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Abstract

Applying an interior-point method to the central-path conditions is a widely used approach
for solving quadratic programs. Reformulating these conditions in the log-domain is a natural
variation on this approach that to our knowledge is previously unstudied. In this paper, we
analyze log-domain interior-point methods and prove their polynomial-time convergence. We
also prove that they are approximated by classical barrier methods in a precise sense and provide
simple computational experiments illustrating their superior performance.

1 Introduction

Interior-point methods (IPMs) are widely used numerical algorithms for solving convex quadratic
programs (QPs) of the form

minimize
1

2
xT Wx + cT x

subject to Ax + b ≥ 0,
(1)

where x ∈ R
n is the decision variable, A ∈ R

m×n and b ∈ R
m define linear inequality constraints,

and W ∈ R
n×n is a symmetric, positive semidefinite matrix that, together with c ∈ R

n, defines
a convex, quadratic objective. IPMs solve (1) by tracking the solution (x, s, λ) ∈ R

n×R
m×R

m

to the central-path conditions

AT λ = Wx + c, s = Ax + b, λ ≥ 0, s ≥ 0, siλi = µ ∀i ∈ {1, 2, . . . , m} (2)

for a decreasing sequence of µ > 0. When µ = 0, these are precisely the Karush-Kuhn-Tucker
(KKT) optimality conditions for (1). Hence, by gradually reducing µ to zero, IPMs produce
an optimal solution x to (1) along with an optimal constraint slack s and corresponding vector
λ of Lagrange multipliers. IPMs are efficient in practice and have several high quality imple-
mentations [15, 13]. They are also efficient in theory, requiring just O(

√
m) iterations to solve

the QP (1) to fixed accuracy, where the per-iteration cost is the solution of an n × n linear
system [19, 18, 1].

Success of IPMs requires existence and uniqueness of the central path, i.e., of solutions
(x, s, λ) to (2) for all µ > 0. Using standard arguments (e.g., [8, Theorem 1]), this holds by
further assuming the QP (1) satisfies the following conditions.

Assumption 1. The following conditions hold:

• There exist x ∈ R
n and s ∈ R

m with s > 0 satisfying s = Ax + b.

• For all β ∈ R, the sublevel set {x ∈ R
n : 1

2 xT Wx + cT x ≤ β, Ax + b ≥ 0} is bounded.

• AT A + W ≻ 0, i.e., AT A + W is positive definite.
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We assume that these conditions hold throughout. Note that these conditions impose no direct
constraint on the shape of A ∈ R

m×n, i.e., we may have that m = n, m < n, or m > n. Further,
if W = 0, then the condition AT A ≻ 0 is the usual assumption for linear programming that the
constraint matrix of Ax + b ≥ 0 is full column rank; see, e.g., [2].

1.1 Log-domain interior-point methods

The set of nonnegative (s, λ) satisfying siλi = µ for i ∈ {1, 2, . . . , m} is easily parameterized in
the log-domain: letting ev ∈ R

m denote elementwise exponentiation, this condition holds if and
only if λ =

√
µev and s =

√
µe−v for some v ∈ R

m. This v-parametrization of s and λ yields
the following log-domain reformulation of the central-path conditions (2)

√
µAT ev = Wx + c,

√
µe−v = Ax + b (3)

and a template log-domain interior-point method for solving the QP (1):

• Update (v, x) by applying Newton’s method to (3) for fixed µ.

• Reduce µ and repeat.

This paper studies this template algorithm, which, to our knowledge, has not previously ap-
peared in the QP literature. As we show, there exist concrete instantiations that are both
practically and theoretically efficient. In particular, we provide a short-step algorithm and
prove the typical O(

√
m) iteration bound. We also provide a long-step version and illustrate its

practical performance.

1.2 Prior work

The literature on quadratic programming is vast and we will not attempt to cite it completely.
We do note that IPMs with polynomial-time complexity trace to [10, 9] and IPMs with O(

√
m)

iteration bounds include [12, 6, 7, 11]. One can also obtain a O(
√

m) bound by invoking the self-
concordance of a suitable barrier function; see [14]. For linear objectives (W = 0), our algorithms
are special cases of geodesic interior-point methods [16], recent techniques for minimizing a linear
function subject to symmetric cone inequalities. Indeed, our main analysis task is showing that
key convergence results of [16] still hold when a quadratic objective term xT Wx is included.

Linear updates of the log parameter v are of course multiplicative updates of s =
√

µe−v

and λ =
√

µev. Algorithms based on multiplicative updates have been developed for restricted
families of QPs, e.g., linear programs (W = 0), nonnegative least-squares (A = I, b = 0), and
model-predictive control; see, e.g., [3, 17, 4]. We emphasize that in each of these algorithms,
the updates are distinct from ours and are designed in different ways. In particular, they are
only applied to one variable, λ or s, and are not based on the log-transformation (3) of the
central-path conditions.

1.3 Outline of contributions

The contributions of this paper are organized as follows. Section 2 analyzes the application
of Newton’s method to the log-domain central-path equations (3), establishing a globally-
convergent step-size rule and a local region of quadratic convergence. Building on this anal-
ysis, Section 3 provides two algorithms for solving the QP (1) based on two different µ-update
rules. The first is a short-step algorithm that reduces µ at a fixed rate and terminates after
at most O(

√
m) Newton iterations. The second is a long-step algorithm that employs more

aggressive µ-updates via line-search. Section 4 provides theoretical and computational compar-
isons with barrier methods. In particular, we show that these methods are, in a precise sense,
approximations of the presented log-domain IPMs.
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2 Newton’s method

Applying Newton’s method to the log-domain central-path equations (3) proceeds by Taylor-
approximating the exponential functions ev and e−v. Letting x ◦ y denote elementwise multipli-
cation of x, y ∈ R

m, these approximations take the form

ev+d ≈ ev + ev ◦ d, e−(v+d) ≈ e−v − e−v ◦ d.

The Newton direction d(v, µ) ∈ R
m and an associated x(v, µ) ∈ R

n are then defined by substi-
tuting these approximations into (3).

Definition 2.1. For fixed µ > 0 and v ∈ R
m, the Newton direction d(v, µ) and associated

x(v, µ) are the d ∈ R
m and x ∈ R

n satisfying
√

µAT (ev + ev ◦ d) = Wx + c,
√

µ(e−v − e−v ◦ d) = Ax + b.

Note that when d(v, µ) = 0, we obtain a point (x, s, λ) on the central-path by taking x =
x(v, µ), s =

√
µe−v, and λ =

√
µev. Further, x(v, µ) is a “good” approximate solution of

the QP (1) when µ and ‖d(v, µ)‖ are sufficiently small. (Exact error bounds will be given in
Section 3.2.) It remains to prove that d(v, µ) and x(v, µ) are well-defined for all µ > 0 and
v ∈ R

m. For this, we next show that d(v, µ) is a function of x(v, µ) and that x(v, µ) is the
unique solution of a consistent linear system. In particular, we show that this linear system is
of the form Sx = f for S ≻ 0, i.e., for S symmetric and positive definite.

Theorem 2.1. For all v ∈ R
m and µ > 0, the Newton direction d(v, µ) and point x(v, µ) satisfy

d = 1− 1√
µ

ev ◦ (Ax + b),

where 1 ∈ R
m denotes the vector of all ones. Moreover, x(v, µ) is the unique solution of

(AT Q(v)A + W )x = 2
√

µAT ev − (c + AT Q(v)b),

where Q(v) ∈ R
m×m is the diagonal matrix with [Q(v)]ii = e2vi . Further, AT Q(v)A + W ≻ 0.

Proof. Rearranging
√

µ(e−v − e−v ◦ d) = Ax + b, we conclude that

d = 1− 1√
µ

ev ◦ (Ax + b).

Substituting into
√

µAT (ev + ev ◦ d) = Wx + c yields

Wx + c =
√

µAT ev ◦ (1 + d)

=
√

µAT ev ◦ (1 + 1− 1√
µ

ev ◦ (Ax + b)).

Rearranging and using Q(v)Ax = ev ◦ (ev ◦Ax) shows that

(AT Q(v)A + W )x = 2
√

µAT ev − (c + AT Q(v)b).

Uniqueness of x follows because AT Q(v)A + W is positive definite under our assumption that
AT A + W is positive definite (Assumption 1). To see this, suppose that (AT Q(v)A + W )z = 0
for nonzero z. Then, Wz = 0 and AT Q(v)Az = 0. But this implies that Q(v)1/2Az = 0, which,
in turn means that Az = 0 since Q(v)1/2 is invertible. We conclude that (AT A + W )z = 0, a
contradiction.

The remainder of this section studies convergence of the Newton iterations

vi+1 = vi +
1

αi
d(vi, µ)

under a simple step-size rule for choosing αi ∈ R. We will show global convergence to centered
points.
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Definition 2.2 (Centered points). For µ > 0, the centered point v̂(µ) is the v ∈ R
m that, for

some x ∈ R
n, solves the log-domain central-path equations (3).

Following [16], we will measure the distance of an iterate vi to v̂(µ) using divergence.

Definition 2.3 (Divergence [16]). The divergence h(u, v) of (u, v) ∈ R
m × R

m is

h(u, v) := 〈eu, e−v〉+ 〈e−u, ev〉 − 2m.

For fixed µ > 0, the function hµ : Rm → R denotes the map v 7→ h(v̂(µ), v).

While divergence is not a metric, it does have a set of properties useful for convergence analysis.

Lemma 2.1. The following properties hold for all u, v ∈ R
m and µ > 0.

(a) h(u, v) = h(v, u) and h(u, v) ≥ 0.

(b) h(u, v) = 0 if and only if u = v. In particular, h(u, v) = −2m +
∑m

i=1 2 cosh(vi − ui).

(c) hµ : Rm → R is strongly convex. In particular, 1
2∇2hµ(v) � I.

Leveraging these properties, Section 2.1 provides a step-size rule for which hµ(vi) < hµ(vi−1) for
all iterations i. Building on this, Section 2.2 shows that the sequence v0, v1, v2, . . . converges to
the centered point v̂(µ) from an arbitrary initial v0 ∈ R

m. Finally, Section 2.3 shows quadratic
convergence when hµ(v0) ≤ 1

2 . As we will point out, some statements generalize previous results
for linear optimization [16] to the quadratic program (1).

2.1 Step-size rule

Our step-size rule arises from bounds on the directional derivatives of divergence hµ(v). To-
wards stating them, fix v ∈ R

m and µ > 0 and for brevity let d ∈ R
m denote the Newton

direction d(v, µ). Assume that d 6= 0 or, equivalently, that v 6= v̂(µ). Finally, let f : R → R

denote the restriction of hµ(v) to the line induced by v and d, i.e.,

f(t) := hµ(v + td).

The next lemma provides bounds on f ′(0) and f ′′(t) and generalizes [16, Lemma 3.4] and [16,
Lemma 3.6].

Lemma 2.2. The following statements hold.

• f ′(0) ≤ −(f(0) + ‖d‖2).

• f
′′

(t) ≤ ‖d‖2
∞f(t) + 2‖d‖2.

• For all intervals [a, b] ⊂ R, we have supζ∈[a,b] f ′′(ζ) ≤ maxζ∈{a,b}(‖d‖2
∞f(ζ) + 2‖d‖2).

Proof. For brevity, let w = ev, ŵ = ev̂(µ) and k =
√

µ. Letting z−1 denote elementwise inversion,
define p := 〈w−1 ◦ (1− d)− ŵ−1, w ◦ (1 + d)− ŵ〉. Expanding, we conclude that

p = 〈(1− d), (1 + d)〉 − 〈w−1 ◦ ŵ, (1− d)〉 − 〈w ◦ ŵ−1, (1 + d)〉+ m

= m− ‖d‖2 − 〈w−1 ◦ ŵ, (1− d)〉 − 〈w ◦ ŵ−1, (1 + d)〉+ m

= −(〈ŵ, w−1〉+ 〈ŵ−1, w〉 − 2m)− ‖d‖2 − 〈w ◦ ŵ−1 − w−1 ◦ ŵ, d〉
= −f(0)− ‖d‖2 − f ′(0).

We now show that p ≥ 0 for the Newton direction d, which will prove the first statement. Since
ŵ solves (2), we have for some x̂, that b = kŵ−1−Ax̂ and c = kAT ŵ−W x̂. Substituting these
expressions for b and c into the definition of d, we have, for some x, that

kw−1 ◦ (1− d)− kŵ−1 = A(x − x̂), kAT (w ◦ (1 + d)− ŵ) = W (x− x̂).

Using the first equation, we conclude that p = 〈 1
k A(x − x̂), w ◦ (1 + d) − ŵ〉. Combining with

the second yields p = 〈 1
k (x − x̂), 1

k W (x − x̂)〉 ≥ 0, which proves the first statement. Proof of
the second statement is identical to [16, Lemma 3.4.c]. The third statement follows from the
second and convexity of f(t).
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Combining this lemma with the inequality

f(t) ≤ f(0) + f ′(0)t +
1

2
sup

ζ∈[0,t]

f ′′(ζ)t2 (4)

yields a piecewise step-size rule for selecting t such that f(t) < f(0). This rule is parameterized
by 0 < β < 1 which, along with ‖d‖2

∞, controls the transition from full to damped steps.

Theorem 2.2. For β ∈ (0, 1), let α = max(1, 1
2β ‖d‖2

∞). The following statements hold.

(a) f( 1
α ) < f(0)

(b) If α = 1, then f(1) ≤ 1
2‖d‖2

∞f(0) ≤ βf(0).

Proof. Let t̂ ≥ 0 denote the smallest t for which f(t) = f(0). By strong convexity (Lemma 2.1),
we have that f(t) < f(0) for all t ∈ (0, t̂) since d is a descent direction (Lemma 2.2). Further
t̂ > 0. Towards bounding t̂, we first note that the combination of (4) with Lemma 2.2 implies
that for all t,

f(t) ≤ f(0)− t(f(0) + ‖d‖2) +
1

2
(‖d‖2

∞ max(f(0), f(t)) + 2‖d‖2)t2. (5)

Substituting t = t̂ and using f(0) = f(t̂), we conclude that

t̂(
‖d‖2

∞
2

f(0) + ‖d‖2) ≥ f(0) + ‖d‖2.

Hence, t < t̂ if t(
‖d‖2

∞

2 f(0) + ‖d‖2) < f(0) + ‖d‖2, which holds if t = min(1, 2β
‖d‖2

∞

), prov-

ing item (a). Item (b) follows by substituting t = 1 and max(f(0), f(1)) = f(0) into (5).

2.2 Global convergence

Newton iterations strictly decrease the divergence hµ(v) under the step-size rule of Theorem 2.2.
Combined with the strong convexity of hµ, this implies convergence to the centered point v̂(µ).

Theorem 2.3. Fix 0 < β < 1 and µ > 0. For all v0 ∈ R
m, the Newton iterations vi+1 =

vi + 1
αi

d(vi, µ) with step-size rule αi = max{1, 1
2β‖d(vi, µ)‖2

∞} converge to the centered point

v̂(µ).

Proof. By choice of αi and Theorem 2.2-(a), we have that hµ(vi) strictly decreases. In addition,
hµ(vi) ≥ 0 for all vi; hence, it converges to some nonnegative number δ. We will show that δ = 0,
which implies that vi converges to v̂(µ) by Lemma 2.1-(b). To begin, note that all iterations
vi are contained in the set Ω := {v ∈ R

m : δ ≤ hµ(v) ≤ hµ(v0)}. But Ω is compact since hµ

is strongly convex (Lemma 2.1). Letting α(v) := max{1, 1
2β ‖d(v, µ)‖2

∞}, we conclude that the

continuous function D(v) := hµ(v)− hµ(v + 1
α(v) d(v, µ)) obtains its infimum D∗ ∈ R on Ω. But

if δ > 0, then D∗ > 0, which implies that hµ(vm) ≤ hµ(v0)−mD∗ < 0 for all m > hµ(v0)/D∗,
a contradiction since hµ(vm) ≥ 0. Hence, δ = 0.

2.3 Local quadratic convergence

Theorem 2.2 states that a full Newton-step vi+1 = vi +d(vi, µ) decreases the divergence hµ(vi)
by a factor of at least 1

2‖d(vi, µ)‖2
∞. The next lemma, which generalizes [16, Corollary 3.1],

shows that we can also upper-bound ‖d(vi, µ)‖2, and hence ‖d(vi, µ)‖2
∞, using hµ(vi).

Lemma 2.3. For all v ∈ R
m and µ > 0, it holds that ‖d(v, µ)‖2 ≤ hµ(v)(1 + ‖d(v, µ)‖).

5



Proof. For brevity, let d denote d(v, µ) and let a = ev−v̂(µ) and g = a− a−1. As in Section 2.2,
let f(t) = hµ(v + td) such that f(0) = hµ(v). Observing that g is the gradient of hµ(v) with
respect to v, we have, by Lemma 2.2 and Cauchy-Schwartz, that

f(0) + ‖d‖2 ≤ |f ′(0)| = |〈g, d〉| ≤ ‖g‖‖d‖.

We also have that ‖g‖2 ≤ f(0)2 + 4f(0) given that

f(0) = ‖a+a−1−21‖1 ≥ ‖a+a−1−21‖2 =
√

‖a− a−1‖2 − 4〈1, a + a−1 − 21〉 =
√

‖g‖2 − 4f(0).

We conclude that f(0) + ‖d‖2 ≤ ‖d‖
√

f(0)2 + 4f(0). Squaring each side and rearranging yields

0 ≤ ‖d‖2(f(0)2 + 4f(0))− (f(0) + ‖d‖2)2 = (−‖d‖2 + f(0)(1 + ‖d‖))(‖d‖2 + f(0)(‖d‖ − 1)).

This shows that if f(0)(1 + ‖d‖) < ‖d‖2, then ‖d‖2 ≤ f(0)(1− ‖d‖), which in turn implies that

f(0)(1 + ‖d‖) < f(0)(1− ‖d‖),

which is impossible. Hence, f(0)(1 + ‖d‖) ≥ ‖d‖2, as desired.

Combining this with Theorem 2.2 yields the following quadratic convergence result, which gen-
eralizes [16, Theorem 3.4].

Theorem 2.4. For µ > 0 and v0 ∈ R
m, let vi+1 = vi + d(vi, µ). If hµ(v0) ≤ θ ≤ 1

2 , then

hµ(vi) ≤ θ2i

.

Proof. Let hi = hµ(vi) and di = d(vi, µ). Make the inductive hypothesis that hi ≤ 1
2 . Then

Lemma 2.3 implies that ‖di‖ ≤ 1. Hence,

hi+1 ≤
1

2
hi‖di‖2

∞ ≤
1

2
hi‖di‖2 ≤ 1

2
hi(‖di‖+ 1)hi,

where the first inequality is Theorem 2.2 (b) and the last is Lemma 2.3. Since ‖di‖ ≤ 1, we
further conclude that hi+1 ≤ h2

i , and that hi+1 < 1
2 . By induction, hi+1 ≤ h2

i must hold for all

i, which implies that hi ≤ (h0)2i

as claimed.

Using the results of this section, we can now concretely instantiate the template log-domain
interior-point method (Section 1.1). The next section will state two algorithms.

3 Algorithms

The analysis of Newton’s method (Section 2) yields two concrete IPMs (Figure 1) for solving the
QP (1). The first is a short-step algorithm: it conservatively updates µ, takes full Newton steps,
and never leaves the quadratic-convergence region of Newton’s method. The next is a long-step
algorithm: it aggressively updates µ via line-search and takes potentially damped steps. The
first algorithm, shortstep, has an O(

√
m) iteration bound, which is typical for interior-point

methods. The second algorithm, longstep, is intended for practical implementation.

3.1 Short-step algorithm

The algorithm shortstep reduces the centering parameter µ by a fixed-factor k after every
N Newton steps. With proper selection of k and N , it updates a given centered-point v̂(µ0)
to v̂(µf ) using at most C

√
m log(µ0µf

−1) iterations, where C is an explicit constant. If the
quadratic objective term is zero (W = 0), it reduces to the short-step algorithm of [16, Section
2]. Its analysis is also identical once we show that a key divergence bound still holds for non-zero
W .

To begin, let q(t) := 2(cosh(t)− 1). The next lemma establishes the aforementioned bound
and reduces to [16, Theorem 3.1] when W = 0.

6



Procedure shortstep(v0, µ0, µf )
v ← v0, µ← µ0

while µ > µf do

µ← 1

k
µ

for i = 1, 2, . . . , N do
v ← v + d(v, µ)

end

end

return (v, µ)

Procedure longstep(v0, µ0, µf )
v ← v0, µ← µ0

while µ > µf or ‖d(v, µ)‖∞ > 1 do
µ← min(µ, inf{µ > 0 : ‖d(v, µ)‖∞ ≤ 1})
α← max(1, 1

2β
‖d(v, µ)‖2

∞
)

v ← v + 1

α
d(v, µ)

end

return (v, µ)

Figure 1: Algorithms for finding an approximate solution x(v, µ) to the QP (1). For (k, N) and
(v0, µ0) specified by Theorem 3.1, the algorithm shortstep stays within the quadratic-convergence
region of Newton’s method (Theorem 2.4) and terminates in O(

√
m log(µ0µ−1

f )) Newton steps. For

any step-size parameter β ∈ [1

2
, 1), the algorithm longstep terminates given arbitrary initialization

points (Theorem 3.2), and allows for construction of a µf -sub-optimal feasible-point x(v, µ).

Lemma 3.1. For all µ1, µ2 > 0, the centered points v̂(µ1) and v̂(µ2) satisfy

1

m
h(v̂(µ1), v̂(µ2)) ≤ q(

1

2
log

µ1

µ2
)

Proof. Let w1 = ev̂(µ1) and w2 = ev̂(µ2) and let k1 =
√

µ1 and k2 =
√

µ2. By primal-dual
feasibility,

b = k1w−1
1 −Ax1 = k2w−1

2 −Ax2.

Taking inner-products with w1 and w2 gives:

k1m + wT
1 A(x2 − x1)

k2
= wT

1 w−1
2 ,

k2m + wT
2 A(x1 − x2)

k1
= wT

2 w−1
1

Adding and simplifying yields:

h(v̂(µ1), v̂(µ2)) + 2m := wT
1 w−1

2 + wT
2 w−1

1

=
(k2

2 + k2
1)m + (k1wT

1 − k2wT
2 )A(x2 − x1)

k1k2

=
(k2

2 + k2
1)m + (c + Wx1 − (c + Wx2))T (x2 − x1)

k1k2

=
(k2

2 + k2
1)m + (W (x1 − x2))T (x2 − x1)

k1k2

=
(k2

2 + k2
1)m− (x1 − x2)T W (x2 − x1)

k1k2

≤ (k2
2 + k2

1)m

k1k2
= m(

k2

k1
+

k1

k2
) = 2m cosh(log

k1

k2
) = 2m cosh(log

√

µ1

µ2
)

Subtracting 2m proves the claim.

We also need a lemma from [16] that relates divergence to Euclidean distance.

Lemma 3.2 (Lemma 3.2 of [16]). For all v1, v2 ∈ R
m it holds that ‖v1 − v2‖2 ≤ h(v1, v2) ≤

q(‖v1 − v2‖).
Using these lemmas, the µ-update factor k and the inner-iteration count N are selected such
that the divergence hµ(v) remains bounded at each iteration by a specified θ ∈ (0, 1

2 ]. This in
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turn implies that each Newton step is quadratically convergent (Theorem 2.4). To ensure that
h 1

k
µ(v) ≤ θ just before µ updates, we use the following upper-bound

h 1
k

µ(v) ≤ q(‖v − v̂(µ)‖+ ‖v̂(µ)− v̂(
1

k
µ)‖), (6)

which follows from Lemma 3.2 and the triangle inequality. For a specified ǫ, the parameter N
is chosen to ensure that ‖v − v̂(µ)‖ ≤ ǫ using Theorem 2.4 and Lemma 3.2. Using Lemma 3.1
and Lemma 3.2, the parameter k is then chosen to ensure that ‖v̂(µ) − v̂( 1

k µ)‖ ≤ q−1(θ) − ǫ,
where q−1 : R→ R+ denotes the nonnegative inverse of q. Together with (6), this implies that
h 1

k
µ(v) ≤ θ.

A formal statement of the (k, N)-selection criteria and the convergence guarantees of shortstep

follow. We omit proof, as it is identical to [16, Theorem 2.1].

Theorem 3.1. Let shortstep (Figure 1) have parameters (k, N) that satisfy, for some 1
2 ≥

θ > 0 and q−1(θ) > ǫ > 0, the conditions

θ2N ≤ ǫ2,
1

2
log k = q−1(

1

m
ζ2), (7)

where ζ := q−1(θ)− ǫ. The following statements hold for shortstep given input (v̂(µ0), µ0, µf ):

(a) At most N⌈c−1
√

m log µ0

µf
⌉ Newton steps execute, where c := 2q−1(ζ2).

(b) The output (v, µ) satisfies ‖v − v̂(µ)‖ ≤ ǫ and µ ≤ µf .

Observe that shortstep takes only full Newton-steps and that its convergence guarantees as-
sume a centered initialization point, i.e., that v0 = v̂(µ0). The next algorithm longstep will
support arbitrary initialization through the use of damped Newton steps.

3.2 Long-step algorithm

The procedure longstep (Figure 1) supports arbitrary initialization and performs more aggres-
sive updates of the centering parameter µ. At each iteration, it finds the smallest µ for which
the Newton direction d(v, µ) satisfies ‖d(v, µ)‖∞ ≤ 1, if such a µ exists. It terminates once
both ‖d(v, µ)‖∞ ≤ 1 and µ ≤ µf . The condition ‖d(v, µ)‖∞ ≤ 1 is motivated by the following
lemma, which shows that under this condition, the approximate solution x(v, µ) associated with
the Newton direction (Definition 2.1) is feasible and has bounded sub-optimality.

Lemma 3.3. For µ > 0 and v ∈ R
m, let d = d(v, µ) and x = x(v, µ). Let λ =

√
µ(ev + ev ◦ d)

and s =
√

µ(e−v − e−v ◦ d). If ‖d‖∞ ≤ 1, then (x, s, λ) satisfies the primal-dual feasibility
conditions

Ax + b = s, AT λ = Wx + c, λ ≥ 0, s ≥ 0.

Further, ‖s ◦ λ‖1 = µ(m− ‖d‖2).

Proof. The equality constraints hold by definition of d(v, µ). Nonnegativity of both s and λ
hold by their definition and the fact that ‖d‖∞ ≤ 1. Finally, since s, λ ≥ 0, we have that
‖λ ◦ s‖1 = 〈s, λ〉. Expanding 〈s, λ〉 using the definition of s and λ proves the claim.

It remains to show that the algorithm will actually terminate. To prove this, we note that the
algorithm, by design, monotonically decreases µ and always applies an update v ← v + 1

αd(v, µ)
with ‖d(v, µ)‖∞ ≥ 1. We will show that infinitely many iterations, and the resulting convergence
of µ, contradicts ‖d(v, µ)‖∞ ≥ 1. Our analysis also selects the step-size parameter β to ensure
global convergence (Theorem 2.3) and full Newton steps when ‖d(v, µ)‖∞ ≤ 1.
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Theorem 3.2. For any step-size parameter β ∈ [ 1
2 , 1) and input (v0, µ0, µf ) ∈ R

m × R × R

with µ0 > µf > 0, the algorithm longstep terminates and returns (v, µ) with µ ≤ µf . Further,
letting x denote x(v, µ), we have that

Ax + b ≥ 0,
1

2
xT Wx + cT x ≤ V ∗ + µm,

where V ∗ denotes the optimal value of QP (1).

Proof. Let vi, µi and αi denote the sequences generated by longstep indexed by i such that
vi+1 = vi + 1

αi
d(vi, µi). Now suppose the algorithm does not terminate. We first consider

the case where µ updates only finitely many times. In this case, there exists an M such that
µi = µM for all iterations i > M , which implies that vi converges to v̂(µM ) by Theorem 2.3.
But by selection of µi, we also have that ‖d(vi, µi)‖∞ ≥ 1 for all i, a contradiction. Hence, in
this case, the algorithm must terminate.

Now suppose that µ updates infinitely many times and let σk denote the subsequence of
iterations i where µ changes, i.e., µσk

< µσk−1
and µi = µσk−1

for σk > i ≥ σk−1. For brevity,
let hk : Rm → R denote the divergence h(v, v̂(µσk

)) as a function of v. We note that

1

2
hk(vσk

) ≥ hk(v1+σk
) ≥ hk(vσk+1

), (8)

where the first inequality holds by Theorem 2.2 since ‖d(vi, µi)‖∞ = 1 for i = σk and the second
because Newton iterations decrease hµ(vi) for fixed µ.

Since µσk
is bounded below and monotonically decreasing, it converges. Since the map

µ 7→ v̂(µ) is continuous, the sequence v̂(µσk+1
) also converges. Hence, for any ǫ > 0, there exists

an N such that for all k > N ,
‖v̂(µσk

)− v̂(µσk+1
)‖ < ǫ.

This shows that for k > N ,

hk+1(vσk+1
) + 2m = 2

m
∑

j=1

cosh([vσk+1
− v̂(µσk+1

)]j)

≤ 2

m
∑

j=1

cosh(|[vσk+1
− v̂(µσk

)]j |+ ǫ)

≤ 2
m

∑

j=1

cosh([vσk+1
− v̂(µσk

)]j)(cosh(ǫ) + sinh(ǫ))

= (hk(vσk+1
) + 2m)(cosh(ǫ) + sinh(ǫ))

≤ (
1

2
hk(vσk

) + 2m)(cosh(ǫ) + sinh(ǫ)),

where the third line uses the inequality cosh(x + y) ≤ cosh(x)(cosh(y) + sinh(|y|)) and the last
uses (8). Noting that eǫ = cosh(ǫ) + sinh(ǫ), we rearrange the last line to conclude that

hk+1(vσk+1
) ≤ eǫ

2
hk(vσk

) + 2m(eǫ − 1).

This shows that hk(vσk
) is upper-bounded by a sequence of the form ak+1 = c1(ǫ)ak + c2(ǫ),

which, if |c1| < 1, converges to L = c2

1−c1
. For any δ > 0, we can pick ǫ small enough to show

that L < δ. This shows that hk(vσk
) converges to zero, contradicting ‖d(vσk

, µσk
)‖ ≥ 1 by

Lemma 2.3. Hence, the algorithm must terminate. Finally, the feasibility and suboptimality
guarantees for x(v, µ) follow from Lemma 3.3 and weak duality.

We conclude with three topics related to selection of µ.
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3.2.1 Computing the infimum

Fix v ∈ R
m and let d(µ) denote d(v, µ). In this notation, each iteration of longstep requires

computation of inf{µ > 0 : ‖d(µ)‖∞ ≤ 1}. This is straight-forward upon recognition that d(µ)
is an affine function of (

√
µ)−1, i.e., it decomposes as d(µ) = d0 + (

√
µ)−1d1 for some fixed

d0 ∈ R
m and d1 ∈ R

m. We give a constructive proof of this fact that demonstrates how to build
this decomposition.

Proposition 3.1. There exists d0, d1 ∈ R
m satisfying d(µ) = d0 + 1√

µd1 for all µ > 0.

Proof. Fix µ1 > 0 and µ2 > 0 and v ∈ R
m. Let d̂i = d(v, µi) and ki = 1√

µ
i

for i ∈ 1, 2. By

Definition 2.1, there exists x̂1 and x̂2 satisfying

AT (ev + ev ◦ d̂1) = W x̂1 + k1c, AT (ev + ev ◦ d̂2) = W x̂2 + k2c.

Multiplying these equations by t and (1− t), respectively, and adding yields

AT (ev + ev ◦ (td̂1 + (1− t)d̂2)) = W (tx̂1 + (1− t)x̂2) + (tk1 + (1− t)k2)c.

By similar argument,

e−v − e−v ◦ (td̂1 + (1− t)d̂2) = A(tx̂1 + (1 − t)x̂2) + (tk1 + (1 − t)k2)b.

By Definition 2.1, we conclude that td̂1 + (1− t)d̂2 = d(v, µ) for 1√
µ = tk1 + (1− t)k2. Solving

for t shows that t = c1
1√
µ + c0 for c1 = (k1 − k2)−1 and c0 = −k2(k1 − k2)−1. Substituting into

td̂1 + (1− t)d̂2, we deduce that

d(v, µ) = (c1
1√
µ

+ c0)d̂1 + (1− c1
1√
µ
− c0)d̂2.

Hence, the claim follows for d0 = c0d̂1 + (1 − c0)d̂2 and d1 = c1(d̂1 − d̂2).

This decomposition in turn allows us to characterize the condition ‖d(µ)‖∞ ≤ 1 using a
system of linear inequalities immediate from the definition of ‖ · ‖∞.

Proposition 3.2. For d0, d1 ∈ R
m, we have that ‖d0 + 1√

µ d1‖∞ ≤ 1 if and only if

−1 ≤ d0 +
1√
µ

d1 ≤ 1, (9)

where 1 ∈ R
m denotes the vector of all ones.

Note that minimizing µ subject to these inequalities can be done in O(m) time simply by
iterating over the components of d0, d1 ∈ R

m.

3.2.2 Reuse of factorizations

The constructive proof of Proposition 3.1 builds the decomposition d0 + (
√

µ)−1d1 from two
Newton directions d(v, µ1) and d(v, µ2). Since v is fixed, these directions are found by solving two
Newton systems (Definition 2.1) with the same positive definite coefficient matrix W +AT Q(v)A.
Hence, one can find both directions using the same Cholesky factorization of W + AT Q(v)A.

3.2.3 Least-squares µ

The decomposition d(µ) = d0 + (
√

µ)−1d1 from Proposition 3.1 also enables easy computation
of the least-squares µ, i.e., the µ that minimizes ‖d(µ)‖2. Assuming dT

0 d1 < 0, this µ is the
solution of −dT

0 d1
√

µ = ‖d1‖2 and provides a natural heuristic choice for the initial µ0 passed
to longstep.
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4 Comparison with barrier methods

The log-domain update v ← v+d(v, µ) induces multiplicative updates s← s◦e−d and λ← λ◦ed

of the slack variable s :=
√

µe−v and the Lagrange multiplier λ :=
√

µev. Taylor expanding e−d

and ed yields approximations of these updates:

s ◦ e−d ≈ s ◦ (1− d), λ ◦ ed ≈ λ ◦ (1 + d). (10)

In this section, we interpret these approximations in the context of barrier methods. Specifically,
we show that s← s ◦ (1− d) is equivalent to an iteration of the primal barrier method applied
to the QP (1). Similarly, we show that λ← λ ◦ (1 + d) is equivalent to an iteration of the dual
barrier method applied to the dual QP [5], which takes the form

maximize
u,λ

− (
1

2
uT Wu + bT λ) subject to AT λ = Wu + c, λ ≥ 0.

Computational experiments illustrate that replacing the log-domain update with either of these
approximations increases the number of longstep iterations needed to solve random QPs to fixed
accuracy, illustrating in effect that barrier methods are less efficient than log-domain IPMs.

4.1 Primal barrier method

For µ > 0, the primal barrier method applies Newton’s method to the optimality conditions of

minimize
x,s

1

2
xT Wx + cT x− µ

m
∑

i=1

log si subject to s = Ax + b.

These conditions read AT λ = Wx+c, s = Ax+b and µs−1 = λ, where λ is a Lagrange multiplier
for the equality constraints. Letting z := (x, s, λ), Newton iterations take the form z ← z + ∆z,
where ∆z := (∆x, ∆s, ∆λ) solves

AT (λ + ∆λ) = W (x + ∆x) + c, s + ∆s = A(x + ∆x) + b,

µ(s−1 − s−2 ◦∆s) = λ + ∆λ.
(11)

The following shows that the Newton update of s is precisely equivalent to the primal lin-
earization (10) of the log-domain Newton step, i.e., it is equivalent to replacing s ◦ e−d with its
first-order approximation s ◦ e−d ≈ s ◦ (1− d).

Proposition 4.1. Consider (x, s, λ) ∈ R
n×R

m×R
m with s > 0. Let (∆x, ∆s, ∆λ) solve (11).

Finally, let v ∈ R
m and µ > 0 satisfy s =

√
µe−v. Then s + ∆s = s◦ (1−d(v, µ)), where d(v, µ)

is the log-domain Newton direction (Definition 2.1).

Proof. Letting x̂ = x + ∆x, the conditions (11) simplify to

µAT (s−1 − s−2 ◦∆s) = W x̂ + c, s + ∆s = Ax̂ + b.

Letting d̂ := −s−1 ◦∆s, we conclude that

µAT [s−1 ◦ (1 + d̂)] = W x̂ + c, s ◦ (1− d̂) = Ax + b.

Substituting s−1 =
√

µ−1ev and s =
√

µe−v yields

√
µAT [ev ◦ (1 + d̂)] = W x̂ + c,

√
µe−v ◦ (1− d̂) = Ax̂ + b,

which is precisely the definition of d(v, µ). Hence, d(v, µ) = d̂ since d(v, µ) is unique by Theo-

rem 2.1. By definition of d̂, we also have that ∆s = −s ◦ d̂, proving the claim.

We next show an analogous interpretation holds for the dual linearization λ ◦ ed ≈ λ ◦ (1 + d).
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4.2 Dual barrier method

Given µ > 0, the dual barrier method applies Newton’s method to the optimality conditions of

minimize
u,λ

1

2
uT Wu + bT λ− µ log λ subject to AT λ = Wu + c.

These optimality conditions read Wu = Wγ, AT λ = Wu + c and Aγ + b = µλ−1, where γ is a
Lagrange multiplier for the equality constraints. Letting z := (γ, u, λ), Newton iterations take
the form z ← z + ∆z, where ∆z := (∆γ, ∆u, ∆λ) solves

W (u + ∆u) = W (γ + ∆γ), AT (λ + ∆λ) = W (u + ∆u) + c

A(γ + ∆γ) + b = µ(λ−1 − λ−2 ◦∆λ).
(12)

The following shows that the Newton update of λ is precisely equivalent to the dual lineariza-
tion (10) of the log-domain Newton step, i.e., it is equivalent to replacing λ◦ed with its first-order
approximation λ ◦ ed ≈ λ ◦ (1 + d).

Proposition 4.2. Consider (γ, u, λ) ∈ R
n × R

n × R
m with λ > 0. Let ∆z := (∆γ, ∆u, ∆λ)

solve (12). Finally, let v ∈ R
m and µ > 0 satisfy λ =

√
µev. Then λ + ∆λ = λ ◦ (1 + d(v, µ)),

where d(v, µ) is the log-domain Newton direction (Definition 2.1).

Proof. Letting γ̂ = γ + ∆γ, the conditions (12) simplify to

Aγ̂ + b = µ(λ−1 − λ−2 ◦∆λ), AT (λ + ∆λ) = W γ̂ + c.

Substituting λ =
√

µev and letting d̂ := λ−1 ◦∆λ, we obtain

Aγ̂ + b =
√

µe−v ◦ (1− d̂),
√

µAT [ev ◦ (1 + d̂)] = W γ̂ + c,

which is precisely the definition of d(v, µ). Hence, d(v, µ) = d̂ since d(v, µ) is unique by Theo-

rem 2.1. By definition of d̂, we have that ∆λ = λ ◦ d̂, proving the claim.

4.3 Computational comparison

We next give simple computational experiments that compare barrier methods with longstep.
These experiments show that barrier methods require more iterations to reach a target duality
gap when initialized at identical starting points. Code for reproducing these experiments is
located at

https : //github.com/frankpermenter/LDIPMComputationalResults

Barrier method implementations We invoke Proposition 4.1 and implement the primal
barrier method by modifying a single line of longstep. Precisely, we replace v ← v +α−1d with
the approximation v ← − log[e−v ◦ (1− α−1d)], which is equivalent to taking s ← s + α−1∆s,
with (s, ∆s) as defined in Proposition 4.1. We similarly implement the dual barrier method
using Proposition 4.2. That is, we replace v ← v + α−1d with v ← log[ev ◦ (1 + α−1d)], which
is equivalent to taking λ ← λ + α−1∆λ, with (λ, ∆λ) as defined in Proposition 4.2. We also
slightly modify selection of µ, replacing the ‖d(v, µ)‖∞ ≤ 1 bound with ‖d(v, µ)‖∞ ≤ 1 − ǫ:
since α ≥ 1, this ensures that the argument to the log function is always positive.

Instances Our comparison uses randomly generated QPs that satisfy the regularity condi-
tions of Assumption 1. The inequality matrix A has entries drawn from a normal distribution
with zero mean and unit variance. Each row is then rescaled to have unit norm. The cost
matrix W is constructed as W = RT R with R ∈ R

r×n sampled and normalized the same way
as A. Finally c and b are chosen by sampling x, λ > 0 and s > 0 and setting b = s − Ax,
c = AT λ −Wx. The vector x is drawn from a normal distribution. The vector s is chosen as
1 + 1

10 |w|, where w is also sampled from a normal distribution. Finally, λ is chosen the same
way as s using a different random w.
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Iterations
m rank W LS DB PB

200 0 8.9 9.5 9.5
200 50 7.1 8.3 7.6
200 100 6.5 7.9 7.1

100 50 6.3 7.1 7.3
150 50 6.8 7.7 7.6
200 50 7.1 8.3 7.6

Iterations
m rank W LS DB PB

2000 0 10.8 11.6 11.7
2000 500 8.1 9.8 8.8
2000 1000 7.5 9.0 8.0

1000 500 7.3 8.0 8.7
1500 500 7.9 9.0 8.8
2000 500 8.1 9.8 8.8

Table 4.3.1: Average iterations on 30 random QPs with m inequalities in n = 100 variables (left)
and n = 1000 variables (right). Iterations needed to reach a target duality-gap are shown for
longstep (LS), the dual barrier method (DB), and the primal barrier method (PB).

Results Table 4.3.1 shows superior performance of longstep on a set of instances. In this
set, we vary either the rank of W ∈ R

n×n or the number of inequalities m, i.e., the number of
rows of A ∈ R

m×n. The rank of W is controlled by the number of columns r of R ∈ R
r×n,

recalling that W = RT R. The algorithms are initialized with v0 = 0, µf = 10−3, and µ0 = µls,
where µls denotes the least-squares µ (Section 3.2.3).
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