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Abstract. In this paper, we study a class of fractional semi-infinite polynomial program-
ming problems involving sos-convex polynomial functions. For such a problem, by a conic
reformulation proposed in our previous work and the quadratic modules associated with the
index set, a hierarchy of semidefinite programming (SDP) relaxations can be constructed
and convergent upper bounds of the optimum can be obtained. In this paper, by introduc-
ing Lasserre’s measure-based representation of nonnegative polynomials on the index set
to the conic reformulation, we present a new SDP relaxation method for the considered
problem. This method enables us to compute convergent lower bounds of the optimum and
extract approximate minimizers. Moreover, for a set defined by infinitely many sos-convex
polynomial inequalities, we obtain a procedure to construct a convergent sequence of outer
approximations which have semidefinite representations (SDr). The convergence rate of the
lower bounds and outer SDr approximations are also discussed.

1. Introduction

The fractional semi-infinite polynomial programming (FSIPP) problem considered in
this paper is in the following form:

r? := min
x∈Rm

f(x)

g(x)

s.t. ϕ1(x) ≤ 0, . . . , ϕs(x) ≤ 0,

p(x, y) ≤ 0, ∀y ∈ Y ⊂ Rn,

(FSIPP)

where f, g, ϕ1, . . . , ϕs ∈ R[x] and p ∈ R[x, y]. Here, R[x] (resp. R[x, y]) denotes the ring
of real polynomials in x = (x1, . . . , xm) (resp., x = (x1, . . . , xm) and y = (y1, . . . , yn)). We
denote by K and S the feasible set and the set of optimal solutions of (FSIPP), respectively.
In this paper, we assume that S 6= ∅ and consider the following assumptions on (FSIPP):

A1: (i) Y ⊆ [−1, 1]n and is closed; (ii) ϕj, j = 1, . . . , s, p(·, y), y ∈ Y are all sos-convex;
A2: (i) f , −g are both sos-convex; (ii) Either f(x) ≥ 0 and g(x) > 0 for all x ∈ K, or g(x)

is affine and g(x) > 0 for all x ∈ K.
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A convex polynomial is called sos-convex if its Hessian matrix can be written as the
product of a polynomial matrix and its transpose (see Definition 2.1). In particular, sep-
arable convex polynomials and convex quadratic functions are sos-convex. Therefore, our
model (FSIPP) under A1-2 contains subclasses of linear semi-infinite programming and
convex quadratic semi-infinite programming with polynomial parametrizations. Moreover,
if Y is defined by finitely many polynomial inequalities, then the problem of minimizing a
polynomial h(y) ∈ R[y] over Y can be reformulated as an FSIPP problem satisfying A1-2.
As is well known, the polynomial optimization problem is NP-hard even when n > 1, h(y)

is a nonconvex quadratic polynomial and Y is a polytope (c.f. [38]). Hence, in general the
FSIPP problem considered in this paper cannot be expected to be solved in polynomial time
unless P=NP. Particularly, minimizing a ratio of quadratic functions is of great importance
and some methods can be found in [21, 46, 49]. However, these methods were given for
dealing with finitely constrained problems, while we aim to solve the problem (FSIPP) with
infinitely many constraints.

Over the last several decades, due to a great number of applications in many fields,
semi-infinite programming (SIP) has attracted a great deal of interest and been very active
research areas [12, 13, 19, 32]. Numerically, SIP problems can be solved by different ap-
proaches including, for instance, discretization methods, local reduction methods, exchange
methods, simplex-like methods etc; see [12, 19, 32] and the references therein for details. If
the functions involved in SIP are polynomials, the representations of nonnegative polyno-
mials over semi-algebraic sets from real algebraic geometry allow us to derive semidefinite
programming (SDP) [47] relaxations for such problems [16, 27, 45, 48].

In our previous work [15], instead of sos-convexity, we deal with the FSIPP problems
under convexity assumption. In [15], we first reformulate the FSIPP problem to a conic
optimization problem. This conic reformulation, together with inner approximations with
sums-of-square structures of the cone of nonnagative polynomials on Y (e.g. the quadratic
modules [40] associated with Y), enables us to derive a hierarchy of SDP relaxations of
(FSIPP). Applying such appoach to (FSIPP) under sos-convexity assumption, we can obtain
convergent upper bounds of r?. In this paper, we follow the methodology in [15] and present
a new SDP method for (FSIPP) under A1-2. Instead of the quadratic modules associated
with Y, we introduce Lasserre’s measure-based representation of nonnegative polynomials
on Y (c.f. [26]) to the conic reformulation of (FSIPP). With the new SDP method, we can
compute convergent lower bounds of r? and extract approximate minimizers of (FSIPP) in
the case when Y is a simple set, like a box, a ball, a sphere, or a polytope.

We say that a convex set C in Rm has a semidefinite representation (SDr) if there exist
some integers l, k and real k × k symmetric matrices {Ai}mi=0 and {Bj}lj=1 such that

C =

{
x ∈ Rm

∣∣∣ ∃w ∈ Rl, s.t. A0 +
m∑
i=1

Aixi +
l∑

j=1

Bjwj � 0

}
. (1)
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Semidefinite representations of convex sets can help us to build SDP relaxations of many
computationally intractable optimization problems. Arising from it, one of the basic issues
in convex algebraic geometry is to characterize convex sets in Rm which are SDr sets and
give systematic procedures to obtain their semidefinite representations (or arbitrarily close
SDr approximations) [6, 14, 17, 18, 24, 28, 33]. Observe that the feasible set of (FSIPP) is a
subset of Rm defined by infinitely many sos-convex polynomial inequalities. For a set of this
form, applying the approach in our previous work [16], a convergent sequence of inner SDr
approximations can be constructed. In this paper, from the new SDP relaxations of (FSIPP),
we obtain a procedure to construct a convergent sequence of outer SDr approximations of
such a set.

Remark that the main ingredient in our method to obtain the lower bounds of r? and the
outer SDr approximations of K is Lasserre’s measure-based representation of nonnegative
polynomials on the index set [26]. For polynomial minimization problems which can be
regarded as a special case of (FSIPP), the convergence rate of Lasserre’s measure-based
upper bounds is well studied in [44] in difference situations. By combining the results in
[44] and the metric regularity of semi-infinite convex inequality system (c.f. [7]), we derive
some convergence analysis of the lower bounds of r? and the outer SDr approximations of K
obtained in this paper.

This paper is organized as follows. In Section 2, some notation and preliminaries are
given. In Section 3, we present a hierarchy of SDP relaxations for the lower bounds of r?

and a procedure to construct a convergent sequence of outer SDr approximations of K. The
convergence rate of the lower bounds and outer SDr approximations is discussed in Section
4. Some numerical experiments are given in Section 5.

2. Preliminaries

In this section, we collect some notation and preliminary results which will be used in
this paper. We denote by x (resp., y) the m-tuple (resp., n-tuple) of variables (x1, . . . , xm)

(resp., (y1, . . . , yn)). The symbol N (resp., R, R+) denotes the set of nonnegative integers
(resp., real numbers, nonnegative real numbers). For any t ∈ R, dte denotes the smallest
integer that is not smaller than t. For u ∈ Rm, ‖u‖ denotes the standard Euclidean norm of
u. For α = (α1, . . . , αn) ∈ Nn, |α| = α1+· · ·+αn. For k ∈ N, denote Nn

k = {α ∈ Nn | |α| ≤ k}
and |Nn

k | its cardinality. For variables x ∈ Rm, y ∈ Rn and β ∈ Nm, α ∈ Nn, xβ, yα denote
xβ11 · · ·xβmm , yα1

1 · · · yαnn , respectively. R[x] (resp., R[y]) denotes the ring of polynomials in x
(resp., y) with real coefficients. For h ∈ R[x] (resp. ∈ R[y]), we denote by degx(h) (resp.
degy(h)) its (total) degree. For k ∈ N, denote by R[x]k (resp., R[y]k) the set of polynomials
in R[x] (resp., R[y]) of degree up to k. For A = R[x], R[y], R[x]k, R[y]k, denote by A∗ the
dual space of linear functionals from A to R. Denote by Bm the unit ball in Rm and Bm

r (u)

(resp., Bm
r ) the ball centered at u (resp., the origin) in Rm with the radius r.
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One of the difficulties in solving (FSIPP) is the feasibility test of a point u ∈ Rm, which
is caused by the infinitely many constraints p(u, y) ≤ 0 for all y ∈ Y. Thus, it is reasonable
to study the representations of nonnegative polynomials on Y. Denote

dy := degy p(x, y) and Pdy(Y) := {h(y) ∈ R[y]dy | h(y) ≥ 0, ∀y ∈ Y}.

Now we recall the measure-based outer approximations of Pdy(Y) proposed by Lasserre [26].
A polynomial h ∈ R[y] is said to be a sum-of-squares (sos) of polynomials if it can be

written as h =
∑l

i=1 h
2
i for some h1, . . . , hl ∈ R[y]. The symbols Σ2[x] and Σ2[y] denote the

sets of polynomials that are sum-of-squares of polynomials in R[x] and R[y], respectively.
For each k ∈ N, denote Σ2

k[x] := Σ2[x] ∩ R[x]2k and Σ2
k[y] = Σ2[y] ∩ R[y]2k, respectively.

Note that for a given h ∈ R[y], checking if h ∈ Σ2
k[y] is an SDP feasibility problem. In fact,

denote by vk the column vector containing all monomials in R[y] of degree at most k. Then,
h ∈ Σ2

k[y] if and only if there exists a positive semidefinite matrix H ∈ R|vk|×|vk| such that
h = 〈H,vkvkT 〉 (c.f. [37]).

In the rest of this paper,

let ν be a fixed and finite Borel measure with support exactly Y.

For each k ∈ N, define

Pkdy(Y) :=

{
ψ(y) ∈ R[y]dy |

∫
Y

ψ(y)σ(y)dν(y) ≥ 0, ∀σ ∈ Σ2
k[y]

}
. (2)

Then for each k ∈ N, it is clear that Pkdy(Y) is a closed subset of R[y]dy and Pkdy(Y) ⊃ Pdy(Y).
To lighten the notation, throughout the rest of the paper, we abbreviate the notation

Pdy(Y) and Pkdy(Y) to P(Y) and Pk(Y), respectively.

Theorem 2.1. [26, Theorem 3.2] Suppose that Y ⊆ [−1, 1]n, then we have Pk1(Y) ⊃
Pk2(Y) ⊃ P(Y) for k1 < k2 and P(Y) = ∩∞k=1Pk(Y).

Remark 2.1. As proved in [26, Theorem 3.2], it is required that Y ⊆ [−1, 1]n for the
convergence result in Theorem 2.1. That is why it is assumed in A1 which, however, can be
fulfilled after a possible rescaling if Y is compact.

For a given ψ ∈ R[y]dy , it is not hard to see that ψ ∈ Pk(Y) if and only if the
matrix

∫
Y
ψvkvk

Tdν(y) is positive semidefinite. Observe that each entry in the matrix∫
Y
ψvkv

T
k dν(y) is a linear combination of the coefficients of ψ. It implies that each Pk(Y)

has an SDr with no lifting (l = 0 in (1)) and thus checking if ψ ∈ Pk(Y) is an SDP feasibility
problem. We emphasize that, to get the SDr of Pk(Y), we need compute effectively the
integrals

∫
Y
yβdν(y), β ∈ Nn. There are several interesting cases of Y where these integrals

can be obtained either explicitly in closed form or numerically (see [26] and Section 5).

Now let us recall some background above sos-convex polynomials in R[x] introduced by
Helton and Nie [18].
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Definition 2.1. [18] A polynomial h ∈ R[x] is sos-convex if there are an integer r and a
matrix polynomial H ∈ R[x]r×m such that the Hessian ∇2h = H(x)TH(x).

Clearly, an sos-convex polynomial is convex. However, the converse is not true. Ah-
madi and Parrilo [4] proved that the set of convex polynomials and the set of sos-convex
polynomials in R[x]k coincide if and only if m = 1 or k = 2 or (m, k) = (2, 4). Thus, any
convex quadratic function and any convex separable polynomial is an sos-convex polynomial.
The significance of sos-convexity is that it can be checked numerically by solving an SDP
problem (see [18]), while checking the convexity of a polynomial is generally NP-hard (c.f.
[3]). Interestingly, an extended Jensen’s inequality holds for sos-convex polynomials.

Proposition 2.1. [25, Theorem 2.6] Let h ∈ R[x]2d be sos-convex, and let L ∈ (R[x]2d)
∗

satisfy L (1) = 1 and L (σ) ≥ 0 for every σ ∈ Σ2
d[x]. Then,

L (h(x)) ≥ h(L (x1), . . . ,L (xm)).

The following result plays a significant role in this paper.

Lemma 2.1. [18, Lemma 8] Let h ∈ R[x] be sos-convex. If h(u) = 0 and ∇h(u) = 0 for
some u ∈ Rm, then h is an sos polynonmial.

3. SDP relaxations of FSIPP

In this section, we first recall the conic reformulation of (FSIPP) proposed in our pre-
vious work [15]. This conic reformulation, together with inner approximations with sos
structures of P(Y) (e.g., the quadratic modules [40] associated with Y), allows us to derive
a hierarchy of SDP relaxations of (FSIPP) and obtain convergent upper bounds of r?. As a
complement, we apply in this paper the outer approximations Pk(Y) of P(Y) to the conic re-
formulation and get a new SDP relaxation method of (FSIPP) which can give us convergent
lower bounds of r?. Moreover, we gain a convergent sequence of outer SDr approximations
of K.

3.1. Conic reformulation. In this subsection, let us recall the conic reformulation of
(FSIPP) proposed in [15] which makes it possible to derive SDP relaxations of (FSIPP).

Consider the problem

min
x∈K

f(x)− r?g(x). (3)

Note that, under A1-2, (3) is clearly a convex semi-infinite programming problem and its
optimal value is 0. Denote by M(Y) the set of finite nonnegative measures supported on
Y. Then, the Lagrangian dual of (3) reads

max
µ∈M(Y),ηj≥0

inf
x∈Rm

Lf,g(x, µ, η), (4)
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where

Lf,g(x, µ, η) := f(x)− r?g(x) +

∫
Y

p(x, y)dµ(y) +
s∑
j=1

ηjϕj(x). (5)

Consider the assumption that
A3: The Slater condition holds for K, i.e., there exists u ∈ K such that p(u, y) < 0 for all
y ∈ Y and ϕj(u) < 0 for all j = 1, . . . , s.

Proposition 3.1. (c.f. [32, 42]) Under A1-3, then there exist µ? ∈ M(Y) and η? ∈ Rs
+

such that infx∈Rm Lf,g(x, µ
?, η?) = 0. Moreover, µ? can be chosen as an atomic measure, i.e.,

µ? =
∑l

i=1 λiζvi where l ≤ n, each λi > 0 and ζvi is the Dirac measure at vi ∈ Y.

Let dx := degx(p(x, y)) and

d := dmax{deg(f), deg(g), deg(ψ1), . . . , deg(ψs), degx(p(x, y))}/2e. (6)

For L ∈ (R[x])∗ (resp., H ∈ (R[y])∗), denote by L (p(x, y)) (resp., H (p(x, y))) the
image of L (resp., H ) on p(x, y) regarded as an element in R[x] (resp., R[y]) with coefficients
in R[y] (resp., R[x]), i.e., L (p(x, y)) ∈ R[y] (resp., H (p(x, y)) ∈ R[x]).

Consider the following conic optimization problem

r̂ := sup
ρ,H ,η

ρ

s.t. f(x)− ρg(x) + H (p(x, y)) +
s∑
j=1

ηjϕj(x) ∈ Σ2
d[x],

ρ ∈ R, H ∈ (P(Y))∗, η ∈ Rs
+.

(7)

Proposition 3.2. Under A1-3, we have r̂ = r?.

Proof. Let (atomic) µ? ∈M(Y) and η? ∈ Rs
+ be the dual variables in Proposition 3.1. Define

H ? ∈ (R[y])∗ by letting H ?(yβ) =
∫
Y
yβdµ?(y) for any β ∈ Nn. Then, H ? ∈ (P(Y))∗.

Since µ? is atomic, it is easy to see that Lf,g(x, µ?, η?) is sos-convex under A1-2. Then,
Lemma 2.1 implies that Lf,g(x, µ?, η?) ∈ Σ2

d[x]. Therefore, (r?,H ?, η?) is feasible to (7) and
r̂ ≥ r?. On the other hand, for any u? ∈ S and any (ρ,H , η) feasible to (7), it holds that

f(u?)− ρg(u?) + H (p(u?, y)) +
s∑
j=1

ηjψj(u
?) ≥ 0.

Then, the feasibility of u? to (FSIPP) implies that r? = f(u?)
g(u?)

≥ ρ and thus r? ≥ r̂. �

Remark 3.1. In view of the proof of Proposition 3.2, if we replace Σ2
d[x] in (7) by any

convex cone C[x] ⊂ R[x] satisfying the condition

Σ2
d[x] ⊆ C[x] and there exists u? ∈ S such that h(u?) ≥ 0 for all h ∈ C[x],

we still have r̂ = r?. �
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If we substitute P(Y) in (7) by its approximations with sos structures, then (7) can be
reduced to SDP problems and becomes tractable. In particular, if we replace P(Y) by the
quadratic modules [40] generated by the defining polynomials of Y, which are inner approx-
imations of P(Y), we can obtain upper bounds of r? from the resulting SDP relaxations.
See [15] for more details. Our goal in this paper is to compute convergent lower bounds of
r? by SDP relaxations derived from (7). It will be done by substituting P(Y) with the outer
approximations Pk(Y) in (2).

3.2. SDP relaxations for lower bounds of r?. In the rest of this paper, let us fix a
suffciently large R > 0 and a sufficiently small g? > 0 such that

‖u?‖ ≤ R and g(u?) ≥ g? for some u? ∈ S. (8)

See [15, Remark 4.1] for the choice of R and g? in some circumstances. Let

Q = {q1(x) := R2 − ‖x‖2, q2(x) := g(x)− g?},

and

Md(Q) :=

{
2∑
j=0

σjqj

∣∣∣ q0 = 1, σj ∈ Σ2[x], deg(σjqj) ≤ 2d, j = 0, 1, 2

}
,

i.e., Md(Q) be the d-th quadratic module generated by Q [40]. By Remark 3.1, we still have
r̂ = r? if we replace Σ2

d[x] by Md(Q) in (7).

Consider the following problem, where we replace Σ2
d[x] and P(Y) in (7) by Md(Q)

and Pk(Y), respectively,

rprimal
k := sup

ρ,H ,η
ρ

s.t. f(x)− ρg(x) + H (p(x, y)) +
s∑
j=1

ηjϕj(x) ∈Md(Q),

ρ ∈ R, H ∈
(
Pk(Y)

)∗
, η ∈ Rs

+.

(Pk)

Its Lagrangian dual reads
rdual
k := inf

L∈(R[x]2d)∗
L (f)

s.t. L ∈ (Md(Q))∗, L (g) = 1,

−L (p(x, y)) ∈ Pk(Y), L (ϕj) ≤ 0, j = 1, . . . , s.

(Dk)

For each k ∈ N, recall that checking if −L (p(x, y)) ∈ Pk(Y) for a given L ∈ (R[x]2d)∗

is an SDP feasibility problem. Therefore, computing rprimal
k and rdual

k is reduced to solving
a pair of an SDP problem and its dual. We omit the detail for simplicity. In the following,
we will show that {rprimal

k }k∈N and {rdual
k }k∈N are convergent lower bounds of r?, and we can

extract approximate minimizers of (FSIPP) from the SDP relaxations (Dk). To this end, we
first point out that the feasible set of the (Dk) is uniformly bounded.
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Proposition 3.3. For any L ∈ (R[x]2d)∗ satisfying that L (σ0) ≥ 0 for any σ0 ∈ Σ2
d[x] and

L ((R2 − ‖x‖2)σ) ≥ 0 for any σ ∈ Σ2
d−1[x], we have

‖(L (xα))α∈Nm2d‖ ≤ L (1)

√(
m+ d

m

) d∑
i=0

R2i.

Consequently, for any k ∈ N and any Lk ∈ (R[x]2d)∗ feasible to (Dk),

‖(Lk(x
α))α∈Nm2d‖ ≤

1

g?

√(
m+ d

m

) d∑
i=0

R2i.

Proof. For any L ∈ (R[x]2d)∗ satisfying that L (σ0) ≥ 0 for any σ0 ∈ Σ2
d[x] and L ((R2 −

‖x‖2)σ) ≥ 0 for any σ ∈ Σ2
d−1[x], by [20, Lemma 3] and its proof, it holds that√∑

α∈Nm2d

(L (xα))2 ≤ L (1)

√(
m+ d

m

) d∑
i=0

R2i.

For any Lk ∈ (R[x]2d)∗ feasible to (Dk), we have Lk(g − g?) ≥ 0 and Lk(g) = 1. Hence,
Lk(1) ≤ Lk(g)/g? = 1/g?. The conlusion follows. �

The following theorem states that we can compute convergent lower bounds of r? and
extract approximate minimizers of (FSIPP) from the SDP relaxations (Pk) and (Dk). For
any L ∈ (R[x]2d)∗, denote

L (x) := (L (x1), . . . ,L (xm)) ∈ Rm.

Theorem 3.1. Under A1-3, it holds that

(i) rprimal
k = rdual

k ≤ r? and rdual
k is attainable for each k ∈ N;

(ii) limk→∞ r
primal
k = limk→∞ r

dual
k = r?;

(iii) For any convergent subsequence {L ?
ki

(x)/L ?
ki

(1)}i (always exists) of {L ?
k (x)/L ?

k (1)}k
where L ?

k is a minimizer of (Dk), we have limi→∞L ?
ki

(x)/L ?
ki

(1) ∈ S. Consequently,
if S is singleton, then limk→∞L ?

k (x)/L ?
k (1) is the unique minimizer of (FSIPP).

Proof. (i) Fix a u? ∈ S satisfying (8) and define a linear functional L ? ∈ (R[x]2d)∗ by
letting L ?(xα) = (u?)α

g(u?)
for each α ∈ Nm

2d. By the definition of Md(Q) and Pk(Y), as well as
Theorem 2.1, it is easy to see that L ? is feasible to (Dk) for each k ∈ N. Then,

rdual
k ≤ L ?(f) =

f(u?)

g(u?)
= r?.

Then for any k ∈ N, by Proposition 3.3, the feasible set of (Dk) is nonempty, uniformly
bounded and closed. Hence, the solution set of (Dk) is nonempty and bounded, which
implies that (Pk) is strictly feasible (c.f. [43, Section 4.1.2]). Consequently, the strong
duality rprimal

k = rdual
k holds by [43, Theorem 4.1.3].

Now we show (ii) and (iii) together. Let {L ?
k }k∈N ⊂ (R[x]2d)∗ be a sequence such that

L ?
k is a minimizer of (Dk) for each k ∈ N. As {L ?

k (xα)α∈Nm2d}k is uniformly bounded by

8



Proposition 3.3, there is a subsequence {L ?
ki
}ki and a L ? ∈ (R[x]2d)∗ such that limi→∞L ?

ki
(xα) =

L ?(xα) for all α ∈ Nm
2d. Because the sequence {rdual

k }k is monotone nondecreasing and
bounded by r? as k →∞ , the limit of {rdual

k }k exists and L ?(f) = limk→∞ r
dual
k . Moreover,

from the pointwise convergence, we get the following: (a) L ? ∈ (Md(Q))∗; (b) L ?(g) = 1;
(c) −L ?(p(x, y)) ∈ ∩∞k=1Pk(Y); (d) L ?(ϕj) ≤ 0 for j = 1, . . . , s. In particular, (c) holds
because Pk(Y) is closed in R[y]dy and Pk2(Y) ⊆ Pk1(Y) for k1 < k2. We have L ?(1) > 0.
In fact, L ?(1) ≥ 0 since L ? ∈ (Σ2

d[x])∗ by (a). If L ?(1) = 0, then by Proposition 3.3, we
have L ?(xα) = 0 for all α ∈ Nm

2d, which contradicts (b). From (c) and Theorem 2.1, we get
−L ?(p(x, y)) ∈ P(Y). Then, for any y ∈ Y, by Proposition 2.1,

p

(
L ?(x)

L ?(1)
, y

)
≤ 1

L ?(1)
L ?(p(x, y)) ≤ 0,

For the same reason, (d) implies that

ψj

(
L ?(x)

L ?(1)

)
≤ 0, j = 1, . . . , s,

which shows that L ?(x)/L ?(1) ∈ K. Since f(x) and −g(x) are also sos-convex, under A2,
we have

r? ≤
f
(

L ?(x)
L ?(1)

)
g
(

L ?(x)
L ?(1)

) ≤ 1
L ?(1)

L ?(f)
1

L ?(1)
L ?(g)

= L ?(f) = lim
k→∞

rdual
k ≤ r?.

It implies that L ?(x)
L ?(1)

∈ S and limk→∞ r
primal
k = limk→∞ r

dual
k = r?.

Assume that S is singleton and let S = {u?}. The above arguments show that
limi→∞L ?

ki
(x)/L ?

ki
(1) = u? for any convergent subsequence of {L ?

k (x)/L ?
k (1)}k which is

bounded. Hence, the whole sequence {L ?
k (x)/L ?

k (1)}k converges to u? as k tends to∞. �

Remark 3.2. From its proof, we can see that Theorem 3.1 (i) still holds provided only
A1-(i) and the existence of u? ∈ S satisfying (8), while the convexity of f , −g, ϕj’s and
p(·, y), y ∈ Y, is not necessary.

3.3. Outer SDr approximations of K. Observe that the feasible set K of (FSIPP) is
defined by infinitely many sos-convex polynomial inequalities. For a set of this form, applying
the approach in our previous work [16], a convergent sequence of inner SDr approximations
can be constructed. This appoach relies on the sos representation of the Lagrangian function
Lf,g(x, µ

?, η?) and the quadratic modules associated withY. Next, we show that a convergent
sequence of outer SDr approximations of K can be constructed from the SDP relaxations
(Dk). For each k ∈ N, define

Λk :=


L (x) ∈ Rm :



L (σ0) ≥ 0, ∀ σ0 ∈ Σ2
d[x],

L ((R2 − ‖x‖2)σ) ≥ 0, ∀ σ ∈ Σ2
d−1[x],

−L (p(x, y)) ∈ Pk(Y), L (1) = 1,

L (ϕj) ≤ 0, j = 1, . . . , s.


. (9)
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It is easy to see that Λk is indeed an SDr set for each k ∈ N.

Theorem 3.2. Under A1, we have K ∩Bm
R ⊆ Λk2 ⊆ Λk1 ⊆ Bm

R for k1 < k2 and K ∩Bm
R =

∩∞k=1Λk. Consequently, if K is compact and R is large enough such that K ⊂ Bm
R , then

K = ∩∞k=1Λk.

Proof. It is clear that Λk2 ⊆ Λk1 for k1 < k2. For any u ∈ K ∩ Bm
R , let L ′ ∈ (R[x]2d)∗ be

such that L ′(xα) = uα for each α ∈ Nm
2d. Then by Theorem 2.1, L ′ satisfies the conditions

in (9) and hence u ∈ Λk for each k ∈ N. Assume that L ∈ (R[x]2d)∗ satisfies the conditions
in (9) . As the function ‖x‖2 is sos-convex, by Proposition 2.1,

‖L (x)‖2 ≤ L (‖x‖2) ≤ L (R2) = R2 ·L (1) = R2.

Hence, Λk ⊆ Bm
R for all k ∈ N.

It remains to prove that ∩∞k=1Λk ⊆ K. Fix a point u ∈ ∩∞k=1Λk. Then for each k ∈ N,
there exsits a Lk ∈ (R[x]2d)∗ satisfying the conditions in (9) and Lk(x) = u. By Proposition
3.3, the vector (Lk(x

α))α∈Nm2d is uniformly bounded for all k ∈ N. Then there exists a
convergent subsequence {Lki}i and a L̃ ∈ (R[x]2d)∗ such that limi→∞Lki(x

α) = L̃ (xα) for
each α ∈ Nm

2d. By the pointwise convergence, we obtain that (a) L̃ (σ) ≥ 0 for all σ ∈ Σ2
d[x];

(b) L̃ (1) = 1; (c) −L̃ (p(x, y)) ∈ Pk(Y) for each k ∈ N; (d) L̃ (ϕj) ≤ 0, j = 1, . . . , s. By
(c) and Theorem 2.1, −L̃ (p(x, y)) ∈ P(Y). Then for any y ∈ Y, by the sos-convexity of
p(x, y) in x, (a), (b) and Proposition 2.1 again,

p(u, y) = p(L̃ (x), y) ≤ L̃ (p(x, y)) ≤ 0.

For the same reason, we have ϕj(u) ≤ 0 for j = 1, . . . , s. We can conclude that u ∈ K. �

Remark 3.3. In [28, 33], some tractable methods using SDP are proposed to approximate
semialgebraic sets defined with quantifiers. Clearly, the set K studied in this paper is in
such a case with a universal quantifier. The method in [28, 33] works for K in a general form
without requiring −p(x, y) to be convex in x and approximates K by a sequence of sublevel
sets of a single polynomial. Different from that, we construct convergent SDr approximations
of K by fully exploiting the sos-convexity of the defining polynomials. �

3.4. Some discussions. Typically, lower bounds of semi-infinite programming problems
can be computed by the discretization method by grids (see [19]). Compared with other
numerical methods for general semi-infinite programming problems, this method can avoid
globally solving the lower level problem maxy∈Y p(u, y) to test the feasibility of a point
u ∈ Rm, which could be very hard and is one of the main computational problems in semi-
infinite programming.
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Precisely, for (FSIPP), we can replace Y by Y ∩ T where T ⊂ [−1, 1]n is a fixed grid,
and solve the resulting finitely constrained problem

min
x∈Rm

f(x)

g(x)

s.t. ϕ1(x) ≤ 0, . . . , ϕs(x) ≤ 0,

p(x, y) ≤ 0, ∀y ∈ Y ∩ T.

(10)

We suppose that the Hausdorff distance between Y and Y ∩ T tends to 0 as the grid size of
T vanishes. Denote by KT the feasible set of (10). Then, under A2-(ii), we can assume that
the grid size of T is small enough and hence g(x) > 0 on KT . In fact, for a fixed u ∈ Rm

with g(u) ≤ 0, if ϕi(u) ≤ 0 for all i = 1, . . . , s, then there must be a point ȳ ∈ Y such that
p(u, ȳ) > 0 because of A2-(ii). As the grid size of T is small enough, there exists a point
ŷ ∈ Y ∩ T close to ȳ such that p(u, ŷ) > 0 which implies that u 6∈ KT .

We can consider the following three ways to solve (10) in the case when g(x) is affine.
In this case, as g(x) > 0 on KT , it is not hard to check that f(x)

g(x)
is strictly quasiconvex on

KT under A1-2. That is, for any u, v ∈ KT ,

f(u)

g(u)
<
f(v)

g(v)
implies

f(λ1u+ λ2v)

g(λ1u+ λ2v)
<
f(v)

g(v)
for any λ1, λ2 > 0 with λ1 + λ2 = 1.

Hence, the first way to solve (10), as a quasiconvex optimization problem, is by using bisection
method with each step a convex feasibility problem. Second, since any local minimizer of (10)
is also a global one (c.f. [39, Theorem 2]) due to the strict quasiconvexity of f(x)

g(x)
on KT , any

local or global methods (e.g. interior-point methods, SQP methods, etc.) for solving general
constrained nonlinear programming can be applied to (10). Third, we can also reformulate
(10) to an SDP problem under the assumption that the Slater condition holds for (10). In
fact, as g(x) > 0 on KT , (10) is equivalent to

max
r∈R

r s.t. f(x)− rg(x) ≥ 0 for all x ∈ KT .

Since g(x) is affine, f(x)− rg(x) is sos-convex for any r ∈ R. Then, the convex positivstel-
lensatz [25, Theorem 3.3] implies that (10) can be equivalently reformulated to

max
r∈R

r

s.t. f(x)− rg(x) = σ +
s∑
i=1

λiϕi(x) +
∑

y∈Y∩T

ηyp(x, y),

σ ∈ Σ2
d[x], λi ≥ 0, i = 1, . . . , s, ηy ≥ 0, y ∈ Y ∩ T,

(11)

which in fact is an SDP problem. Note that the number of nonnegative variables ηy is equal
to the cardinality of Y ∩ T .

Convergent lower bounds of r? can be obtained by solving (10) provided that mesh size
of the expansive sequence of grids tends to zero. However, in general, it is challenging to
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generate effcient grids for such a task. For a large n, if we use the regular grids

TN :=

{
−1 +

2

N
i

}
i=0,...,N

× · · · ×
{
−1 +

2

N
i

}
i=0,...,N

⊂ [−1, 1]n, N ∈ N, (12)

the rapidly increasing grid points in Y as N increases cause the resulting problems more
and more intractable. See Example 5.2 for a comparison of our SDP method with the above
discretization scheme.

To end this section, we consider the possibility of applying the diagonally dominant sum
of squares (dsos) and scaled diagonally dominant sum of squares (sdsos) structures [1, 2, 34]to
(Pk) for handling (FSIPP) problems with large numbers m and d. For such problems, the
sos structures in the quadratic module Md(Q) give rise to semidefinite constraints of very
large size in (Pk) and (Dk), even when the order k is small. In view of the capability of the
state-of-the-art SDP solvers, it can cause the resulting SDP problems very hard to solve or
even intractable. In this case, we may impose the dsos and sdsos structures into (Pk) to
trade off computation time with lower bound quality.

A symmetric matrix A = (aij) is diagonally dominant (dd) if aii ≥
∑

j 6=i |aij| for all i.
A symmetric matrix A is scaled diagonally dominant (sdd) if there exists a diagonal matrix
D, with positive diagonal entries, such that DAD is diagonally dominant. A polynomial
h ∈ R[x] of degree 2d is dsos (resp. sdsos) if and only if it admits a representation as
h(x) = zT (x)Hz(x), where z(x) is the standard monomial vector of degree ≤ d in R[x] and
H is a dd (resp. sdd) matrix. We denote the set of polynomials in R[x]2d that are dsos (resp.
sdsos) by DSOSm,2d (resp. SDSOSm,2d). It is clear that DSOSm,2d ⊆ SDSOSm,2d ⊆ Σ2

d[x].
In general, all these containment relationships are strict. Notice that optimization over
DSOSm,2d (resp. SDSOSm,2d) can be done with a linear program (resp. second-order cone
program) of size polynomial in m (see [2, Theorem 3.9]).

Now we replace the sos structure in the quadratic module Md(Q) by dsos and sdsos
structures, respectively, and define the following cones

Mdsos
d (Q) :=

{
2∑
j=0

σjqj

∣∣∣ q0 = 1, σj is dsos, deg(σjqj) ≤ 2d, j = 0, 1, 2

}
,

and

Msdsos
d (Q) :=

{
2∑
j=0

σjqj

∣∣∣ q0 = 1, σj is sdsos, deg(σjqj) ≤ 2d, j = 0, 1, 2

}
.

Clearly, it holds that

Mdsos
d (Q) ⊆Msdsos

d (Q) ⊆Md(Q).
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Replacing Md(Q) in (Pk) by Mdsos
d (Q) and Msdsos

d (Q), respectively, we obtain

rdsos
k := sup

ρ,H ,η
ρ

s.t. f(x)− ρg(x) + H (p(x, y)) +
s∑
j=1

ηjϕj(x) ∈Mdsos
d (Q),

ρ ∈ R, H ∈
(
Pk(Y)

)∗
, η ∈ Rs

+,

(Pdsos
k )

and 

rsdsos
k := sup

ρ,H ,η
ρ

s.t. f(x)− ρg(x) + H (p(x, y)) +
s∑
j=1

ηjϕj(x) ∈Msdsos
d (Q),

ρ ∈ R, H ∈
(
Pk(Y)

)∗
, η ∈ Rs

+.

(Psdsos
k )

It is obvious that rdsos
k ≤ rsdsos

k ≤ rprimal
k ≤ r? for each k ∈ N, even in absence of the convexity

assumption in A1-2 (see Remark 3.2). It is remarkable that the semidefinite constraints
brought byMd(Q) in (Pk) are replaced by a set of linear inequality constraints (resp. second-
order cone constraints) in (Pdsos

k ) (resp. (Psdsos
k )). Although the convergence of {rdsos

k }k∈N
(resp. {rsdsos

k }k∈N) to r? is not guaranteed, the computation time for solving (Pdsos
k ) (resp.

(Psdsos
k )) could be considerably less than that of (Pk). Consequently, for (FSIPP) problems

with large m and d that are significantly beyond the capability of the SDP relaxation (Pk),
we can still expect to obtain meaningful lower bounds of r? in a reasonable time by solving
the alternatives (Pdsos

k ) or (Psdsos
k ) (see Example 5.3).

4. Convergence rate analysis

In this section, we consider the convergence rate of the lower bound rdual
k to the optimal

value r? and the outer approximation Λk to the feasible set K. This will be done by com-
bining the convergence analysis of Lasserre’s measure-based upper bounds for polynomial
minimization problems in [44] and the metric regularity of semi-infinite convex inequality
system (c.f. [7]). In this section, to apply the results in [44], we assume that the measure ν
(2) is the Lebesgue measure with support exactly Y.

Define the set-valued mapping G : Rm ⇒ R2 by

G(x) := {(η,R) ∈ R2 | ‖x‖ ≤ R, p(x, y) ≤ η, ∀ y ∈ Y}.

Let F := {x ∈ Rm | ϕi(x) ≤ 0, i = 1, . . . , s}. Then, it is clear that K∩Bm
R = G−1(0,R)∩F.

Proposition 4.1. [7, Lemma 3] The following statements are equivalent:

(i) there exists x̄ ∈ Rm such that ‖x̄‖ < R̄ and p(x̄, y) < η̄ for all y ∈ Y;
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(ii) G is metrically regular at any u ∈ G−1(η̄, R̄) for (η̄, R̄), i.e., there exist d1, d2 > 0 and
c ≥ 0 such that whenever ‖x− u‖ < d1 and ‖(η,R)− (η̄, R̄)‖ < d2, it holds that

dist(x, G−1(η,R)) ≤ c · dist((η,R), G(x)).

Consider the assumption that
A4: There exists x̄ ∈ Rm such that ‖x̄‖ < R and p(x̄, y) < 0 for all y ∈ Y.

Corollary 4.1. Under A4, there exist d > 0 and c ≥ 0 such that whenever ‖x‖ ≤ R and
dist(x, G−1(0,R)) < d, it holds that

dist(x, G−1(0,R)) ≤ c ·max

{
max
y∈Y

p(x, y), 0

}
.

Proof. Note that for any x ∈ Rm with ‖x‖ ≤ R, (maxy∈Y p(x, y),R) ∈ G(x). Then, for any
u ∈ G−1(0,R), by A4 and Proposition 4.1, there exist du > 0 and cu ≥ 0 such that whenever
‖x− u‖ < du and ‖x‖ ≤ R, it holds that

dist(x, G−1(0,R)) ≤ cu · dist((0,R), G(x))

≤ cu ·max

{
max
y∈Y

p(x, y), 0

}
.

(13)

As G−1(0,R) is compact, we can find finitely many points u(i) ∈ G−1(0,R) and corresponding
du(i) > 0, cu(i) ≥ 0, i = 1, . . . , t, satisfying (13) and

G−1(0,R) ⊂ ∪ti=1{x ∈ Rm | ‖x− u(i)‖ < du(i)} =: O.

Moreover, there exists d > 0 such that

{x ∈ Rm | dist(x, G−1(0,R)) < d} ⊂ O.

Otherwise, there exists a sequence {x(k)}k∈N such that dist(x(k), G−1(0,R)) < 1
k
and x(k) 6∈ O

for each k ∈ N. As G−1(0,R) is compact, we can assume that there is a point x′ ∈ Rm such
that limk→∞ x

(k) = x′. Then, dist(x′, G−1(0,R)) = 0 and hence x′ ∈ G−1(0,R). However, as
O is open, we have x′ 6∈ O, a contradiction. Then, the conclusion holds for this d > 0 and
c = max1≤i≤t cu(i) . �

For any Lk ∈ (R[x]2d)∗, k ∈ N, satisfying the conditions in (9), we define a number
E(Lk) := p̃?k − p?k, where

p?k : = min
y∈Y
−Lk(p(x, y))

= min
µ∈M(Y )

∫
Y

−Lk(p(x, y))dµ(y) s.t.
∫
Y

dµ(y) = 1,
(14)

and 
p̃?k := min

σ

∫
Y

−Lk(p(x, y))σ(y)dy

s.t. σ(y) ∈ Σ2
k[y],

∫
Y

σ(y)dy = 1.

(15)
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In fact, (15) is the k-th Lasserre’s measure-based relaxation (see [26]) of (14), where the
probability measures are replaced by the one having a density σ ∈ Σ2

k[y] with respect to the
Lebesgue measure. Thus, p̃?k is an upper bound of p?k and E(Lk) ≥ 0. By the definition of
Pk(Y), we have p̃?k ≥ 0. Hence, it holds that

max
y∈Y

Lk(p(x, y)) = −p?k = E(Lk)− p̃?k ≤ E(Lk).

Clearly, L ?
k /L

?
k (1) ∈ (R[x]2d)∗ satisfies the conditions in (9) for any minmizer L ?

k of (Dk).

Theorem 4.1. Under A1 and A4, there exist k′ ∈ N and c ≥ 0 such that whenever k ≥ k′,

dist(Lk(x), K ∩Bm
R ) ≤ c · E(Lk), (16)

for any Lk satisfying the conditions in (9). Furthermore, under A1-4, there exists c̃ ≥ 0

such that whenever k ≥ k′,

0 ≤ r? − rdual
k ≤ c̃ · E(L ?

k /L
?
k (1)),

where L ?
k is any minimizer of (Dk).

Proof. Let d, c be the numbers in Corollary 4.1. By Theorem 3.2, the nested compact sets
{Λk}k∈N converges to K∩Bm

R as k →∞ in the Hausdorff sense. So there exists k′ ∈ N such
that whenever k ≥ k′, dist(Lk(x), K∩Bm

R ) < d for any Lk satisfying the conditions in (9).
For any Lk satisfying the conditions in (9), as ϕi(x), p(x, y) is sos-convex in x for all

i = 1, . . . , s, y ∈ Y, Proposition 2.1 implies that

ϕ(Lk(x)) ≤ Lk(ϕ) ≤ 0, i = 1, . . . , s,

p(Lk(x), y) ≤ Lk(p(x, y)) ≤ E(Lk), for all y ∈ Y.

Hence, Lk(x) ∈ F and dist(Lk(x), G−1(0,R)) = dist(Lk(x), K∩Bm
R ) < d whenever k ≥ k′.

Recall that Λk ⊆ Bm
R for each k ∈ N by Theorem 3.2. Then according to Corollary 4.1, (16)

holds for any k ≥ k′ because

dist(Lk(x), K ∩Bm
R ) = dist(Lk(x), G−1(0,R))

≤ c ·max

{
max
y∈Y

p(Lk(x), y), 0

}
,

≤ c · E(Lk).

For each k ∈ N, by Theorem 3.1, rdual
k is attainable at a linear functional L ?

k ∈ (R[x]2d)∗

feasible to (Dk). Then, by the sos-convexity of f and −g,

f(L ?
k (x)/L ?

k (1))

g(L ?
k (x)/L ?

k (1))
≤ L ?

k (f)/L ?
k (1)

L ?
k (g)/L ?

k (1)
= rdual

k ≤ r? ≤ f(x)

g(x)
, for all x ∈ K ∩Bm

R . (17)
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As L ?
k /L

?
k (1) satisfies the conditions in (9), by the Lipschitz continuity of f

g
on K ∩ Bm

R ,
(17) and (16), there exists c′ > 0 such that

0 ≤ r? − rdual
k ≤

∣∣∣f(L ?
k (x)/L ?

k (1))

g(L ?
k (x)/L ?

k (1))
− f(x)

g(x)

∣∣∣ for all x ∈ K ∩Bm
R ,

≤ c′ · dist(L ?
k (x)/L ?

k (1), K ∩Bm
R )

≤ c′ · c · E(L ?
k /L

?
k (1)).

Letting c̃ = c′ · c, the conclusion follows. �

For each k ∈ N, provided a uniform bound of E(Lk) for all Lk ∈ (R[x]2d)∗ satisfying
the conditions in (9), which is in term of k but independent on Lk, we can establish the
convergence rate of rdual

k and Λk by Theorem 4.1. We show that such bounds can be derived
from the paper [44] which investigates the convergence analysis of Lasserre’s measure-based
upper bounds for polynomial minimization problems.

Since Y is compact, Proposition 3.3 implies that there are uniform bounds B1, B2 > 0

such that

max
y∈Y
‖∇(−Lk(p(x, y)))‖ ≤ B1 and max

y∈Y
‖∇2(−Lk(p(x, y)))‖ ≤ B2, (18)

for all Lk ∈ (R[x]2d)∗, k ∈ N, satisfying the conditions in (9). Remark that the convergence
analysis given in [44] depends on the maximum norm of the gradient and Hessian of the ob-
jective polynomial on the feasible set, rather than the objective polynomial itself. Therefore,
the existence of B1 and B2 enables us to obtain the desired bounds of E(Lk) by applying
the results in [44]. Next we only consider the case when Y is a general compact subset of
[−1, 1]n and satisfies

A5: [9] There exist constants εY, ηY > 0 such that

vol(Bn
δ (y) ∩Y) ≥ ηYvol(Bn

δ (y)) = δnηYvol(Bn) for all y ∈ Y and 0 < δ < εY.

This is a rather mild assumption and satisfied by, for instance, convex bodies, sets that
are star-shaped with respect to a ball. In this case, the following Proposition 4.2 can be
drived straightforwardly from [44, Theorem 10]. For completeness, the proof is included in
Appendix A, which is almost a repetition of the arguments in [44]. Denote Hn := [−1, 1]n.

Proposition 4.2. Under A5, there exists a k′ ∈ N such that whenever k ≥ k′,

E(Lk) ≤ 2
√
nB1

(
(4n+ 2) log k

bk/2c
+
C

k

)
= O

(
log k

k

)
, where C =

23n+3vol(Hn)

ηYnn/2vol(Bn)
,

for all Lk ∈ (R[x]2d)∗ satisfying the conditions in (9).

Theorem 4.1 and Proposition 4.2 allow us to state the following convergence rate of Λk

and rdual
k .
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Corollary 4.2. Under A1-5, as k →∞,

dist(u, K ∩Bm
R ) = O

(
log k

k

)
for all u ∈ Λk and 0 ≤ r? − rdual

k = O

(
log k

k

)
.

Remark 4.1. Moreover, thanks to the uniform bounds B1 and B2 in (18), we can sharpen
the above convergence rate in some special cases of Y using the results in [44]. For instance,
the rate O

(
log k
k

)
can be improved to O

(
log2 k
k2

)
when Y is a convex body and to O

(
1
k2

)
when

Y is a simplex or ball-like convex body. For simplicity, the details are left to the interested
readers. �

5. Numerical experiments

In this section, we present some numerical experiments to illustrate the behavior of
our SDP relaxation method for computing lower bounds of r? in (FSIPP). All numerical
experiments in the sequel were carried out on a PC with 4-Core Intel i5 2GHz CPUs and
16G RAM. A rudimentary Matlab code of our relaxation method and the experiment data
can be downloaded at https://github.com/FengGuo2022/FSIPPsolve.

In practice, to implement the SDP relaxations (Pk) and (Dk), we need compute effec-
tively the integrals

∫
Y
yβdν(y), β ∈ Nn to get the linear matrix inequality representation of

Pk(Y) as mentioned in Section 2. Here we list four cases of Y for which these integrals can
be obtained either explicitly in closed form or numerically:

• For Y = [−1, 1]n, we fix ν to be the Lebesgue measure on Y. It is clear that∫
Y

yβdν(y) =

{
0 if some βj is odd,∏n

j=1
2

βj+1
if all βj are even.

• For Y = S1 := {y ∈ Rn | ‖y‖ = 1}, we fix ν to be the (n − 1)-dimensional surface
measure. It was shown in [11] that∫

Y

yβdν(y) =

{
0 if some βj is odd,
2Γ(β̂1)Γ(β̂2)···Γ(β̂n)

Γ(β̂1+β̂2+···+β̂n)
if all βj are even,

where Γ(·) is the gamma function and β̂j = 1
2
(βj + 1), j = 1, . . . , n.

• For Y = Bn = {y ∈ Rn | ‖y‖ ≤ 1}, we fix ν to be the Lebesgue measure on Y. It
was shown in [11] that∫

Y

yβdν(y) =
1

β1 + · · ·+ βn + n

∫
S1
yβdν(y).

• For a polytope Y ⊂ [−1, 1]n, we fix ν to be the Lebesgue measure on Y. To get the
integrals

∫
Y
yβdν(y), we can use the software LattE integrale [5] which is capble

of exactly computing integrals of polynomials over convex polytopes.
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Example 5.1. Now we provide four simple FSIPP problems (19)-(22) corresponding to the
above cases. It is easy to see that (A1-3) hold for each problem. We use the software
Yalmip [31] to implement the SDP relaxation (Dk) and call the SDP solver MOSEK [36] to
solve the resulting SDP problems. The standard semidefinite representation (1) of Λk can
be easily generated using Yalmip. We draw Λk using the software package Bermeja [41]. The
computational results of the the SDP relaxations (Dk) for each problem are shown in Table
1 and 2, including the approximate minimizers L ?

k (x)/L ?
k (1), lower bounds rdual

k of r?, as
well as the CPU time, for k = 6, . . . , 15. The SDr approximations Λ6 of K in the problem
(19)-(22) are shown in Figure 1.

I. Consider the problem
min
x∈R2

(x1 + 1)2 + (x2 + 1)2

s.t. p(x, y) = x2
1 + y2

1x
2
2 + 2y1y2x1x2 + x1 + x2 ≤ 0,

∀ y ∈ [−1, 1]2.

(19)

For any y ∈ [−1, 1]2, since p(x, y) is of degree 2 and convex in x, it is sos-convex in x. For
any x ∈ R2 and y ∈ [−1, 1]2, it is clear that

p(x, y) ≤ x2
1 + x2

2 + 2|x1x2|+ x1 + x2.

Then we can see that the feasible set K can be defined by only two constraints

p(x, 1, 1) = (x1 + x2)(x1 + x2 + 1) ≤ 0 and p(x, 1,−1) = (x1 − x2)2 + x1 + x2 ≤ 0.

That is, K is the area in R2 enclosed by the ellipse p(x, 1,−1) = 0 and the two lines
p(x, 1, 1) = 0. Then, it is easy to check that the only global minimizer of (19) is u? =

(−0.5,−0.5) and the minimum is 0.5.

II. Consider the problem
min
x∈R2

(x1 + 1)2 + (x2 + 1)2

s.t. p(x, y) = x2
1 + 2y1x1x2 + (1− y2

2)x2
2 + x1 + x2 ≤ 0,

∀y ∈ Y = {y ∈ R2 | y2
1 + y2

2 ≤ 1}.

(20)

For any y ∈ Y, since p(x, y) is of degree 2 and convex in x, it is sos-convex in x. For any
x ∈ R2 and ∈ Y, it is clear that

p(x, y) ≤ x2
1 + x2

2 + 2|x1x2|+ x1 + x2.

Then we can see that the feasible set K can be defined by only two constraints

p(x, 1, 0) = (x1 + x2)(x1 + x2 + 1) ≤ 0 and p(x,−1, 0) = (x1 − x2)2 + x1 + x2 ≤ 0.

Thus, K is the same area as in Problem (19). Hence, the only global minimizer of (20) is
u? = (−0.5,−0.5) and the minimum is 0.5.
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III. Consider the problem
min
x∈R2

(x1 − 1)2 + (x2 − 1)2

s.t. p(x, y) =
(y1x1 − y2x2)2

4
+ (y2x1 + y1x2)2 − 1 ≤ 0,

∀y ∈ Y = {y ∈ R2 | y2
1 + y2

2 = 1}.

(21)

Geometrically, the feasible region K is the common area of these shapes in the process of
rotating the ellipse defined by x2

1/4+x2
2 ≤ 1 continuously around the origin by 90◦ clockwise.

Hence, K is the closed unit disk in R2. Then, it is not hard to check that the only global

minimizer of (21) is u? =
(√

2
2
,
√

2
2

)
and the minimum is 2

(√
2

2
− 1
)2

≈ 0.1716.

IV. Consider the problem
min
x∈R2

(x1 + 1)2 + (x2 − 1)2

s.t. p(x, y) = −1 + 2x2
1 + 2x2

2 − (y1 − y2)2x1x2 ≤ 0,

∀y ∈ Y = {y ∈ R2 | y1 ≥ −1, y2 ≤ 1, y2 − y1 ≥ 0}.

(22)

It is easy to see thatK is in fact the area enclosed by the lines
√

2(x2−x1) = ±1 and the circle
{x ∈ R2 | 2x2

1 + 2x2
2 = 1}. Hence, it is not hard to check that the only global minimizer of

(22) is u? =
(
−
√

2
4
,
√

2
4

)
≈ (−0.3536, 0.3536) and the minimum is 2

(√
2

4
− 1
)2

≈ 0.8358. �

k
Problem (19) Problem (20)

L ?
k (x)/L

?
k (1) rdual

k time L ?
k (x)/L

?
k (1) rdual

k time

6 (−0.5368,−0.5964) 0.3775 0.9s (−0.5158,−0.5364) 0.4494 1.0s
7 (−0.5280,−0.5780) 0.4009 1.3s (−0.5121,−0.5289) 0.4600 1.4s
8 (−0.5220,−0.5644) 0.4182 1.9s (−0.5096,−0.5235) 0.4676 2.0s
9 (−0.5178,−0.5541) 0.4314 3.0s (−0.5078,−0.5195) 0.4732 3.1s

10 (−0.5147,−0.5461) 0.4416 4.3s (−0.5065,−0.5164) 0.4775 4.5s
11 (−0.5123,−0.5397) 0.4497 6.6s (−0.5054,−0.5140) 0.4808 7.1s
12 (−0.5105,−0.5346) 0.4562 11.2s (−0.5046,−0.5121) 0.4834 10.7s
13 (−0.5092,−0.5306) 0.4612 19.6s (−0.5041,−0.5106) 0.4854 18.1s
14 (−0.5090,−0.5297) 0.4623 27.0s (−0.5037,−0.5095) 0.4869 29.2s
15 (−0.5082,−0.5277) 0.4649 42.4s (−0.5036,−0.5089) 0.4877 43.8s

Table 1. Computational results for Problem (19)-(20).

Remark 5.1. From Table 1 and 2, we can see that our new SDP method for (FSIPP)
behaves similarly to Lasserre’s measure-based SDP method for polynomial minimization
problem [26]. That is, the sequence of lower bounds {rdual

k }k∈N increases rapidly in the first
orders k, but rather slowly when close to r?. This behavior can also be expected from the

19



-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

(a) Problem (19)

-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

(b) Problem (20)

-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

(c) Problem (21)

-1.5 -1 -0.5 0 0.5 1 1.5
x1

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

(d) Problem (22)

Figure 1. The feasible sets K (enclosed by the green curves) and their SDr
approximations Λ6 (the gray areas enclosed by the red curves) in Problem
(19)-(22).

convergence analysis discussed in Section 4. Nevertheless, the lower bounds obtained in a
few orders indeed complement the upper bounds obtained by our previous work [15]. It is
interesting to apply some acceleration techniques in [26, 29, 30] to improve the convergence
rate of our new SDP method for (FSIPP). We leave it for our future investigation. �

The following example shows some computational behaviors of our SDP method com-
pared with the discretization method by grids (see [19]) in computing lower bounds of r?.
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k
Problem (21) Problem (22)

L ?
k (x)/L

?
k (1) rdual

k time L ?
k (x)/L

?
k (1) rdual

k time

6 (0.7174, 0.7174) 0.1597 0.9s (−0.3633, 0.3633) 0.8108 67.3s
7 (0.7152, 0.7152) 0.1622 1.3s (−0.3618, 0.3618) 0.8148 114s
8 (0.7137, 0.7137) 0.1640 2.0s (−0.3606, 0.3606) 0.8176 171s
9 (0.7125, 0.7125) 0.1653 2.9s (−0.3600, 0.3600) 0.8193 257s

10 (0.7117, 0.7117) 0.1663 4.7s (−0.3596, 0.3596) 0.8203 328s
11 (0.7110, 0.7110) 0.1671 7.1s (−0.3589, 0.3589) 0.8220 465s
12 (0.7105, 0.7105) 0.1677 10.3s (−0.3584, 0.3584) 0.8232 640s
13 (0.7100, 0.7100) 0.1682 17.3s (−0.3582, 0.3582) 0.8238 862s
14 (0.7097, 0.7097) 0.1686 28.8s (−0.3579, 0.3579) 0.8246 1147s
15 (0.7094, 0.7094) 0.1689 41.6s (−0.3576, 0.3576) 0.8255 1508s

Table 2. Computational results for Problem (21)-(22).

Example 5.2. Consider the problem

r? := min
x∈Rn

∑n
i=1(xi − 1)4∑n
i=1 xi + 1

s.t. p(x, y) =
n∑
i=1

(
1− (yi − ai)2

4

)
x2
i − 1 ≤ 0,

∀y ∈ Y = [−1, 1]n, ϕ(x) = −
n∑
i=1

xi ≤ 0,

(23)

where each ai is a random number drawn from the standard uniform distribution on the
interval [−1, 1]. Obviously, the feasible set K is the intersection of the unit ball in Rn with
the halfspace defined by

∑n
i=1 xi ≥ 0. Hence, the unique minimizer of (23) is

(√
1
n
, . . . ,

√
1
n

)
and the optimal value is n

(√
1
n
− 1
)4

/(1 +
√
n). It is clear that A1-3 hold for (23).

Next, for each n ∈ N, we generate random ai’s in (23) and solve it by the SDP relaxation
(Pk) and the discretization method (10) with the regular grid (12) whose optimal value is
denoted by rdis

N . For the SDP relaxation (Pk), we use the software Yalmip to implement
it and call the SDP solver MOSEK to solve the resulting SDP problems. For the finitely
constrained problem (10), as discussed at the end of Section 3.2, we have tried to solve it by
(a) the bisection method for quasiconvex optimizaiton using the software CVXPY [10]; (b) the
interior-point algorithm for nonlinear programming implemented in the Matlab command
fmincon; (c) the SDP reformulation (11) which is implemented by Yalmip and solved by
MOSEK. Our numerical experiments showed that the strategy (b) is more efficient and stable
than the other two when n is large, so we only report here the numerical results obtained by
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applying the Matlab command fmincon to (10). The initial feasible point for fmincon is set
to be 0.

We would like to test n in (23) as large as possible for which we can gain meaningful
lower bounds of r? with these two methods. Therefore, we only compute and compare the
first lower bound obtained by these methods, i.e., we let k = 1 and N = 1 in (Pk) and (12),
respectively. The computational results are shown in Table 3. As we can see, as n increases,
our SDP relaxations (Pk) need much less time than the discretization method in obtaining
alike lower bounds. �

n rprimal
1 /time rdis

1 /time r?

10 0.4414/3.7s 0.4752/0.9s 0.5252
11 0.5209/4.4s 0.5254/2.6s 0.6066
12 0.5959/5.4s 0.6042/8.1s 0.6882
13 0.6360/6.8s 0.7152/22s 0.7698
14 0.7438/9.5s 0.7565/1m13s 0.8511
15 0.8109/18s 0.8224/3m50s 0.9321
16 0.9050/23s 0.8815/12m40s 1.0125
17 0.9343/29s 0.9824/37m34s 1.0924
18 1.0070/45s 1.0835/2h13m 1.1716

Table 3. Computational results for Example 5.2.

Remark 5.2. Remark that for the regular grids (12) in the discretization scheme, there
are (N + 1)n constaints to be generated from the grid points. The process could be very
costly and the resulting problems become intractable for a large n. Of course, we are aware
that there are other (commercial) softwares, which can deal with the process more efficiently
and solve the resulting finitely constrained problems of much larger size. Meanwhile, the
size of the semidefinite matrix in (Pk) grows as 3

(
m+d
m

)
+
(
n+k
n

)
and also becomes rapidly

prohibitive as the order k increases. Therefore, in view of the present status of available
semidefinite solvers, we do not simply claim by Example 5.2 any computational superiority
of our SDP relaxation method over the discretization scheme. Instead, we intend to illustrate
by the encouraging results in Example 5.2 that our SDP relaxation method is promising to
compute meaningful lower bounds of r? with higher dimensional Y in a reasonable time. �

We end this paper with the following example to highlight the scalability of the alter-
natives (Pdsos

k ) and (Psdsos
k ).
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Example 5.3. Consider the problem

r? := min
x∈Rm

m∑
i=1

(xi − 3)2

s.t. p(x, y) =
m∑
i=1

xdi − (1− y1y2) ≤ 0,

∀y ∈ Y = {y ∈ R2 | y2
1 + y2

2 = 1},

(24)

where d ∈ N is even. Clearly, the feasible set K is {x ∈ Rm |
∑m

i=1 x
d
i ≤ 1/2}. Hence, the

unique minimizer of (24) is
(

d

√
1

2m
, . . . , d

√
1

2m

)
and the optimal value is m

(
d

√
1

2m
− 3
)2

. It
is clear that A1-3 hold for (24).

Now we solve (24) using the relaxations (Pdsos
k ), (Psdsos

k ) and (Pk). For comparison, we
implement all of the relaxations by means of the software package spotless_isos 1 [2] which
is written using the Systems Polynomial Optimization Toolbox [35], and solve the resulting
problems by MOSEK. As we are interested in comparing the impacts of the dsos/sdsos/sos
structures on the computation time and the obtained lower bound quality of the correspond-
ing relaxations, we fix the order k = 1 and let the numbers (m, d) vary. The numerical
results are reported in Table 4. Although the lower bounds rdsos

1 and rsdsos
1 are not as good

as rprimal
1 , the times for computing them are significantly less than that of rprimal

1 . When m,
d are large and rprimal

1 is not available in a reasonable time, we can still get meaningful lower
bounds rdsos

1 and rsdsos
1 by the alternatives (Pdsos

k ) and (Psdsos
k ).

(m, d) rdsos
1 /time rsdsos

1 /time rprimal
1 /time r?

(16, 4) 83.50/2.5s 102.79/3.3s 102.79/8.5s 106.46
(10, 6) 47.50/6.0s 55.25/9.6s 55.25/40s 57.26
(20, 4) 107.50/5.2s 131.07/6.8s 131.07/59s 135.44
(12, 6) 59.50/15s 67.41/24s 67.41/7m13s 69.76
(10, 8) 47.53/1m57s 51.83/2m39s 51.83/8h28m 53.47
(12, 8) 59.57/7m9s 63.09/10m45s />10h 65.02

Table 4. Computational results for Example 5.3.
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Appendix A.

We first recall some definitions and properties about the so-called needle polynomials
required in the proof of Proposition 4.2.

Definition A.1. For k ∈ N, the Chebyshev polynomial Tk(t) ∈ R[t]k is defined by

Tk(t) =


cos(k arccos t) for |t| ≤ 1,

1

2
(t+
√
t2 − 1)k +

1

2
(t−
√
t2 − 1)k for |t| ≥ 1.

Definition A.2. [23] For k ∈ N, h ∈ (0, 1), the needle polynomial vhk (t) ∈ R[t]4k is defined
by

vhk (t) =
T 2
k (1 + h2 − t2)

T 2
k (1 + h2)

.

Theorem A.1. [8, 22, 23] For k ∈ N, h ∈ (0, 1), the following properties hold for vhk (t):

vhk (0) = 1,

0 ≤ vhk (t) ≤ 1 for t ∈ [−1, 1],

vhk (t) ≤ 4e−
1
2
kh for t ∈ [−1, 1] with |t| ≥ h.

The following result gives a lower estimator which is used in the proof of Proposition
4.2 to lower bound the integral of the needle polynomial.

Proposition A.1. [44, Lemma 13] Let φ(t) ∈ R[t]k be a polynomial of degree up to k ∈ N,
which is nonnegative over R≥0 and satisfies φ(0) = 1, φ(t) ≤ 1 for all t ∈ [0, 1]. Let Φk :

R≥0 → R≥0 be defined by

Φk(t) =

1− 2k2t if t ≤ 1

2k2
,

0 otherwise.

Then Φk(t) ≤ p(t) for all t ∈ R≥0.

Proof of Proposition 4.2 For any k ∈ N, let ρ(k) = 1
16k2

and h(k) := (4n + 2) log k/bk/2c.
Then, there exists a k′ ∈ N such that ρ(k) ≤ h(k) < min{εY, 1} for any k ≥ k′. Fix a k ≥ k′,
a linear functional Lk ∈ (R[x]2d)∗ satisfying the conditions in (9), and a minimizer y? of
miny∈Y−Lk(p(x, y)). Using the needle polynomial vhk (t) ∈ R[t], define σk(y) := v

h(k)
bk/2c(‖y −

y?‖/(2
√
n)). Then, the polynomial σ̃ := σk/

∫
Y
σkdy ∈ Σ2

k[y] and feasible to (15). Hence, by
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Taylor’s theorem,

E(Lk) ≤
1∫

Y
σk(y)dy

∫
Y

−Lk(p(x, y))σk(y)dy − p?k

=
1∫

Y
σk(y)dy

∫
Y

σk(y)(−Lk(p(x, y)− p?k)dy

≤ B1∫
Y
σk(y)dy

∫
Y

σk(y)‖y − y?‖dy

(25)

Define two sets

Y1 := Bn
2
√
nh(k)(y

?) ∩Y and Y2 := Bn
2
√
nρ(k)(y

?) ∩Y ⊆ Y1.

Then, ∫
Y

σk(y)dy ≥
∫
Y1

σk(y)dy ≥
∫
Y2

σk(y)dy. (26)

As Y ⊆ Hn,∫
Y

σk(y)‖y − y?‖dy =

∫
Y1

σk(y)‖y − y?‖dy +

∫
Y\Y1

σk(y)‖y − y?‖dy

≤ 2
√
nh(k)

∫
Y1

σk(y)dy + 2
√
n

∫
Y\Y1

σk(y)dy.

(27)

By Theorem A.1, we have σk(y) ≤ 4e−
1
2
h(k)bk/2c for any y ∈ Y \Y1 and hence∫

Y\Y1

σk(y)dy ≤ 4e−
1
2
h(k)bk/2c · vol(Y \Y1) ≤ 4e−

1
2
h(k)bk/2c · vol(Hn).

Moreover, by Proposition A.1, we have

σk(y) ≥ Φ2k(‖y − y?‖/2
√
n) = 1− 8k2(‖y − y?‖/2

√
n) ≥ 1

2
,

for all y ∈ Y2. Therefore, A5 implies that∫
Y2

σk(y)dy ≥ 1

2
vol(Y2) ≥ 1

2
ηY2nnn/2ρ(k)nvol(Bn) =

ηYn
n/2vol(Bn)

23n+1k2n
. (28)

Combining (25)-(28), we obtain

E(Lk) ≤ 2
√
nB1

(
h(k) + 4e−

1
2
h(k)bk/2c2

3n+1k2nvol(Hn)

ηYnn/2vol(Bn)

)
= 2
√
nB1(h(k) + Ce−

1
2
h(k)bk/2ck2n)

(29)

The conclusion follows by substituting h(k) = (4n+ 2) log k/bk/2c in (29). �
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