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Abstract Resolvents of operators are the core of many fundamental algorithms used in opti-
mization. However their computation is in general difficult except for very particular opera-
tors. In the paper we provide a new simple algorithm with linear convergence rate to compute
the resolvents for the class of operators which can be decomposed as a sum of a maximally
monotone operator with a computable resolvent and a single-valued locally Lipschitz contin-
uous mapping.
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1 Introduction

Resolvents are an essential tool in the problem of finding the zeroes of a monotone inclusion

0 ∈ Ax

where A is a multivalued operator from a Hilbert space H to subsets of itself. As an example,
let consider the case when A is the subdifferential ∂ f of a lower semicontinuous convex
function f . The problem of finding a zero of ∂ f is equivalent to finding a minimizer of
the function f , and we know since Moreau and Rockafellar that the resolvent of ∂ f that is
exactly the proximal function of f that plays a central role in the proximal point algorithm
[6, 15, 16, 22].

Other well known approaches where resolvents are an important tool for finding a solu-
tion to monotone inclusions are the so-called splitting methods. They consist in splitting A
additively (A = B+C ) as a sum of two other monotone operators. Then the idea is to use
the resolvents of B and C, to obtain a numerical method. This was the object of the Douglas-
Rachford algorithm introduced by Lions and Mercier [13] and of its later extensions (see, e.
g., [11, 12, 14]).
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Splitting algorithms are useful provided that the operators in the sum decomposition have
resolvents that are easily computed. The main problem is that in general, the computation is
difficult except for very particular operators.

In this paper, we consider the class of maximally monotone operators that have a decom-
position of the form A=B+C, where C : H→H is Lipschitz continuous on bounded sets and
B : H ⇒ H is maximally monotone with a computable resolvent. Most of the previous works
in the literature provide algorithms to compute the resolvent JA, provided the resolvents JB
and JC are available (see, e. g., [16, 18]). Note that if one relies on the Douglas–Rachford
algorithm for our class (see, e.g., [11, 13]), it is easy to see that the computation of JC makes
this approach less effective. The Douglas–Rachford algorithm is obviously a favorite choice
if C is also set-valued.

On the other hand, the forward-backward algorithm, firstly introduced by Passty [21], is
another important splitting method and requires only the computation of JB [2–5, 10]. Using
the forward-backward technique, we provide a direct simple but efficient algorithm to com-
pute the resolvent of A. We show that our algorithm is preferable to the classical forward-
backward approach. In [3], the authors also have used an approach based on the forward-
backward algorithm to compute the resolvents. Here we provide explicitly the linear rate of
our algorithm which helps us to decide a good choice of parameters easily.

The paper is structured as follows. In Section 2, we recall some useful definitions con-
cerning maximally monotone operators. A new linear convergence algorithm to compute the
resolvents is provided in Section 3. Finally, we end the paper with conclusions in Section 4.

2 Notations and preliminaries

Throughout this paper, we consider that H is a real Hilbert space with inner product 〈·, ·〉 :
H×H → R and induced norm ‖ · |=

√
〈·, ·〉. The closed unit ball is denoted by B. Let K be

a nonempty closedset of H. The distance from a point x to K is

d(x,K) := inf
u∈K
‖u− x‖

and the projector projK onto K is the mapping defined by

projK(x) := argmin
u∈K

‖x−u‖.

When K is convex and closed, then projK is single-valued and the least norm element of K is
defined by projK(0).

The notation A : H ⇒ H is used to denote a set-valued mapping (operator), that is a mapping
which assigns to every x ∈ H a subset Ax (eventually empty) of H. The domain, the range,
the graph and the inverse of A are defined respectively by

dom A = {x ∈ H : Ax 6= /0}, rgeA =
⋃

x∈H

Ax,

gph A = {(x,y) : x ∈ H,y ∈ Ax}

and
A−1(y) = {x ∈ H : y ∈ Ax}.

The operator A : H ⇒ H is said to be monotone if

〈x∗− y∗,x− y〉 ≥ 0 ∀ x,y ∈ H,x∗ ∈ Ax and y∗ ∈ Ay.
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In addition, it is called maximally monotone provided its graph {(x,y) : y ∈ Ax} cannot be
properly enlarged without destroying monotonicity. The set of maximally monotone oper-
ators on H includes subdifferential operators of proper lower semicontinuous convex func-
tions as well as all square matrices with symmetric parts that are positive semidefinite (see
e.g., [7, 22]). Let us remind that the normal cone operator NC to a closed convex set C is
defined by

NC(y) := {y ∈C : 〈y,x−u〉 ≤ 0, for all y ∈C}.
It is the subdifferential of the indicator function of C which is equal to 0 in C and +∞

outside C. Hence, the normal cone operator is also another important example of maximally
monotone operators.

A is called µ-strongly monotone (µ > 0) provided

〈Ax−Ay,x− y〉 ≥ µ‖x− y‖2 ∀ x,y ∈ H.

If µ ∈ R then A is called µ-monotone.

The resolvent of index γ > 0 of A is defined as follows

JγA := (Id + γA)−1

where Id denotes the identity operator. A classical result which goes back to Minty [17]
and Rockafellar [22] says that resolvents of maximally monotone operators are single-valued
mappings with full domain and are firmly nonexpansive:

‖JAx− JAy‖2 ≤ 〈x− y,JAx− JAy〉.

In particular, they are nonexpansive, i.e., 1- Lipschitz continuous.

Let B : H ⇒ H be a maximally monotone operator and C : H → H be a monotone con-
tinuous mapping. Denoting by xn the nth iterate and given a fixed step size α > 0, we may
consider the forward-backward algorithm:

x0 ∈ H,xk+1 = JαBxk−αCxk, k = 0,1,2 . . .

used to find a zero x∗ of the sum B+C, i.e., 0 ∈ B(x∗)+C(x∗). One has the following result
(see, e.g., [10]).

Theorem 2.1 If B is µ-strongly monotone and C is monotone, L-Lipschitz continuous then
the sequence (xk) generated by the forward-backward algorithm with α = µ/L2 converges to
the unique zero x∗ of B+C with the linear rate r = L/

√
L2 +µ2.

3 Main results

In this section, we propose a simple algorithm to compute resolvents of a monotone operator
of the type A = B +C, where C : H → H is L-Lipschitz continuous and B : H ⇒ H is a
maximally monotone operator with a computable resolvent JB.

Precisely, let be given y ∈ H and γ > 0, we want to find JγA(y), i.e. the unique x∗ ∈ H such
that

y ∈ (γA+ I)(x∗) = (γB+ γC+ I)(x∗).
We propose the following algorithm.

Algorithm 1 : x0 ∈ H,0 < α ≤ 1, xk+1 = JαγB(xk−α(xk− y+ γC(xk)), k ≥ 0.
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Theorem 3.1 If C is monotone then the sequence (xk) generated by Algorithm 1 with α =

α∗ := 1
1+γ2L2 converges to x∗ with the linear rate r1 := γL√

γ2L2+1
. If C is not monotone and

γL < 1, the best linear rate is r2 = γL when α = 1.

Proof. Since JαγB is non-expansive, we have

‖xk+1− x∗‖ ≤ ‖(1−α)(xk− x∗)−αγ(C(xk)−C(x∗))‖. (3.1)

If C is monotone, one obtains

‖xk+1− x∗‖2 ≤ [(1−α)2 +α
2
γ

2L2]‖xk− x∗‖2

= [1−2α +α
2(1+ γ

2L2)]‖xk− x∗‖2. (3.2)

Consequently

‖xk+1− x∗‖ ≤ γL√
γ2L2 +1

‖xk− x∗‖

when α = α∗ and the conclusion follows.

If C is not monotone and γL < 1, one has

‖xk+1− x∗‖ ≤ [(1−α)+αγL]‖xk− x∗‖= γL‖xk− x∗‖

when α = 1. ut

Remark 3.1 i) If α = 1 then xk+1 = JγB(y− γC(xk)), which is very simple.

ii) Note that Algorithm 1 may be obtained by applying the forward-backward technique to
B = γB, C = γC+ I−y. However in this case B is not strongly monotone and C is Lipschitz
continuous with constant γL+1. Thus one cannot obtain the linear rate convergence by using
the classical analysis.

iii) Traditionally, one applies the forward-backward algorithm to B = I + γB and C =
y−γC. If C is monotone then the optimal linear rate is also r1 =

γL√
γ2L2+1

with α = α̃ := 1
γ2L2 .

Note that if γL→ 0, the behavior of α∗ is very good: it tends to 1 while α̃→∞. Furthermore,
in Algorithm 1 we use directly the resolvent of B instead of the resolvent of I + γB. It means
that our approach is preferable.

Our analysis can be applied similarly if the monotonicity of C is replaced by the µ-monotonicity.
Note that if C is L-Lipschitz continuous then C is also (−L)-monotone. Thus the only inter-
esting case is when C is µ-monotone where µ ≥−L.

Theorem 3.2 Suppose that C is µ-monotone where µ ≥max{−L,−γL2} and γµ >−1. Then
the sequence (xk) generated by Algorithm 1 with α = αm := 1+γµ

1+2γµ+γ2L2 converges to x∗ with

the linear rate r3 := γ

√
L2−µ2√

1+2γµ+γ2L2
< 1.

Proof. From (3.1) and the µ-monotonicity of C, we have

‖xk+1− x∗‖2 ≤ [(1−α)2−2α(1−α)γµ +α
2
γ

2L2]‖xk− x∗‖2

= [1−2α(1+ γµ)+α
2(1+2γµ + γ

2L2)]‖xk− x∗‖2.

Thus

‖xk+1− x∗‖ ≤

√
1− (1+ γµ)2

1+2γµ + γ2L2 ‖xk− x∗‖

when α = αm and the conclusion follows. ut
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Remark 3.2 The conditions µ ≥−γL2 and γµ >−1 ensure that 0 < αm ≤ 1.

The following result is a consequence of Theorem 3.1 when C is only Lipschitz continuous
on bounded sets.

Corollary 3.1 Suppose that C is monotone and Lipschitz continuous on bounded sets. Let L
be the Lipschitz constant of C on K := B(x∗,‖x∗− x0‖) and α = α∗ := 1

1+γ2L2 . Then the

sequence (xk) generated by Algorithm 1 converges to x∗ with the linear rate r1 =
γL√

γ2L2+1
.

Proof. We can use arguments in the proof of Theorem 3.1. Note that ‖x1− x∗‖< ‖x0− x∗‖,
which implies that x1 ∈K . By using the induction we have xk ∈K for all k ≥ 0 and the
conclusion follows. ut

Remark 3.3 If H = Rn then the Lipschitz continuity on bounded sets of C becomes the local
Lipschitz continuity.

4 Conclusions

Linear convergence of algorithms computing resolvents makes the resolvents-based approach
more competitive in optimization (see also, e. g., [8, 9, 19, 20]). It would be interesting to
compute the resolvent of a given continuous monotone function or a set-valued maximal
monotone function where the Lipschitz continuity of the single-valued part is absent.

Acknowledgements

Research of the second author benefited from the support of the FMJH Program PGMO and
from the support of EDF.

References

1. S. ADLY, B. K. LE, Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclu-
sions, Optim Lett 15, 2861–2878 (2021)

2. V. APIDOPOULOS, J. AUJOL, C. DOSSAL, Convergence rate of inertial Forward-Backward algorithm beyond
Nesterov’s rule, Math Program 180, 137–156, (2020)

3. F. J. A. ARTACHO, R. CAMPOY, M. K. TAM, Strengthened Splitting Methods for Computing Resolvents,
arXiv:2011.01796

4. H. ATTOUCH, A. CABOT, Convergence Rates of Inertial Forward-Backward Algorithms, SIAM J Optim, 28(1),
849–874 (2018)

5. H. ATTOUCH, A. CABOT, Convergence of a Relaxed Inertial Forward–Backward Algorithm for Structured
Monotone Inclusions. Appl Math Optim 80, 547–598 (2019)

6. H. ATTOUCH, Z. CHBANI, H. RIAHI, Fast Proximal Methods via Time Scaling of Damped Inertial Dynamics,
SIAM J. Optim., 29(3), 2227–2256 (2019)

7. H. H. BAUSCHKE, P. L. COMBETTES, Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, Berlin (2011)

8. A. BECK, M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM
J. Imaging Sci. 2(1), 183–202 (2009)

9. A. CHAMBOLLE, CH. DOSSAL, On the convergence of the iterates of the “fast iterative shrinkage/ thresholding
algorithm” J. Optim. Theory Appl. 166, 968–982 (2015)

10. G. H. G. CHEN, R. T. ROCKAFELLAR, Convergence Rates in Forward-Backward Splitting, SIAM J Optim,
7(2), 421–444 (1997)

11. P. GISELSSON, Tight global linear convergence rate bounds for Douglas-Rachford splitting, J Fixed Point
Theory Appl 19, 2241–2270 (2017)



6 B. K. Le M. Théra
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