (12) (dashed blue arrows) and gradient-descent steps (solid orange
arrows) on the merit function f̃σ (right), and the resultant step mapped under the sigmoidal warping S
to the constrained domain (left). f is the Rosenbrock function. The steepest descent step from the left
point, in both figures, overcomes the warping of the sigmoidal function that occurs near the boundary and
takes a more efficient step toward the minima (red star) than the gradient-descent step from the same point.
However, taking a steepest-descent step on f̃σ is akin to taking a gradient-descent step on f , which may be
inefficient for poorly conditioned functions such as the Rosenbrock function; the gradient-descent step on
f̃σ from the right point, in either figure, is more efficient than the corresponding steepest-descent step. The
step lengths were computed by using a line search.

While the optimization of f̃σ proceeds over points x in the unconstrained domain, the success of
the optimization is measured in terms of distance between S(x) and the optima y∗. This suggests
that the Euclidean distance is not an appropriate distance measure in the unconstrained domain and
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that a better distance measure should capture the curvature of the manifold generated by S. For two
points x,x′ ∈ Rn near one another in the unconstrained domain, the distance between y = S(x) and
y′ := S(x′) is approximately∥∥y′ − y∥∥ ≈ ∥∥S(x′)− (S(x′) + Jσ(x′)(x− x′))

∥∥
= ‖Jσ(x′)(x− x′)‖
=: ‖x− x′‖σ.

Since this “sigmoidal norm” more accurately captures the distance of interest, we can improve our op-
timization by using a steepest descent method equipped with the sigmoidal norm ‖ · ‖σ in place of the
conventional gradient descent, which relies on the Euclidean norm. We use the terminology steepest
descent, similar to [30], to denote a method that takes a step in the steepest direction with respect to
a (not-necessarily Euclidean) norm. For a review of steepest descent versus gradient descent see, for
example, [30, Ch 9]. Steepest descent with the sigmoidal norm chooses the iterate xk+1 by minimizing
the quadratic model:

xk+1 = arg min
x
f̃σ(xk) +∇f̃σ(xk)T (x− xk) +

1

2αk
‖x− xk‖2σ,

which yields the following sequence:

xk+1 = xk − αk(Jσ(xk)Jσ(xk))−1∇f̃σ(xk)

= xk − αk diag(σ � yk � (1− yk))−1∇f(yk). (12)

See Figure 5 for a comparison of the steepest-descent step direction with the gradient-descent step. To a
first-order approximation, the improvement in f is akin to taking a gradient step in the original domain:

f(yk+1) ≈ f(yk)− α∇f(yk)T∇f(yk).

As discussed in Appendix E.1, however, the step direction may be nearly orthogonal to the gradient
∇f̃σ, resulting in poor improvement. We can measure the orthogonality through the inner product
∇f(yk)T diag(σ � yk � (1 − yk))−1∇f(yk), which may be near zero when some, but not all, indexes
of yk are near the boundary of Ω. A compromise to make this method practical is to use it as a
hybrid method with gradient descent, by taking traditional gradient steps when the steepest-descent
step direction is highly orthogonal to ∇f̃σ and taking steepest descent steps otherwise.
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