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Abstract We revisit the operator splitting schemes proposed in a recent work
of [Some extensions of the operator splitting schemes based on Lagrangian and
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doi: 10.1080/02331934.2022.2057309], and further analyze the convergence of
the generalized Bregman distance and the primal-dual gap of these algorithms
within a unified proximal point framework. The possibility of reduction to
a simple resolvent is also discussed by exploiting the structure and possible
degeneracy of the underlying metric.
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1 Introduction

The present paper discusses the operator splitting schemes for solving [41,
Eq.(1)]

min
x

f(x) + g(Ax), (1)

where x ∈ RN , A : RN 7→ RM is a linear operator, f : RN 7→ R ∪ {+∞} and
g : RM 7→ R∪{+∞} are proper, lower semi-continuous (l.s.c.), convex (not nec-
essarily smooth) and proximable1 functions. As observed in [18, Sect. 2.1] and
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1 We say a convex function f is proximable, if the proximity operator of f has a closed-form
representation or at least can be solved efficiently up to high precision [17]. This property
is also called ‘simple’ [17] or ‘with inexpensive proximity operator’ [36].
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[46, Sect. 1.1], the problem (1) also covers the minimization of the sum of mul-

tiple functions gi composed with linear operators Ai, i.e. minx
∑I

i=1 gi(Aix),

if we define A =



A1

...
AI


 : RN 7→ RM , with Ai : R

N 7→ RMi and M =
∑I

i=1 Mi,

g : RM1 × · · · ×RMI 7→ R∪ {+∞} : (a1, · · · , aI) 7→
∑I

i=1 gi(ai). This problem
can be solved by many classes of operator splitting algorithms, e.g., Douglas-
Rachford splitting (DRS) [31], primal-dual splitting (PDS) [51,11], the alter-
nating direction method of multipliers (ADMM) [22,21], Bregman methods
[35,49,23,50], and so on2.

In the recent work of [46], we gave a brief review of the typical ADMM-
type and PDS algorithms, and presented a unified proximal point treatment.
Following this work, we in this paper attempt to answer two important ques-
tions:

1. What value do these operator splitting algorithms attempt to minimize?
Is it possible to analyze the convergence within the unified proximal point
framework?

2. Observing that some splitting strategies generate auxiliary variables that
maybe redundant in the iterations, can they be reduced to a simpler form
with smallest number of variables? Is it possible to detect and reduce the
degeneracy or redundancy under the unified proximal point analysis?

The contributions of this paper are in order.

– We show more possibilities of devising new algorithms than [46] in a more
systematic way, according to the metric structure.

– We give an affirmative answer to the above first question: what the oper-
ator splitting algorithms try to minimize is the Bregman distance of some
convex functional (and the associated primal-dual gap under additional
conditions). It can be inferred by the proximal point framework (Sect. 3.4,
4.2 and 5.2), which enables us to perform a unified gap analysis of all
the schemes developed in [46], that is much simpler than the existing case
studies of specific algorithms, e.g. [7, Theorem 2.1] and [11, Theorem 1].

– The unified proximal point interpretation paves a way for expressing many
algorithms proposed in [46] as a simple resolvent. More remarkably, by ex-
ploiting the metric degeneracy, some algorithms, particularly the standard
ADMM/DRS, can be reduced to a simple resolvent involving only active
variables and an explicit expression of the associated maximally mono-
tone operator. This is also a case study of the degenerate analysis recently
proposed in [8].

2 Note that the well-known proximal forward-backward splitting (PFBS) algorithm may
not in general be applied to solve (1), since neither f nor g is assumed to be differentiable
with a Lipschitz continuous gradient.
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2 Preliminaries

2.1 Notations and definitions

We use standard notations and concepts from convex analysis and variational
analysis, which, unless otherwise specified, can all be found in the classical
and recent monographs [4,5,38,39].

A few more words about our notations are as follows. The class of sym-
metric and positive semi-definite/definite matrices is denoted by S+ or S++,
respectively. We use the boldface uppercase to denote a matrix, e.g., M, the
calligraphic uppercase to denote a block-structured matrix or operator, e.g.,
M. The identity operator and identity matrix of size N ×N are denoted by
I and IN . The M-norm with M ∈ S+ is defined as: ‖x‖2M := 〈x|Mx〉.

The generalized proximity operator, denoted by proxMf is defined as proxMf :

x 7→ argminu f(u) + 1
2‖u − x‖2M, with M ∈ S+ as an induced metric [42,

Eq.(4)], [13, Definition 2.3]. If M = 1
τ I (i.e. the scalar case), the generalized

proximity operator reduces to ordinary one, denoted by proxτf : x 7→ argminu
f(u) + 1

2τ ‖u− x‖2 [4, Definition 12.23], [16, Eq.(2.13)].
The classical Bregman distance associated with the function ϕ between x

and y is defined as Dϕ(x,y) = ϕ(x) − ϕ(y) − 〈∇ϕ(y)|x − y〉, which requires
the function ϕ to be differentiable and strictly convex. It was then extnded
to the context of proper, l.s.c. and convex function ϕ along a direction of v
within its subdifferential ∂ϕ [30]:

Dv
ϕ(x,y) = ϕ(x) − ϕ(y) − 〈v|x − y〉, v ∈ ∂ϕ(y). (2)

This plays a central role in various Bregman algorithms, e.g., [10,23,35,50].
[33] further proposed two types of the generalized Bregman distance (2):

{
D♯

ϕ(x,y) = ϕ(x) − ϕ(y) + supv∈∂y〈v|y − x〉,
D♭

ϕ(x,y) = ϕ(x) − ϕ(y) + infv∈∂y〈v|y − x〉,

which are the upper and lower bounds of the Bregman distance generated by
ϕ.

2.2 Some existing results of proximal point algorithm

The generalized proximal point algorithm (PPA) is given as

⌊
0 :∈ Ac̃k +Q(c̃k − ck), (proximal step)
ck+1 := ck +M(c̃k − ck), (relaxation step)

(3)

where A is a (possibly set-valued) monotone operator, Q is a metric, M is
an invertible relaxation matrix. The convergence of (3) has been extensively
studied in the contexts of DRS, PDHG and multi-block ADMM algorithms,
e.g., [29,25,28], and recently revisited in our recent works of [44,46].
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Here, we restate the main results therein with more straightforward proofs.
More than that, our analysis admits any choices of A, Q and M, not limited
to any specific algorithms.

Lemma 1 Let {ck}k∈N be a sequence generated by (3) and c⋆ ∈ zerA. Denote
S := QM−1, G := Q+Q⊤ −M⊤Q. Denote the operator T := (A+Q)−1Q,
and R := I − T . If A is maximally monotone and S,G ∈ S++, then, the
following hold.

(i)
∥∥ck+1 − c⋆

∥∥2

S ≤
∥∥ck − c⋆

∥∥2
S −

∥∥ck − ck+1
∥∥2
M−⊤GM−1

;

(ii)
〈
M⊤QRck

∣∣Rck −Rck+1
〉
≥ 1

2

∥∥Rck −Rck+1
∥∥2
Q+Q⊤

;

(iii)
∥∥ck − ck+1

∥∥2
S −

∥∥ck+1 − ck+2
∥∥2
S ≥

∥∥Rck −Rck+1
∥∥2
G .

Proof (i) Based on (3), we have:

0 ≤
〈
Ac̃k −Ac⋆

∣∣c̃k − c⋆
〉

by monotonicity of A
=

〈
Q(ck − c̃k)

∣∣c̃k − c⋆
〉

by (3) and 0 ∈ Ab⋆

=
〈
QM−1(ck − ck+1)

∣∣ck +M−1(ck+1 − ck)− c⋆
〉

by (3)

=
〈
S(ck − ck+1)

∣∣ck − c⋆
〉
− 1

2

∥∥ck − ck+1
∥∥2
M−⊤S+SM−1

=
1

2

∥∥ck − c⋆
∥∥2
S − 1

2

∥∥ck+1 − c⋆
∥∥2
S − 1

2

∥∥ck − ck+1
∥∥2
M−⊤GM−1

, by S ∈ S++.

(ii) By [45, Lemma 2.6], we obtain:

〈
ck − ck+1

∣∣QRck −QRck+1
〉
≥

∥∥Rck −Rck+1
∥∥2
Q =

1

2

∥∥Rck −Rck+1
∥∥2
Q+Q⊤

.

Then, (ii) follows from ck − ck+1 = MRck.

(iii) We develop:

∥∥ck − ck+1
∥∥2
S −

∥∥ck+1 − ck+2
∥∥2
S

=
∥∥MRck

∥∥2
S −

∥∥MRck+1
∥∥2
S by (3)

= 2
〈
M⊤SMRbk

∣∣Rck −Rck+1
〉
−
∥∥Rck −Rck+1

∥∥2
M⊤SM

≥
∥∥Rck −Rck+1

∥∥2

G , by Lemma 1–(ii) and Q = SM.

Remark 1 Lemma 1–(i) can be found in [29, Theorem 1], [28, Theorem 4.1]
and [25, Theorem 3.2]. The item (ii) is same as [29, Lemma 3], [28, Lemma
5.3] and [25, Lemma 5.4]. The item (iii) is a restatement of [29, Theorem 5]
and [28, Theorem 5.1]. The proof presented here outlines the key ingredients
only. Refer to [44, Lemma 5.2] for more details.

Then, the convergence properties of (3) are given as follows.
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Theorem 1 (Convergence in terms of metric distance) Under the no-
tations and assumptions of Lemma 1, then the following hold.

(i) [Basic convergence] There exists c⋆ ∈ zerA, such that ck → c⋆, as
k → ∞.

(ii) [Asymptotic regularity] ‖ck − ck+1‖S has the pointwise convergence
rate of O(1/

√
k), i.e.,

∥∥ck+1 − ck
∥∥
S ≤ 1√

k + 1

√
λmax(S)

λmin(M−⊤GM−1)

∥∥c0 − c⋆
∥∥
S , ∀k ∈ N,

where λmax and λmax denote the largest and smallest eigenvalues of a matrix.

Proof (i) The basic convergence is established based on Lemma 1–(i), invoking
Opial’s lemma [4, Lemma 2.47].

(ii) In view of Lemma 1–(i), we have:

∥∥ci+1 − c⋆
∥∥2
S ≤

∥∥ci − c⋆
∥∥2
S − λmin(M−⊤GM−1)

λmax(S)
∥∥ci − ci+1

∥∥2

S . (4)

Finally, (ii) is obtained, by summing up (4) from i = 0 to k and noting
that the sequence {‖ci − ci+1‖S}i∈N is non-increasing (by Lemma 1–(iii)).

Remark 2 Refer to [44, Theorem 5.3] for more details. The non-ergodic rate
of asymptotic regularity (ii) has also been established in [29, Theorem 6], [28,
Theorem 6.1] and [25, Theorem 5.5].

In particular, if M = I, the scheme (3) reduces to a standard PPA: 0 ∈
Ack+1 +Q(ck+1 − ck), which can be rewritten as

ck+1 := (A+Q)−1Qck, (5)

whose convergence is given below.

Corollary 1 (Convergence of standard PPA) Given the scheme (5) with
maximally monotone A and metric Q ∈ S++, the following hold.

(i) [Basic convergence] There exists c⋆ ∈ zerA, such that ck → c⋆, as
k → ∞.

(ii) [Asymptotic regularity] ‖ck − ck+1‖Q has a pointwise convergence rate
of O(1/

√
k), i.e.

∥∥ck+1 − ck
∥∥
Q ≤ 1√

k + 1

∥∥c0 − c⋆
∥∥
Q, ∀k ∈ N,

(iii) [Resolvent] The scheme (5) can be rewritten as a resolvent form:

ck+1 := (I +Q−1 ◦ A)−1ck = Q− 1

2

(
I +Q− 1

2 ◦ A ◦ Q− 1

2

)−1Q 1

2 ck.

Proof (i) and (ii) follow from Theorem 1.
(iii) [44, Lemma 2.1-(iii)].



6 Feng Xue

All the results presented in Sect. 2.2 require the associated metrics Q (or
S,G) to be strictly positive definite. However, based on a recent analysis of
[8], this condition can be sometimes loosened to positive semi-definite in the
applications to operator splitting algorithms, which leads to some interesting
reductions by removing redundant variables. See Sect. 3.5 and 4.3 for detailed
discussions.

2.3 An extension of Moreau’s decomposition identity

The following result extends the classical Moreau’s decomposition identity
(see, for instance, [16, Eq.(2.21)]) to arbitrary linear operator A, and links the
proximity operator of the infimal postcomposition of f by A to that of the
conjugate f∗. The the notion of ‘infimal postcomposition’ was recently studied
in [2] in details.

Lemma 2 Given a proper, l.s.c. and convex function f : RN 7→ R ∪ {+∞}
and arbitrary matrix A : RN 7→ RM , the following holds:

proxA⊲f + proxf∗◦A⊤ = IM ,

where A ⊲ f denotes the infimal postcomposition of f by A, defined as A ⊲ f :
RM 7→ R : t 7→ minAx=t f(x).

Proof First, incorporating a hard constraint of t = Ax [48, Sect. 3], we have:

min
x

f(x) +
1

2
‖Ax− u‖2 = min

x,t
f(x) +

1

2
‖t− u‖2 + ι{x:Ax=t}(t)

= min
t

F (t) +
1

2
‖t− u‖2, (6)

where ιC is an indicator function of a set C, the function F (t) := minx f(x)+
ι{x:Ax=t}(x) = minAx=t f(x) is the so-called infimal postcomposition of f
by A, simply denoted as F = A ⊲ f [4, Definition 12.34]. (6) implies that
t⋆ = proxF (u) = Ax⋆, where x⋆ = argminx f(x) +

1
2‖Ax− u‖2.

Then, by Fenchel duality, the above is equivalent to a saddle-point problem:

min
t

max
s

〈s|t〉 − F ∗(s) +
1

2
‖t− u‖2.

Exchanging the order of min and max, we have:

max
s

min
t

−F ∗(s) +
1

2
‖t− u+ s‖2 − 1

2
‖s‖2 + 〈u|s〉,

which yields that t⋆ = u − s⋆, where s⋆ = argmins F
∗(s) + 1

2‖s − u‖2 =
proxF∗(u). Finally, the proof is completed by noting that F ∗ = f∗ ◦A⊤ [48].
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3 Operator splitting based on Lagrangian

3.1 The Lagrangian schemes and their PPA interpretations

First, we consider the Lagrangian of (1) [46, Eq.(13)]:

L(x, a,p) := f(x) + g(a) + p⊤(Ax− a), (7)

or generalized augmented Lagrangian:

LΓ(x, a,p) := f(x) + g(a) + p⊤(Ax− a) +
1

2

∥∥Ax− a
∥∥2

Γ
, (8)

which extends the standard augmented Lagrangian [46, Eq.(3)] from the scalar
penalty parameter γ to the matrix metric Γ.

Then, similar to [13,20,42,24], defining the proximal metrics by M : RN 7→
RN , Ω : RM 7→ RM , Γ : RM 7→ RM , the alternating optimization of (7) or (8)
yields the algorithms listed in Table 1. LAG-I,II,V,VI and VII can be found in
[46, Sect. 3 and 4], and are extended to general proximal metrics here. Table 2
shows the PPA reinterpretations of the schemes. One can check the PPA fitting
by the similar procedure with [9,32,3,26], verify the convergence condition for
each algorithm (shown in Table 3) by computing the corresponding S and G
by Theorem 1, and further write down the specific convergence property of
asymptotic regularity, which are omitted here. Also note that:

– LAG-I and LAG-II correspond to symmetric Q (without relaxation);
– LAG-III and LAG-IV correspond to upper triangular Q;
– LAG-V and LAG-VI correspond to lower triangular Q;
– LAG-VII corresponds to skew-symmetric Q.

These algorithms can be interpreted by alternating optimization of some
cost function. For instance, LAG-I and LAG-VII stem from the alternating
optimization of non-augmented Lagrangian L(x, a,p). For example, both x-
and a-updates of LAG-I come from

⌊
xk+1 = argminx L(x, ak,pk) + 1

2‖x− xk‖2M,
ak+1 = argmina L(xk, a,pk) + 1

2‖a− ak‖2Ω.

LAG-V and LAG-VI are based on the augmented Lagrangian LΓ(x, a,p).
For example, the x- and a-updates of LAG-V are obtained by

⌊
xk+1 = argminx LΓ(x, a

k,pk) + 1
2‖x− xk‖2M,

ak+1 = argmina LΓ(x
k, a,pk) + 1

2‖a− ak‖2Ω.

The x- and a-updates of LAG-II, LAG-III and LAG-IV are the hybrid
optimizations of both non-augmented and augmented forms. For example,
the x-update of LAG-IV is from non-augmented, while the a-update is from
augmented, i.e.,

⌊
xk+1 = argminx L(x, ak,pk) + 1

2‖x− xk‖2M,
ak+1 = argmina LΓ(x

k+1, a,pk) + 1
2‖a− ak‖2Ω.
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Table 1 The proposed Lagrangian-based algorithms

name iterative scheme

LAG-I

[46, Eq.(14)]









xk+1 := prox
M

f

(

xk −M−1A⊤pk
)

ak+1 := prox
Ω
g (ak + Ω−1pk)

pk+1 := pk + Γ
(

A(2xk+1 − xk) − (2ak+1 − ak)
)

LAG-II

[46, Eq.(24)]











xk+1 := prox
M+A

⊤
ΓA

f

(

(M + A⊤ΓA)−1(Mxk + A⊤Γak −A⊤pk)
)

pk+1 = pk + Γ
(

Axk+1 − ak
)

ak+1 = prox
Ω
g

(

ak + Ω−1(2pk+1 − pk)
)

LAG-III











ak+1 := prox
Ω
g (ak + Ω−1pk)

xk+1 := prox
M+A

⊤
ΓA

f

(

(M + A⊤ΓA)−1(Mxk −A⊤pk + A⊤Γak+1)
)

pk+1 := pk + Γ
(

Axk+1 + ak − 2ak+1
)

LAG-IV









xk+1 := prox
M

f

(

xk −M−1A⊤pk
)

ak+1 := prox
Ω+Γ
g

(

(Ω + Γ)−1(Ωak + ΓAxk+1 + pk)
)

pk+1 := pk + Γ
(

A(2xk+1 − xk) − ak+1
)

LAG-V

[46, Eq.(19)]











xk+1 := prox
M+A

⊤
ΓA

f

(

(M + A⊤ΓA)−1(Mxk + A⊤Γak −A⊤pk)
)

ak+1 := prox
Ω+Γ
g

(

(Ω + Γ)−1(Ωak + ΓAxk + pk)
)

pk+1 = pk + Γ
(

Axk+1 − ak+1
)

LAG-VI

[46, Eq.(20)]











xk+1 := prox
M+A

⊤
ΓA

f

(

(M + A⊤ΓA)−1(Mxk + A⊤Γak −A⊤pk)
)

ak+1 := prox
Ω+Γ
g

(

(Ω + Γ)−1(Ωak + ΓAxk+1 + pk)
)

pk+1 := pk + Γ
(

Axk+1 − ak+1
)

LAG-VII

[46, Eq.(18)]

















x̃k := prox
M

f

(

xk −M−1A⊤pk
)

ãk := prox
Ω
g

(

ak + Ω−1pk
)

xk+1 := x̃k −M−1A⊤Γ(Axk − ak)
ak+1 := ãk + Ω−1Γ(Axk − ak)
pk+1 := pk + Γ

(

Ax̃k − ãk
)

Table 2 The PPA reinterpretations of the Lagrangian-based schemes

schemes c A Q M

LAG-I





x

a

p









∂f 0 A⊤

0 ∂g −IM
−A IM 0









M 0 −A⊤

0 Ω IM
−A IM Γ−1





I2M+N

LAG-II





M 0 0

0 Ω −IM
0 −IM Γ−1





LAG-III





M 0 0

0 Ω IM
0 0 Γ−1









IN 0 0

0 IM 0

0 −Γ IM





LAG-IV





M 0 −A⊤

0 Ω 0

0 0 Γ−1









IN 0 0

0 IM 0

ΓA 0 IM





LAG-V





M + A⊤ΓA 0 0

0 Ω + Γ 0

A −IM Γ−1









IN 0 0

0 IM 0

ΓA −Γ IM





LAG-VI





M 0 0

0 Ω + Γ 0

0 −IM Γ−1









IN 0 0

0 IM 0

0 −Γ IM





LAG-VII





M 0 −A⊤

0 Ω IM
A −IM Γ−1









IN 0 −M−1A⊤

0 IM Ω−1

ΓA −Γ IM





The preconditioning technique [11, Sect. 4.3] can be applied to the x-
updates of LAG-II,III,V,VI and a-updates of LAG-IV,V,VI, see [46, Sect.
4.1] for more details.



The primal-dual gap and degeneracy reduction of operator splitting schemes 9

Table 3 The corresponding S and G of the Lagrangian-based schemes
schemes S G convergence condition

LAG-I





M 0 −A⊤

0 Ω IM
−A IM Γ−1









M 0 −A⊤

0 Ω IM
−A IM Γ−1





M,Ω,Γ ∈ S++

Γ−1 ≻ AM−1A⊤ + Ω−1

LAG-II





M 0 0

0 Ω −IM
0 −IM Γ−1









M 0 0

0 Ω −IM
0 −IM Γ−1





M ∈ S+

Ω,Γ ∈ S++

Ω ≻ ΓLAG-III





M 0 0

0 Ω + Γ IM
0 IM Γ−1









M 0 0

0 Ω IM
0 IM Γ−1





LAG-IV





M + A⊤ΓA 0 −A⊤

0 Ω 0

−A 0 Γ−1









M 0 −A⊤

0 Ω 0

−A 0 Γ−1





M,Γ ∈ S++

Ω ∈ S+

M ≻ A⊤ΓA

LAG-V





M + A⊤ΓA 0 0

0 Ω + Γ 0

0 0 Γ−1









M A⊤Γ 0

ΓA Ω 0

0 0 Γ−1





M,Ω,Γ ∈ S++

M ≻ A⊤ΓΩ−1ΓA

LAG-VI





M 0 0

0 Ω + Γ 0

0 0 Γ−1









M 0 0

0 Ω 0

0 0 Γ−1





M,Ω ∈ S+

Γ ∈ S++

LAG-VII





M 0 0

0 Ω 0

0 0 Γ−1









M−A⊤ΓA A⊤Γ 0

ΓA Ω− Γ 0

0 0 Γ−1 −AM−1A⊤ −Ω−1





M,Ω,Γ ∈ S++

Γ−1 ≻ AM−1A⊤ + Ω−1

If Γ = γIM , LAG-V and LAG-VI reduce to [46, Eqs.(19) and (20)]. Their
comparisons and connections to [40, Algorithms 1 and 2] have been discussed
in [46, Sect. 4.1]. In addition, the convergence condition of [46, Eq.(19)], by [40,
Proposition 5.2 and Theorem 5.1], is M ≻ γA⊤A and Ω ≻ γIM . Our analysis
in Table 3 shows that this condition can be relaxed to M ≻ γ2A⊤Ω−1A,
which is obviously milder than M ≻ γA⊤A and Ω ≻ γIM .

Finally, note that the monotone operator A represents the optimality con-
dition of (7). Indeed, c⋆ ∈ zerA implies the KKT conditions: −A⊤p⋆ ∈
∂f(x⋆), p⋆ ∈ ∂g(a⋆) and a⋆ = Ax⋆, i.e. 0 ∈ ∂f(x⋆) + A⊤∂g(Ax⋆). This
is the reason for why all the Lagrangian-based schemes in Table 1 share the
same A.

Another important observation is that A bears a typical (diagonal) mono-
tone + (off-diagonal) skew-symmetric structure:



∂f 0 A⊤

0 ∂g −IM
−A IM 0


 =



∂f 0 0
0 ∂g 0
0 0 0




︸ ︷︷ ︸
monotone

+




0 0 A⊤

0 0 −IM
−A IM 0




︸ ︷︷ ︸
skew

,

which has also been noticed in [1,9,15]. This remark also applies to other
classes of algorithms, see Sect. 4 and 5.

3.2 Connections to existing algorithms

[46, Sect. 3.1] discussed the connection of a special case of LAG-I to PDHG.
We here show more connections.
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3.2.1 LAG-I: two forms of PDHG

Letting u :=

[
x
a

]
, q(u) := f(x) + g(a), U :=

[
A −IM

]
, the Lagrangian (7) is

compactly given as
L(u,p) = q(u) + 〈p|Uu〉. (9)

This Lagrangian objective consists of the primal part of q(u), the dual part of
0, and their interplay represented by 〈p|Uu〉. LAG-I is equivalently written as

⌊
uk+1 := proxRq

(
uk −R−1U⊤pk

)
,

pk+1 := pk + ΓU
(
2uk+1 − uk

)
,

where R =

[
M 0
0 Ω

]
. This is essentially a special case of PDS-I in Sect. 4.1,

where u-step is a primal update, p-step is a dual update. Compared to the
commonly used primal-dual form (27), LAG-I associated with the Lagrangian
(7) or (9) adopts a different splitting strategy, which treats u = (x, a) as primal
variable and p as dual, whereas (27) treats f(x) as primal and g∗(p) as dual.

The following proposition shows that under a certain condition, LAG-I can
be simplified to the alternating updates between f and g∗, which coincides
with the splitting strategy of (27). This result also extends the discussion in
[46, Sect. 3.1] to general proximal metrics, and thus, the proof is omitted.

Proposition 1 Given LAG-I, then, the following hold.
(i) LAG-I is equivalent to



xk+1 := proxMf
(
xk −M−1A⊤pk

)
,

sk+1 := proxΩ
−1

g∗ (Ωak + pk),
ak+1 := ak +Ω−1(pk − sk+1),
pk+1 := pk + Γ

(
A(2xk+1 − xk)− (2ak+1 − ak)

)
.

(10)

(ii) If Ω = 2Γ, sk = pk, (10) reduces to

⌊
xk+1 := proxMf

(
xk −M−1A⊤pk

)
,

pk+2 := proxΩ
−1

g∗

(
pk +ΩA(2xk+1 − xk)

)
.

(11)

Observe that the scheme (11) is essentially PDS-I—a generalized version
of PDHG [46, Eq. (8)], which will be discussed in Sect. 4.

If one chooses Ω = Γ in LAG-I (which violates the convergence condition),
and sk = pk, then combining the updates of s, a and p in (10), we obtain

pk+2 = proxΓ
−1

g∗

(
pk+1 + ΓA(2xk+1 − xk)

)
. Thus, LAG-I becomes

⌊
xk+1 := proxMf

(
xk −M−1A⊤pk

)
,

pk+1 := proxΓ
−1

g∗

(
pk + ΓA(2xk − xk−1)

)
.

This is a PDHG-like algorithm, but with illogical and weird update (noting
that pk+1 is obtained without using xk+1). It is not guaranteed to converge,
due to the unreasonable assumption Ω = Γ.
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3.2.2 LAG-V: semi-implicit Arrow-Hurwicz scheme

We now show that LAG-V is essentially an instance of the classical semi-implicit
Arrow-Hurwicz scheme.

Let u :=

[
x
a

]
, q(u) := f(x) + g(a), U :=

[
A −IM

]
, the augmented La-

grangian (8) is compactly written as

LΓ(u,p) = q(u) + 〈p|Uu〉 + 1

2
‖Uu‖2Γ.

With the variable metrics R and Γ, the semi-implicit Arrow-Hurwicz scheme
is given by

⌊
uk+1 :∈ uk −R−1

(
∂q(uk+1) +U⊤pk +U⊤ΓUuk+1

)
,

pk+1 := pk + ΓUuk+1,

i.e., ⌊
uk+1 := proxR+U⊤ΓU

q

(
(R +U⊤ΓU)−1(Ruk −U⊤pk)

)
,

pk+1 := pk + ΓUuk+1.
(12)

The equivalent PPA form is given as
[
0
0

]
∈
[
∂q U⊤

−U 0

] [
uk+1

pk+1

]
+

[
R 0
0 Γ−1

] [
uk+1 − uk

pk+1 − pk

]
,

for which it is easy to show the convergence.

Furthermore, if one chooses R =

[
M A⊤Γ
ΓA Ω

]
, such that R + U⊤ΓU =

[
M+A⊤ΓA 0

0 Ω+ Γ

]
, which makes x and a to be fully decoupled, the Arrow-

Hurwicz scheme (12) can be split into (x, a,p):


xk+1 := proxM+A⊤ΓA

f

(
xk − (M+A⊤ΓA)−1(A⊤ΓAxk −A⊤Γak +A⊤pk)

)
,

ak+1 := proxΩ+Γ
g

(
ak − (Ω+ Γ)−1(−ΓAxk +Ωak − pk)

)
,

pk+1 := pk + Γ(Axk+1 − ak+1),

which is exactly LAG-V. The convergence condition (as shown in Table 3)
follows from R ≻ 0.

3.2.3 LAG-VI: ADMM and PDHG

LAG-VI is essentially a proximal ADMM with proximal metrics M and Ω. We
now show the connection of LAG-VI to PDHG.

Proposition 2 Given LAG-VI, the following hold:
(i) If Ω = 0, LAG-VI is equivalent to
⌊
xk+1 := proxM+A⊤ΓA

f

(
xk − (M +A⊤ΓA)−1A⊤(2pk − pk−1)

)
,

pk+1 := proxΓ
−1

g∗

(
ΓAxk+1 + pk

)
,

(13)
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(ii) If M = 1
τ IN − γA⊤A, Ω = 0, Γ = γIM , LAG-VI reduces to the PDHG

[46, Eq.(9)]: ⌊
xk+1 := proxτf

(
xk − τA⊤(2pk − pk−1)

)
,

pk+1 := proxγg∗

(
pk + γAxk+1

)
,

Proof (i) If Ω = 0, similar to Proposition 1–(i), LAG-VI is equivalent to


xk+1 := proxM+A⊤ΓA
f

(
(M +A⊤ΓA)−1(Mxk +A⊤Γak −A⊤pk)

)
,

sk+1 := proxΓ
−1

g∗

(
ΓAxk+1 + pk)

)
,

ak+1 := Axk+1 + Γ−1(pk − sk+1),
pk+1 := pk + Γ

(
Axk+1 − ak+1

)
,

which yields that sk = pk. Substituting ak = Axk + Γ−1(pk−1 − pk) into
x-update completes the proof.

(ii) clear.

Observe that the scheme (13) is essentially a generalized version of PDHG
[46, Eq.(9)], the corresponding PPA form is given as

[
0
0

]
∈
[
∂f A⊤

−A ∂g∗

] [
xk+1

pk

]
+

[
M+A⊤ΓA A⊤

A Γ−1

] [
xk+1 − xk

pk − pk−1

]
.

We consider LAG-V as a comparison with LAG-VI. If one chooses Ω =
0 (which violates the convergence condition), following the similar steps of
Proposition 2, LAG-V becomes

⌊
xk+1 := proxM+A⊤ΓA

f

(
xk − (M +A⊤ΓA)−1A⊤(2pk − pk−1)

)
,

pk+1 := proxΓ
−1

g∗

(
ΓAxk + pk

)
,

where the p-update is illogical and weird (noting that pk+1 is computed with-
out using xk+1). It is not guaranteed to converge, due to the unreasonable
assumption Ω = 0.

3.3 The generalized Bregman distance

We will use the PPA interpretations to show that the objective value that the
Lagrangian schemes in Table 1 try to minimize is essentially an instance of
generalized Bregman distance associated with f(x) + g(a).

First, we define a quantity3:

Π(c, c′) := L(x, a,p′)− L(x′, a′,p),

where L(x, a,p) is given by (7). Given the schemes in Table 1, the following
lemma presents a key inequality, which directly connects Π(c̃k, c) to the metric
Q.

3 For any pair of (c, c′), the quantity of Π(c, c′) is generally only a difference, but not a
distance, since it is not guaranteed to be non-negative.
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Lemma 3 Given the Lagrangian L(x, a,p) as (7), consider all the Lagrangian-
based schemes listed in Table 1, where c̃k = (x̃k, ãk, p̃k) denotes the proximal
output, when the schemes are interpreted by the PPA (shown in Table 2).
Then, the following holds, ∀c = (x, a,p) ∈ RN × RM × RM :

(i) Π(c̃k, c) ≤
〈
Q(c̃k − ck)

∣∣c− c̃k
〉
,

(ii) Π
(
1
k

∑k−1
i=0 c̃i, c

)
≤ 1

2k

∥∥c0 − c
∥∥2

S .

Proof (i) First, note that the proximal step of all the Lagrangian-based schemes
listed in Table 1 can be written as:



0
0
0


 ∈



∂f 0 A⊤

0 ∂g −IM
−A IM 0





x̃k

ãk

p̃k


+



—Q1—
—Q2—
—Q3—


 (c̃k − ck),

which is: 
0 ∈ ∂f(x̃k) +A⊤p̃k +Q1(c̃

k − ck),
0 ∈ ∂g(ãk)− p̃k +Q2(c̃

k − ck),
0 = −Ax̃k + ãk +Q3(c̃

k − ck).
(14)

Then, by convexity of f and g, we develop:

f(x) ≥ f(x̃k) + 〈∂f(x̃k)|x− x̃k〉
= f(x̃k)− 〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃

k − ck)|x− x̃k〉, by (14)

and

g(a) ≥ g(ãk) + 〈∂g(ãk)|a− ãk〉
= g(ãk) + 〈p̃k|a− ãk〉 − 〈Q2(c̃

k − ck)|a − ãk〉. by (14)

Summing up both inequalities yields

f(x) + g(a)− f(x̃k)− g(ãk) ≥ −〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃
k − ck)|x− x̃k〉

+ 〈p̃k|a− ãk〉 − 〈Q2(c̃
k − ck)|a− ãk〉.

Finally, we obtain

Π(c̃k, c) = L(x̃k, ãk,p)− L(x, a, p̃k)

= f(x̃k) + g(ãk)− f(x)− g(a) + 〈p|Ax̃k − ãk〉 − 〈p̃k|Ax− a〉
≤ 〈Q1(c̃

k − ck)|x − x̃k〉+ 〈Q2(c̃
k − ck)|a− ãk〉

− 〈p̃k|a− ãk〉+ 〈A⊤p̃k|x− x̃k〉+ 〈p|Ax̃k − ãk〉 − 〈p̃k|Ax− a〉
= 〈Q1(c̃

k − ck)|x − x̃k〉+ 〈Q2(c̃
k − ck)|a− ãk〉+ 〈Ax̃k − ãk|p− p̃k〉

= 〈Q1(c̃
k − ck)|x − x̃k〉+ 〈Q2(c̃

k − ck)|a− ãk〉+ 〈Q3(c̃
k − ck)|p− p̃k〉 by (14)

= 〈Q(c̃k − ck)|c− c̃k〉.

(ii) By Lemma 3-(i) and Lemma 1-(i), we further develop:

Π(c̃i, c) ≤
〈
Q(c̃i − ci)

∣∣c− c̃i
〉

=
1

2

∥∥ci − c
∥∥2

S − 1

2

∥∥ci+1 − c
∥∥2
S − 1

2

∥∥ci − ci+1
∥∥2
M−⊤GM−1

.
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Then, summing up from i = 0 to k−1, we obtain
∑k−1

i=0 Π(c̃i, c) ≤ 1
2

∥∥c0−c
∥∥2
S .

Since Π(c̃i, c) is a convex function w.r.t. c̃i (by its definition), it yields that
1
k

∑k−1
i=0 Π(c̃i, c) ≥ Π

(
1
k

∑k−1
i=0 c̃i, c

)
, which completes the proof.

Noting that Lemma 3 is valid for any c ∈ RN × RM × RM , Π(c̃k, c) is
not a distance, since it may be negative. However, Π(c, c⋆) with c⋆ ∈ zerA is
essentially a particular instance of the generalized Bregman distance generated
by q(u) := f(x) + g(a) between any point u = (x, a) and a saddle point u⋆ =
(x⋆, a⋆). More specifically, 0 ≤ D♭

q(u,u
⋆) ≤ Π(c, c⋆) ≤ D♯

q(u,u
⋆). Indeed, the

generalized Bregman distance is given as

0 ≤ D♭
q(u,u

⋆) = q(u)− q(u⋆) + inf
v∈∂q(u⋆)

〈v|u⋆ − u〉

= f(x)− f(x⋆) + g(a)− g(a⋆) + inf
v∈∂f(x⋆)

〈v|x⋆ − x〉+ inf
t∈∂g(a⋆)

〈t|a⋆ − a〉

≤ f(x)− f(x⋆) + g(a)− g(a⋆) + 〈A⊤p⋆|x− x⋆〉 − 〈p⋆|a− a⋆〉
= f(x)− f(x⋆) + g(a)− g(a⋆) + 〈p⋆|Ax− a〉 (by Ax⋆ = a⋆)

= f(x)− f(x⋆) + g(a)− g(a⋆) + 〈p⋆|Ax− a〉 − 〈p|Ax⋆ − a⋆︸ ︷︷ ︸
=0

〉

= Π(c, c⋆) ≤ D♯
q(u,u

⋆), (15)

where the first inequality, i.e., the non-negativity of D♭
q(u,u

⋆), is due to the
convexity of q.

Then, we obtain the convergence rate of Π(ck, c⋆) in an ergodic sense.

Theorem 2 For all the Lagrangian-based algorithms shown in Table 1, the
generalized Bregman distance associated with f(x) + g(a) between the ergodic

point 1
k

∑k−1
i=0 c̃i and a saddle point c⋆ ∈ zerA has a rate of O(1/k):

0 ≤ Π

(
1

k

k−1∑

i=0

c̃i, c⋆
)

≤ 1

2k

∥∥c0 − c⋆
∥∥2
S ,

where {c̃i}i∈N and S are defined in Lemma 3 and 1.

Proof The first inequality (i.e. non-negativity) follows from (15). The second
inequality is concluded by simply taking c = c⋆ ∈ zerA in Lemma 3-(ii).

One can write down the specific form of ‖c0 − c⋆‖S for each Lagrangian
algorithm, according to the associated S. In particular, for LAG-I and LAG-II,

we have: Π
(
1
k

∑k
i=1 c

i, c⋆
)
≤ 1

2k

∥∥c0 − c⋆
∥∥2
Q (noting that c̃i = ci+1 due to

M = I).

Remark 3 (Degenerate case of Bregman distance) The generalized Bregman
distance D♭

q(u,u
⋆) or D♯

q(u,u
⋆) does not always reflect or control the distance

between any point u = (x, a) and a saddle point u⋆ = (x⋆, a⋆), particularly
for the non-strictly convex case of q. Consider a degenerate case of linear
functional, when f(x) = 〈x|v〉 with a constant vector v and g(a) = 0. Then,
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the Bregman distance between any two points u and u′ is always 0, since
D♭

q(u,u
′) = D♯

q(u,u
′) = Df (x,x

′) = 〈x|v〉−〈x′|v〉−〈v|x−x′〉 = 0. It implies
that the Bregman distance loses the control of the distance between (x, a) and
(x′, a′). Theorem 2 becomes more informative, when the involved functions f
and g are strictly convex.

3.4 The ergodic primal-dual gap

Considering L(x, a,p) given as (7), for given sets B1 ⊂ RN , B2 ⊂ RM and
B3 ⊂ RM , we introduce a primal-dual gap function restricted to B1×B2×B3

[6, Eq.(2.6)], [11, Sect. 3.1], [34, Eq.(2.14)]:

ΨB1×B2×B3
(c) = sup

p′∈B3

L(x, a,p′)− inf
(x′,a′)∈B1×B2

L(x′, a′,p), (16)

from which also follows that ΨB1×B2×B3
(c) = supc′∈B1×B2×B3

Π(c, c′).

Corollary 2 Under the conditions of Theorem 2, if the set B1 × B2 × B3 is
bounded, the primal-dual gap defined as (16) has the upper bound:

ΨB1×B2×B3

(
1

k

k−1∑

i=0

c̃i
)

≤ 1

2k
sup

c∈B1×B2×B3

∥∥c0 − c
∥∥2
S . (17)

Furthermore, ΨB1×B2×B3
( 1k

∑k−1
i=0 c̃i) ≥ 0, if the set B1 ×B2 ×B3 contains a

saddle point c⋆ = (x⋆, a⋆,p⋆) ∈ zerA.

Proof Since Lemma 3-(ii) is valid for any (x, a,p) ∈ RN ×RM ×RM , passing
to the supremum and infimum over (x, a) ∈ B1 × B2 and p ∈ B3 yields (17).
The non-negativity of ΨB1×B2×B3

follows from Theorem 2, since ΨB1×B2×B3(
1
k

∑k−1
i=0 c̃i

)
≥ Π

(
1
k

∑k−1
i=0 c̃i, c⋆

)
≥ 0, provided that B1 ×B2 ×B3 contains a

saddle point c⋆ ∈ zerA.

Remark 4 The ergodic primal-dual gap for specific algorithms has been given
in [11,12,34]. Our analysis of the primal-dual gap is general, easy and clear,
compared to the original complicated case studies of specific algorithms, e.g.
[11, Theorem 1-(b)], [6, Theorem 9-(b)] and [7, Theorem 2.1-(d)]. All the
results presented in Sect. 3.3 and 3.4 are valid for all Lagrangian-based algo-
rithms with the same monotone operator A, not limited to the listed ones.
More importantly, this observation also applies to other classes of algorithms,
see Sect. 4.2 and 5.2.

Remark 5 By Theorem 1, the multiplier {p̃k}k∈N converges and therefore lies
in some (unknown) bounded set B3 ⊂ RM . If domf and domg are bounded,
Corollary 2 could lead to an interesting result: the sequence of the objective
value of dual to (1) taken at the ergodic averaging point 1

k

∑k−1
i=0 c̃i converges

at the rate of O(1/k), namely, it holds that:

f∗
(
−A⊤

(1
k

k−1∑

i=0

p̃i
))

+ g∗
(
1

k

k−1∑

i=0

p̃i

)
− f∗(−A⊤p⋆)− g∗(p⋆) ≤ C/k, (18)
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for some constant C.
Indeed, if domf and domg are bounded, one can choose B1 = domf and

B2 = domg. Since the sequence {p̃k}k∈N lies in B3, and thus, 1
k

∑k−1
i=0 p̃i ∈ B3,

p⋆ ∈ B3. Denoting the ergodic averaging point by ĉk = 1
k

∑k−1
i=0 c̃i (x̂k, âk

and p̂k are defined similarly), using Fenchel-Young inequality [4, Proposition
13.15], we develop

ΨB1×B2×B3

(
ĉk
)

= sup
p′∈B3

L
(
x̂k, âk,p′)− inf

(x′,a′)∈B1×B2

L
(
x′, a′, p̂k

)

= sup
p′∈B3

q
(
ûk

)
+
〈
p′∣∣Uûk

〉
− inf

u′∈B1×B2

(
q(u′) +

〈
p̂k

∣∣Uu′〉) by (9)

≥ q
(
ûk

)
+
〈
U⊤p⋆

∣∣ûk
〉
+ q∗

(
−U⊤p̂k

)

≥ −q∗(−U⊤p⋆) + q∗
(
−U⊤p̂k

)
,

which, combining with Corollary 2, yields

q∗
(
−U⊤p̂k

)
− q∗(−U⊤p⋆) ≤ 1

2k
sup

c∈B1×B2×B3

∥∥c0 − c
∥∥2

S .

By the definitions of q and U of (9), q∗(−U⊤p) = f∗(−A⊤p) + g∗(p), which
exactly coincides with the dual of (1), which is given as (25). The conclusion
(18) is reached.

On the other hand, note that q∗(−U⊤p) = supu∈B1×B2

(
−q(u)−〈p|Uu〉

)
=

− infu∈B1×B2

(
q(u) + 〈p|Uu〉

)
= −minu L(u,p), and thus, the saddle-point

problem of L(u,p) (9) becomes

max
p

min
u

L(u,p) = max
p

(−q∗(−U⊤p)) = −min
p

q∗(−U⊤p),

which is essentially the minimization problem of the dual q∗(−U⊤·).
Finally, we stress that the convergence rate of O(1/k) of the dual value

holds for all the the Lagrangian-based algorithms shown in Table 1. However,
as contrary to Remark 7, it is difficult to obtain an a priori estimate of the
constant C, since the bounded set B3 is unknown in practice.

3.5 Reductions of some Lagrangian schemes

3.5.1 LAG-I and LAG-II

Table 2 shows that LAG-I and LAG-II can be expressed as a standard PPA (5)
with M = I. Both of them can be reduced to a simple resolvent by Corollary
1-(iii):

vk+1 :=
(
I +Q− 1

2 ◦ A ◦ Q− 1

2

)−1
vk, (19)

where vk = Q 1

2 ck, Q is specified in Table 2 for LAG-I or II.
LAG-II deserves particular attention, since the corresponding metric Q is

allowed to be degenerate.
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Low degeneracy of LAG-II Notice that M = 0 is allowed for LAG-II, which
becomes 

xk+1 := argminx f(x) +
1
2

∥∥Ax− ak + Γ−1pk
∥∥2
Γ
,

pk+1 = pk + Γ
(
Axk+1 − ak

)
,

ak+1 = proxΩg
(
ak +Ω−1(2pk+1 − pk)

)
.

Now, the metric Q is degenerate (i.e. positive semi-positive) with rankQ =
2M < dim(RN ×RM ×RM ) = N + 2M . The rank-deficiency of Q shows that
the variable x is redundant that does not really take part in the iterations of
LAG-II. We can reduce LAG-II based on the analysis of [8].

Proposition 3 LAG-II with M = 0 and Ω ≻ Γ can be expressed as the
following resolvent:

vk+1 =
(
I +D(L+K⊤ ◦ ∂f∗ ◦ K)D

)−1
vk,

where D =

[
Ω −IM

−IM Γ−1

]− 1

2

, L =

[
∂g −IM
IM 0

]
, K =

[
0 −A⊤]. Here, the vari-

able v is linked to (a,p) in LAG-II via: vk :=

[
Ω −IM

−IM Γ−1

] 1

2

[
ak

pk

]
∈ RM×RM .

Proof Q of LAG-II can be decomposed as: Q =

[
0
D

] [
0 D⊤], where DD⊤ =

[
Ω −IM

−IM Γ−1

]
. For simplicity, one can choose D = D⊤ =

[
Ω −IM

−IM Γ−1

] 1

2

. The

standard PPA form (5) becomes

ck+1 =

(
A+

[
0
D

] [
0 D⊤]

)−1 [
0
D

] [
0 D⊤] ck.

Let vk :=
[
0 D⊤] ck = D⊤

[
ak

pk

]
∈ RM ×RM . By [8, Theorem 2.13], we obtain

the reduced PPA:

vk+1 =
[
0 D⊤]

(
A+

[
0
D

] [
0 D⊤]

)−1 [
0
D

]
vk

=

(
I +

([
0 D⊤]A−1

[
0
D

])−1)−1

vk :=
(
I + Ã

)−1
vk.

To evaluate Ã, we rewrite A =

[
∂f −K
K⊤ L

]
, where L =

[
∂g −IM
IM 0

]
, K =

[
0 −A⊤]. Then,

R = A−1

[
0
D

]
=

[
∂f −K
K⊤ L

]−1 [
0
D

]
=

[
R1

R2

]
,
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which yields the solution: R2 = (L+K⊤ ◦ ∂f∗ ◦ K)−1D. Thus,

Ã =

([
0 D⊤]A−1

[
0
D

])−1

= (
[
0 D⊤]R)−1 = (D⊤R2)

−1,

Substituting R2 into above concludes the proof.

High degeneracy of LAG-II Furthermore, if M = 0 and Ω = Γ = IM , LAG-II
becomes 

xk+1 := argminx f(x) +
1
2

∥∥Ax− ak + pk
∥∥2,

pk+1 = pk +Axk+1 − ak,
ak+1 = proxg

(
ak + 2pk+1 − pk

)
.

(20)

Now, the corresponding metric Q is ‘more’ degenerate with rankQ = M . The
following result shows that the active variable of LAG-II is actually ak − pk.

Proposition 4 LAG-II with M = 0 and Ω = Γ = IM can be expressed as

vk+1 =
(
I + (D̃⊤(L+K⊤ ◦ ∂f∗ ◦ K)−1D̃)−1

)−1
vk,

where D̃ =
[
IM −IM

]⊤
, L =

[
∂g −IM
IM 0

]
, K =

[
0 −A⊤]. Here, the variable v

is linked to (a,p) in LAG-II via: vk := ak − pk ∈ R
M .

Proof In this case, Q of LAG-II can be decomposed as: Q = DD⊤ where

D =
[
0 IM −IM

]⊤
. The standard PPA form (5) becomes: ck+1 =

(
A +

DD⊤)−1DD⊤ck. Finally, the proof is completed, by [8, Theorem 2.13] and
the proof of Proposition 3.

The active variable of (20) can also be identified without the degenerate
PPA analysis, as shown below.

From (20), we have

ak+1 − pk+1 = proxg
(
ak + 2pk+1 − pk

)
− pk −Axk+1 + ak.

Denoting vk := ak − pk, it becomes

vk+1 = proxg
(
vk + 2pk+1

)
+ vk −Axk+1

= proxg
(
vk + 2pk + 2Axk+1 − 2ak

)
+ vk −Axk+1

= proxg
(
2Axk+1 − vk

)
+ vk −Axk+1

= proxg
(
2proxA⊲f (v

k)− vk
)
+ vk − proxA⊲f (v

k)

=
(
proxg ◦

(
2proxA⊲f − I

)
+ I − proxA⊲f

)
(vk)

=
(
proxg ◦

(
2(I − proxf∗◦A⊤)− I

)
+ proxf∗◦A⊤

)
(vk) (by Lemma 2)

=
(
proxg ◦

(
I − 2proxf∗◦A⊤

)
+ proxf∗◦A⊤

)
(vk)

which shows that (20) is essentially a DRS algorithm (see Eq.(26)).
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3.5.2 LAG-VI and the related standard ADMM/DRS

It seems more interesting to investigate the degenerate case of LAG-VI, which
is a representative ADMM-type algorithm.

Table 2 shows that the corresponding PPA of LAG-VI has a non-trivial
relaxation step (i.e. M 6= I). This also coincides with a pioneering work of
[27, Sect. 3]. Due to the non-trivial relaxation, it is difficult to obtain the
equivalent resolvent from this PPA interpretation. Can LAG-VI be written in
a standard PPA form without relaxation step? To achieve this, by changing
variable of pk := zk − Γak, LAG-VI becomes (with a flipped update order of
x → z → a)

xk+1 := proxM+A⊤ΓA

f

(
(M+A⊤ΓA)−1(Mxk + 2A⊤Γak −A⊤zk)

)
,

zk+1 := zk + Γ(Axk+1 − ak),
ak+1 := proxΩ+Γ

g

(
(Ω+ Γ)−1((Ω− Γ)ak + ΓAxk+1 + zk)

)
.

(21)

It is easy to verify that (21) corresponds to the standard PPA form (i.e. M =
I):



0
0
0


 ∈



∂f −A⊤Γ A⊤

ΓA ∂g −IM
−A IM 0





xk+1

ak

zk+1


+



M 0 0
0 Ω 0
0 0 Γ−1





xk+1 − xk

ak − ak−1

zk+1 − zk


 .

Non-degenerate case: proximal ADMM If M ≻ 0 and Ω ≻ 0, Q is non-
degenerate. By Corollary 1-(iii), the equivalent resolvent is given as (19), where
A and Q are specified as above, vk is related to (x, a,p) of (22) and (x, a, z) of

(23) via: vk = Q 1

2 ck = (M
1

2xk,Ω
1

2ak−1,Γ− 1

2 zk) = (M
1

2xk,Ω
1

2 ak−1,Γ− 1

2pk+

Γ
1

2 ak) .

Degenerate case: standard ADMM If M = 0, Ω = 0 and Γ = γIM , LAG-VI
boils down to a standard ADMM [46, Eq.(4)]:


xk+1 := argminx f(x) +

γ
2

∥∥Ax− ak + 1
γp

k
∥∥2,

ak+1 := proxg/γ
(
Axk+1 + 1

γp
k
)
,

pk+1 := pk + γ(Axk+1 − ak+1).

(22)

By the variable changing of pk := zk − γak, (22) becomes (with a flipped
update order of x → z → a)


xk+1 := argminx f(x) +

γ
2

∥∥Ax− 2ak + 1
γ z

k
∥∥2,

zk+1 := zk + γ(Axk+1 − ak),
ak+1 := proxg/γ

(
1
γ z

k+1
)
.

(23)

It is easy to verify that (23) corresponds to the standard PPA form (i.e.,
M = I):



0
0
0


 ∈



∂f −γA⊤ A⊤

γA ∂g −IM
−A IM 0





xk+1

ak

zk+1


+



0 0 0
0 0 0
0 0 1

γ IM





xk+1 − xk

ak − ak−1

zk+1 − zk


 . (24)
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The degenerate (i.e., positive semi-definite) metric Q indicates the redun-
dancy of the variables x and a. Based on the recent result of [8, Theorem 2.13],
the standard ADMM (22) or (23) can be reduced to a simple resolvent.

Theorem 3 The ADMM scheme (23), being equivalent to (22), can be ex-
pressed as

vk+1 = (I + γK⊤L−1K)−1vk,

where L =

[
∂f −γA⊤

γA ∂g

]
, K =

[
−A IM

]⊤
. Here, the variable v is linked to z

in (23) and (a,p) in (22) via vk = 1√
γ z

k = 1√
γp

k +
√
γak ∈ RM .

Proof Q in (24) can be decomposed as Q = DD⊤ =




0
0

1√
γ IM



[
0 0 1√

γ IM
]
.

Then, the standard PPA form (24) becomes ck+1 = (A+DD⊤)−1DD⊤ck. Let
vk := D⊤ck = 1√

γ z
k. Finally, the result can be obtained by [8, Theorem 2.13]

and similar proof of Proposition 3.

Connection to standard DRS It is well known that the ADMM scheme (22)
is equivalent to the standard DRS algorithm [31] applied to the dual problem
of (1) (see [41, Eq.(2)] for example):

min
p

f∗(−A⊤p) + g∗(p), (25)

which reads as

zk+1 := zk − JγB2
(zk) + JγB1

(
2JγB2

(zk)− zk
)
, (26)

where B1 = (−A) ◦ ∂f∗ ◦ (−A⊤), B2 = ∂g∗, JB denotes a resolvent of B:
JB = (I+B)−1. The solution to (25) is given as: p⋆ = JγB2

(z⋆) = proxγg∗(z⋆).
Let us first examine the equivalence between ADMM (22) or (23) and DRS

(26), though this fact has long been recognized. By the development of (26):

wk+1 := JγB1

(
2pk − zk

)
,

zk+1 := zk +wk+1 − pk,
pk+1 := proxγB2

(
zk+1

)
.

By the similar technique of [11, Sect. 4.2], we obtain by duality that:


xk+1 := argminx f(x) +
γ
2

∥∥Ax+ 1
γ (2p

k − zk)
∥∥2,

wk+1 := 2pk − zk + γAxk+1,
zk+1 := zk +wk+1 − pk,

ak+1 := argminu g(a) +
γ
2

∥∥a− 1
γ z

k+1
∥∥2,

pk+1 := zk+1 − γak+1.

Finally, (22) can be obtained by keeping (x, a,p) and removing (w, z); while
(23) is from keeping (x, a, z) and removing (w,p).
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The above equivalence implies that Theorem 3 also applies to the DRS
iteration (26). Recall that the equivalence between DRS (26) and PPA was
discussed in an early seminal work of [19], where the DRS (26) was shown
to be equivalent to a resolvent with an implicit expression of the associated
maximally monotone operator (see [19, Sect. 4]). Here, Theorem 3 shows an-
other equivalent resolvent of DRS (26), with an explicit form of the monotone
operator. However, the equivalence or connection between both forms requires
further study.

4 Operator splitting based on primal-dual form

4.1 The PDS algorithms and their PPA interpretations

We then consider the alternating optimization of the primal-dual form [46,
Eq.(7)]:

min
x

max
p

L(x,p) := f(x) + p⊤Ax− g∗(p), (27)

which gives rise to the PDS algorithms shown in Table 4. PDS-I,II,V,VI and
VII can be found in [46, Sect. 5]. Tables 5–6 show their equivalent PPA forms,
by noting that:

– PDS-I and PDS-II correspond to symmetric Q (without relaxation): the
off-diagonal parts of bothQ have opposite signs, which results in the reverse
update orders of x and p;

– PDS-III and PDS-V correspond to lower triangular Q;
– PDS-IV and PDS-VI correspond to upper triangular Q;
– PDS-VII corresponds to skew-symmetric Q.

The connections of the proposed PDS algorithms to the previous works,
e.g. [17, Algorithms 5.1 and 5.2], [14, Theorems 3.1 and 4.2] and [7, Algorithm
2.1], have been discussed in [46, Sect. 5].

4.2 The generalized Bregman distance and ergodic primal-dual gap

Similar to Sect. 3.3 and 3.4, the unified PPA framework also facilitates the
gap analysis for the PDS algorithms.

Lemma 4 Given the primal-dual form L(x,p) as (27), consider all the PDS
schemes listed in Table 4, where c̃k = (x̃k, p̃k) denotes the proximal output,
when the schemes are interpreted by the PPA (shown in Table 5). Then, the
following holds, ∀c = (x,p) ∈ RN × RM :

(i) Π(c̃k, c) ≤
〈
Q(c̃k − ck)

∣∣c− c̃k
〉
,

(ii) Π
(
1
k

∑k−1
i=0 c̃i, c

)
≤ 1

2k

∥∥c0 − c
∥∥2

S .
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Table 4 The proposed PDS algorithms

name iterative scheme

PDS-I

[46, Eq.(26)]

⌊

xk+1 := prox
M

f

(

xk −M−1A⊤pk
)

pk+1 := prox
Γ

g∗

(

pk + Γ−1A(2xk+1 − xk)
)

PDS-II

[46, Eq.(29)]

⌊

pk+1 := prox
Γ

g∗ (pk + Γ−1Axk)

xk+1 := prox
M

f

(

xk −M−1A⊤(2pk+1 − pk)
)

PDS-III









pk+1 := prox
Γ

g∗

(

pk + Γ−1Axk
)

x̃k := prox
M

f
(xk −M−1A⊤pk+1)

xk+1 := x̃k −M−1A⊤Γ−1A(x̃k − xk) −M−1A⊤(pk+1 − pk)

PDS-IV









xk+1 := prox
M

f

(

xk −M−1A⊤pk
)

p̃k := prox
Γ

g∗ (pk + Γ−1Axk+1)

pk+1 := p̃k − Γ−1AM−1A⊤(p̃k − pk) + Γ−1A(xk+1 − xk)

PDS-V

[46, Eq.(30)]









p̃k := prox
Γ

g∗

(

pk + Γ−1Axk
)

xk+1 := prox
M

f
(xk −M−1A⊤pk+1)

pk+1 := p̃k − Γ−1A(xk+1 − xk)

PDS-VI

[46, Eq.(31)]









x̃k := prox
M

f

(

xk −M−1A⊤pk
)

pk+1 := prox
Γ

g∗ (pk + Γ−1Ax̃k)

xk+1 := x̃k −M−1A⊤(pk+1 − pk)

PDS-VII

[46, Eq.(32)]













x̃k := prox
M

f

(

xk −M−1A⊤pk
)

p̃k := prox
Γ

g∗ (pk + Γ−1Axk)

xk+1 := x̃k −M−1A⊤(p̃k − pk)
pk+1 := p̃k + Γ−1A(x̃k − xk)

Table 5 The PPA reinterpretations of the proposed PDS algorithms

schemes c A Q M

PDS-I

[

x

p

] [

∂f A⊤

−A ∂g∗

]

[

M −A⊤

−A Γ

]

IM+N

PDS-II

[

M A⊤

A Γ

]

PDS-III

[

M 0

A Γ

] [

IN −M−1A⊤Γ−1A −M−1A⊤

0 IM

]

PDS-IV

[

M −A⊤

0 Γ

] [

IN 0

Γ−1A IM − Γ−1AM−1A⊤

]

PDS-V

[

M 0

A Γ

] [

IN 0

Γ−1A IM

]

PDS-VI

[

M −A⊤

0 Γ

] [

IN −M−1A⊤

0 IM

]

PDS-VII

[

M −A⊤

A Γ

] [

IN −M−1A⊤

Γ−1A IM

]

Proof (i) First, note that the proximal step of all the PDS schemes listed in
Table 4 can be written as:

[
0
0

]
∈
[
∂f A⊤

−A ∂g∗

] [
x̃k

p̃k

]
+

[
—Q1—
—Q2—

]
(c̃k − ck),

which is ⌊
0 ∈ ∂f(x̃k) +A⊤p̃k +Q1(c̃

k − ck),
0 ∈ ∂g∗(p̃k)−Ax̃k +Q2(c̃

k − ck).
(28)
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Table 6 The corresponding S and G of the proposed PDS algorithms
schemes S G convergence condition

PDS-I

[

M −A⊤

−A Γ

] [

M −A⊤

−A Γ

]

M,Γ ∈ S++

M ≻ A⊤Γ−1A

or Γ ≻ AM−1A⊤

PDS-II

[

M A⊤

A Γ

] [

M A⊤

A Γ

]

PDS-III

[

M−1 −M−1A⊤Γ−1

−Γ−1AM−1 Γ−1

]−1 [

M + A⊤Γ−1A A⊤

A Γ

]

PDS-IV

[

M−1 M−1A⊤Γ−1

Γ−1AM−1 Γ−1

]−1 [

M −A⊤

−A Γ + AM−1A⊤

]

PDS-V

[

M 0

0 Γ

]

[

M−A⊤Γ−1A 0

0 Γ

]

M,Γ ∈ S++

M ≻ A⊤Γ−1A

PDS-VI

[

M 0

0 Γ−AM−1A⊤

]

M,Γ ∈ S++

Γ ≻ AM−1A⊤

PDS-VII

[

M−A⊤Γ−1A 0

0 Γ−AM−1A⊤

] M,Γ ∈ S++

M ≻ A⊤Γ−1A

Γ ≻ AM−1A⊤

Then, by convexity of f and g∗, we develop:

f(x) ≥ f(x̃k) + 〈∂f(x̃k)|x− x̃k〉
= f(x̃k)− 〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃

k − ck)|x− x̃k〉, by (28)

and

g∗(p) ≥ g∗(p̃k) + 〈∂g∗(p̃k)|p− p̃k〉
= g∗(ãk) + 〈Ax̃k|p− p̃k〉 − 〈Q2(c̃

k − ck)|p− p̃k〉. by (28)

Summing up both inequalities yields

f(x) + g∗(p)− f(x̃k)− g∗(p̃k) ≥ −〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃
k − ck)|x− x̃k〉

+ 〈Ax̃k|p− p̃k〉 − 〈Q2(c̃
k − ck)|p− p̃k〉.

Finally, we have

L(x̃k,p)− L(x, p̃k)

= f(x̃k) + g∗(p̃k)− f(x)− g∗(p) + 〈p|Ax̃k〉 − 〈p̃k|Ax〉
≤ 〈Q1(c̃

k − ck)|x − x̃k〉+ 〈Q2(c̃
k − ck)|p− p̃k〉

+ 〈p|Ax̃k〉 − 〈p̃k|Ax〉+ 〈A⊤p̃k|x− x̃k〉 − 〈Ax̃k|p− p̃k〉
= 〈Q1(c̃

k − ck)|x − x̃k〉+ 〈Q2(c̃
k − ck)|p− p̃k〉

= 〈Q(c̃k − ck)|c− c̃k〉.

(ii) similar to the proof of Lemma 3-(ii).

Similar to the Lagrangian schemes, for the PDS schemes, Π(c, c⋆) with
c⋆ ∈ zerA essentially belongs to the generalized Bregman distance associated
with q(c) := f(x) + g∗(p) between any point c = (x,p) and a saddle point
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c⋆ = (x⋆,p⋆), which satisfies 0 ≤ D♭
q(c, c

⋆) ≤ Π(c, c⋆) ≤ D♯
q(c, c

⋆). Indeed,
the generalized Bregman distance is given as

0 ≤ D♭
q(c, c

⋆) = inf
v∈∂q(c⋆)

q(c) − q(c⋆) + 〈v|c⋆ − c〉

= f(x)− f(x⋆) + inf
v∈∂f(x⋆)

〈v|x⋆ − x〉+ g∗(p)− g∗(p⋆) + inf
t∈∂g∗(p⋆)

〈t|p⋆ − p〉

≤ f(x)− f(x⋆) + 〈A⊤p⋆|x− x⋆〉+ g∗(p)− g∗(p⋆)− 〈Ax⋆|p− p⋆〉
= f(x)− f(x⋆) + g∗(p)− g∗(p⋆) + 〈Ax|p⋆〉 − 〈Ax⋆|p〉
= L(x,p⋆)− L(x⋆,p)

= Π(c, c⋆) ≤ D♯
q(c, c

⋆).

Then, we obtain the convergence rate of Π(ck, c⋆) in an ergodic sense.

Theorem 4 For all the PDS algorithms shown in Table 4, the generalized
Bregman distance generated by f(x)+g∗(p) between the ergodic point 1

k

∑k−1
i=0 c̃i

and a saddle point c⋆ ∈ zerA has a rate of O(1/k):

0 ≤ Π

(
1

k

k−1∑

i=0

c̃i, c⋆
)

≤ 1

2k

∥∥c0 − c⋆
∥∥2
S ,

where {c̃i}i∈N and S are defined in Lemma 4 and 1.

The proof is similar to Theorem 2.

Likewise, for the class of PDS algorithms, for given sets B1 ⊂ RN and
B2 ⊂ RM , the primal-dual gap function restricted to B1 ×B2 is defined as:

ΨB1×B2
(c) = sup

p′∈B2

L(x,p′)− inf
x′∈B1

L(x′,p), (29)

which has the upper bound:

Corollary 3 Under the conditions of Theorem 4, if the set B1×B2 is bounded,
the ergodic primal-dual gap defined as (29) has the upper bound:

ΨB1×B2

(
1

k

k−1∑

i=0

c̃i
)

≤ 1

2k
sup

c∈B1×B2

∥∥c0 − c
∥∥2

S .

Furthermore, ΨB1×B2
( 1k

∑k−1
i=0 c̃i) ≥ 0, if the set B1 × B2 contains a saddle

point c⋆ = (x⋆,p⋆) ∈ zerA.

The proof is similar to Corollary 2.

Remark 6 For PDS-I and II with corresponding M = I, Theorem 4 and

Corollary 3 can be simplified as Π
(
1
k

∑k
i=1 c

i, c⋆
)
≤ 1

2k

∥∥c0−c⋆
∥∥2
Q and ΨB1×B2(

1
k

∑k
i=1 c

i
)
≤ 1

2k supc∈B1×B2

∥∥c0 − c
∥∥2
Q.
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Remark 7 Similarly to Remark 5, under additional conditions on f and g∗,
one can obtain the convergence rate of O(1/k) of the sequence of the primal

value of (1), evaluated at the ergodic averaging point 1
k

∑k−1
i=0 c̃i, namely, it

holds that:

f

(
1

k

k−1∑

i=0

x̃i

)
+ g

(
A
(1
k

k−1∑

i=0

x̃i
))

− f(x⋆)− g(Ax⋆) ≤ 1

2k
sup

c∈B1×B2

∥∥c0 − c
∥∥2

S .

(30)
Indeed, if domf and domg∗ are bounded, then we can simply take the

sets B1 = domf and B2 = domg∗. Denoting the ergodic averaging points
by ĉk = 1

k

∑k−1
i=0 c̃i (x̂k and p̂k are defined similarly), using Fenchel-Young

inequality [4, Proposition 13.15], we develop

ΨB1×B2

(
ĉk
)

= sup
p′∈B2

L
(
x̂k,p′)− inf

x′∈B1

L
(
x′, p̂k

)

= sup
p′∈B2

f
(
x̂k

)
+
〈
p′∣∣Ax̂k

〉
− g∗(p′)− inf

x′∈B1

(
f(x′) +

〈
p̂k

∣∣Ax′〉− g∗
(
p̂k

))

≥ f
(
x̂k

)
+ g

(
Ax̂k

)
+ g∗

(
p̂k

)
− f(x⋆)−

〈
p̂k

∣∣Ax⋆
〉

≥ f
(
x̂k

)
+ g

(
Ax̂k

)
− f(x⋆)− g(Ax⋆),

which, combining with Corollary 3, yields (30). Still, (30) holds for all the PDS
algorithms shown in Table 4.

4.3 Reductions of some PDHG algorithms

By Corollary 1-(iii), PDS-I and II can be reduced to a simple resolvent (19),

where vk = Q 1

2 ck, Q is specified in Table 5 for PDS-I or II.

A degenerate case In particular, if A = IN , M = IN , Γ = IN , then, Q =[
IN −IN
−IN IN

]
for PDS-I orQ =

[
IN IN
IN IN

]
for PDS-II, which becomes degenerate.

The convergence of this case, which is not covered by Table 6, can be answered
by the degenerate analysis.

As an example, let us consider PDS-I, which becomes
⌊
xk+1 := proxf

(
xk − pk

)
,

pk+1 := proxg∗

(
pk + 2xk+1 − xk

)
.

(31)

The metric Q can be decomposed as Q = DD⊤ =

[
IN
−IN

] [
IN −IN

]
. Then,

following the procedure similar to Proposition 3, we obtain the reduced PPA
as:

vk+1 =
(
I + (D⊤A−1D)−1

)−1
vk,

where vk = D⊤ck = xk − pk.
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The active variable of (31) can also be identified without the degenerate
PPA analysis. Indeed, from (31), we have

xk+1 − pk+1 = proxf
(
xk − pk

)
− proxg∗

(
pk + 2xk+1 − xk

)
.

Denoting vk := xk − pk, it becomes

vk+1 = proxf
(
vk

)
− proxg∗

(
2xk+1 − vk

)

= proxf
(
vk

)
− proxg∗

(
2proxf (v

k)− vk
)

=
(
proxf − proxg∗ ◦ (2proxf − I)

)
(vk)

=
(
proxf − (I − proxg) ◦ (2proxf − I)

)
(vk)

=
(
I − proxf + proxg ◦ (2proxf − I)

)
(vk),

which shows that (31) is essentially a DRS algorithm.

5 Operator splitting based on mixed strategies

Consider the hybrid strategy proposed in [46, Sect. 6], which aims at minimiz-
ing [46, Eq.(34)]:

min
x

f(x) + g(Ax) + h(Bx), (32)

where x ∈ RN , A : RN 7→ RM1 , B : RN 7→ RM2 , f : RN 7→ R ∪ {+∞},
g : RM1 7→ R ∪ {+∞}, h : RM2 7→ R ∪ {+∞}.

5.1 The hybrid schemes and their PPA interpretations

Taking Lagrangian of g, and applying primal-dual to h in (32) yields [46,
Eq(35)]:

L(x, a,b,p) := f(x) + g(a) + p⊤(Ax− a) + b⊤Bx− h∗(b), (33)

or

LΘ(x, a,b,p) := f(x)+g(a)+p⊤(Ax−a)+
1

2

∥∥A−a
∥∥2
Θ
+b⊤Bx−h∗(b), (34)

where p ∈ RM1 , a ∈ RM1 , b ∈ RM2 , we devise the hybrid schemes based on
the alternating optimization of (33) or (34), shown in Table 7. MIX-I,III,IV
and V can be found in [46, Sect. 6], and are extended to general proximal
metrics here.

The hybrid schemes can be interpreted by alternating optimization. For
instance, the x-updates of MIX-I, MIX-II, MIX-IV and MIX-V are from non-
augmented (33):

xk+1 := argmin
x

L(x, ak,bk,pk) +
1

2
‖x− xk‖2M.
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Table 7 The proposed hybrid algorithms

name iterative scheme

MIX-I

[46, Eq.(36)]













xk+1 = prox
M

f

(

xk −M−1(A⊤pk + B⊤bk)
)

ak+1 = prox
Ω
g (ak + Ω−1pk)

bk+1 = prox
Γ
−1

h∗ (bk + ΓB(2xk+1 − xk))
pk+1 = pk + Θ

(

A(2xk+1 − xk) − (2ak+1 − ak)
)

MIX-II













xk+1 = prox
M

f

(

xk −M−1(B⊤bk + A⊤pk)
)

pk+1 := pk + Θ
(

A(2xk+1 − xk) − ak
)

ak+1 = prox
Ω
g

(

ak + Ω−1(2pk+1 − pk)
)

bk+1 = prox
Γ
−1

h∗

(

bk + ΓB(2xk+1 − xk)
)

MIX-III

[46, Eq.(39)]















xk+1 := prox
M+A

⊤
ΘA

f

(

(M + A⊤ΘA)−1(Mxk + A⊤Θak −B⊤bk −A⊤pk)
)

pk+1 := pk + Θ
(

Axk+1 − ak
)

ak+1 = prox
Ω
g (ak + Ω−1(2pk+1 − pk))

bk+1 = prox
Γ
−1

h∗ (bk + ΓB(2xk+1 − xk))

MIX-IV

[46, Eq.(40)]













xk+1 = prox
M

f

(

xk −M−1(A⊤pk + B⊤bk)
)

ak+1 = prox
Ω+Θ
g

(

(Ω + Θ)−1(Ωak + pk + ΘAxk+1)
)

bk+1 = prox
Γ
−1

h∗ (bk + ΓBxk+1) + ΓB(xk+1 − xk)
pk+1 = pk + Θ(2Axk+1 −Axk − ak+1)

MIX-V

[46, Eq.(37)]













xk+1 = prox
M

f

(

xk −M−1(A⊤pk + B⊤bk)
)

ak+1 = prox
Ω
g (ak + Ω−1pk)

bk+1 = prox
Γ
−1

h∗ (bk + ΓBxk+1) + ΓB(xk+1 − xk)
pk+1 = pk + Θ

(

A(2xk+1 − xk) − (2ak+1 − ak)
)

MIX-VI















xk+1 := prox
M+A

⊤
ΘA

f

(

(M + A⊤ΘA)−1(Mxk + A⊤Θak −B⊤bk −A⊤pk)
)

ak+1 := prox
Ω
g

(

ak + Ω−1(ΘAxk+1 −Θak + pk)
)

bk+1 := prox
Γ
−1

h∗

(

bk + ΓB(2xk+1 − xk)
)

pk+1 := pk + Θ
(

Axk+1 − ak+1
)

Table 8 The PPA reinterpretations of the hybrid algorithms

schemes c A Q M

MIX-I









x

a

b

p

















∂f 0 B⊤ A⊤

0 ∂g 0 −IM1

−B 0 ∂h∗ 0

−A IM1
0 0

















M 0 −B⊤ −A⊤

0 Ω 0 IM1

−B 0 Γ−1 0

−A IM1
0 Θ−1









IN+2M1+M2
MIX-II









M 0 −B⊤ −A⊤

0 Ω 0 −IM1

−B 0 Γ−1 0

−A −IM1
0 Θ−1









MIX-III









M 0 −B⊤ 0

0 Ω 0 −IM1

−B 0 Γ−1 0

0 −IM1
0 Θ−1









MIX-IV









M 0 −B⊤ −A⊤

0 Ω 0 0

0 0 Γ−1 0

0 0 0 Θ−1

















IN 0 0 0

0 IM1
0 0

ΓB 0 IM2
0

ΘA 0 0 IM1









MIX-V









M 0 −B⊤ −A⊤

0 Ω 0 IM1

0 0 Γ−1 0

0 0 0 Θ−1

















IN 0 0 0

0 IM1
0 0

ΓB 0 IM2
0

ΘA −Θ 0 IM1









MIX-VI









M 0 −B⊤ 0

0 Ω 0 0

−B 0 Γ−1 0

0 −IM1
0 Θ−1

















IN 0 0 0

0 IM1
0 0

0 0 IM2
0

0 −Θ 0 IM1









The a-updates of MIX-I, MIX-II, MIX-III and MIX-V are from non-augmented
(33). The a-update of MIX-I, for instance, is

ak+1 := argmin
a

L(xk, a,bk,pk) +
1

2
‖a− ak‖2Ω.
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Table 9 The corresponding S and G of the hybrid algorithms
schemes S G convergence condition

MIX-I









M 0 −B⊤ −A⊤

0 Ω 0 IM1

−B 0 Γ−1 0

−A IM1
0 Θ−1

















M 0 −B⊤ −A⊤

0 Ω 0 IM1

−B 0 Γ−1 0

−A IM1
0 Θ−1









M,Ω,Θ,Γ ∈ S++

M ≻ A⊤ΘA + B⊤ΓB

Ω ≻ ΘMIX-II









M 0 −B⊤ −A⊤

0 Ω 0 −IM1

−B 0 Γ−1 0

−A −IM1
0 Θ−1

















M 0 −B⊤ −A⊤

0 Ω 0 −IM1

−B 0 Γ−1 0

−A −IM1
0 Θ−1









MIX-III









M 0 −B⊤ 0

0 Ω 0 −IM1

−B 0 Γ−1 0

0 −IM1
0 Θ−1

















M 0 −B⊤ 0

0 Ω 0 −IM1

−B 0 Γ−1 0

0 −IM1
0 Θ−1









M,Ω,Γ,Θ ∈ S++

M ≻ B⊤ΓB

Ω ≻ Θ

MIX-IV









M + A⊤ΘA + B⊤ΓB 0 −B⊤ −A⊤

0 Ω 0 0

−B 0 Γ−1 0

−A 0 0 Θ−1

















M 0 −B⊤ −A⊤

0 Ω 0 0

−B 0 Γ−1 0

−A 0 0 Θ−1









M,Θ,Γ ∈ S++

Ω ∈ S+

M ≻ A⊤ΘA + B⊤ΓB

MIX-V









M + A⊤ΘA + B⊤ΓB −A⊤Θ −B⊤ −A⊤

−ΘA Ω + Θ 0 IM1

−B 0 Γ−1 0

−A IM1
0 Θ−1

















M 0 B⊤ A⊤

0 Ω 0 IM1

B 0 Γ−1 0

A IM1
0 Θ−1









M,Ω,Θ,Γ ∈ S++

M ≻ A⊤ΘA + B⊤ΓB

Ω ≻ Θ

MIX-VI









M 0 −B⊤ 0

0 Ω 0 0

−B 0 Γ−1 0

0 0 0 Θ−1

















M 0 −B⊤ 0

0 Ω−Θ 0 0

−B 0 Γ−1 0

0 0 0 Θ−1









M,Ω,Θ,Γ ∈ S++

M ≻ B⊤ΓB

Ω ≻ Θ

The x-updates of MIX-III and MIX-VI are from augmented (34):

xk+1 := argmin
x

LΘ(x, ak,bk,pk) +
1

2
‖x− xk‖2M.

The a-update of MIX-VI is from

ak+1 := argmin
a

LΘ(xk, a,bk,pk) +
1

2
‖a− ak‖2Ω.

Following the discussion of [46, Sect. 6], it is easy to verify that MIX-I and
III can be reduced to PDS-I under a certain conditions.

Again, the preconditioning can be applied to the x-updates of MIX-III,IV
or a-update of MIX-IV.

5.2 The generalized Bregman distance and ergodic primal-dual gap

Similar to Sect. 3.4 and 4.2, the PPA framework could also provide a unified
treatment of the primal-dual gap of the hybrid algorithms.

Lemma 5 Given the hybrid form L(x, a,b,p) as (33), consider all the hybrid
schemes listed in Table 7, where c̃k = (x̃k, ãk, b̃k, p̃k) denotes the proximal
output, when the schemes are interpreted by the PPA (shown in Table 8).
Then, the following holds, ∀c = (x, a,b,p) ∈ RN × RM1 × RM2 × RM1 :

(i) Π(c̃k, c) ≤
〈
Q(c̃k − ck)

∣∣c− c̃k
〉
,

(ii) Π
(
1
k

∑k−1
i=0 c̃i, c

)
≤ 1

2k

∥∥c0 − c
∥∥2

S .
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Proof (i) First, note that the proximal step of all the hybrid schemes listed in
Table 7 can be written as:




0
0
0
0


 ∈




∂f 0 B⊤ A⊤

0 ∂g 0 −IM1

−B 0 ∂h∗ 0
−A IM1

0 0







x̃k

ãk

b̃k

p̃k


+




—Q1—
—Q2—
—Q3—
—Q4—


 (c̃k − ck),

which is 

0 ∈ ∂f(x̃k) +B⊤b̃k +A⊤p̃k +Q1(c̃
k − ck),

0 ∈ ∂g(ãk)− p̃k +Q2(c̃
k − ck),

0 ∈ ∂h∗(b̃k)−Bx̃k +Q3(c̃
k − ck),

0 = −Ax̃k + ãk +Q4(c̃
k − ck).

(35)

Then, by convexity of f , g and h∗, we develop:

f(x) ≥ f(x̃k) + 〈∂f(x̃k)|x− x̃k〉
= f(x̃k)− 〈B⊤b̃k|x− x̃k〉 − 〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃

k − ck)|x− x̃k〉, by (35)

g(a) ≥ g(ãk) + 〈∂g(ãk)|a− ãk〉
= g(ãk) + 〈p̃k|a− ãk〉 − 〈Q2(c̃

k − ck)|a − ãk〉, by (35)

h∗(b) ≥ h∗(b̃k) + 〈∂h∗(b̃k)|b− b̃k〉
= h∗(b̃k) + 〈Bx̃k|b− b̃k〉 − 〈Q3(c̃

k − ck)|b− b̃k〉. by (35)

Summing up the above three inequalities yields

f(x) + g(a)− f(x̃k)− g(ãk) + h∗(b) − h∗(b̃k)

≥ −〈B⊤b̃k|x− x̃k〉 − 〈A⊤p̃k|x− x̃k〉 − 〈Q1(c̃
k − ck)|x− x̃k〉

+ 〈p̃k|a− ãk〉 − 〈Q2(c̃
k − ck)|a − ãk〉

+ 〈Bx̃k|b− b̃k〉 − 〈Q3(c̃
k − ck)|b− b̃k〉.

Finally, we have

L(x̃k, ãk,b,p)− L(x, a, b̃k, p̃k)

= f(x̃k) + g(ãk) + h∗(b̃k)− f(x)− g(a)− h∗(b)

+ 〈p|Ax̃k − ãk〉 − 〈p̃k|Ax− a〉 − 〈b̃k|Bx〉+ 〈b|Bx̃k〉
≤ 〈Q1(c̃

k − ck)|x− x̃k〉+ 〈Q2(c̃
k − ck)|a− ãk〉+ 〈Q3(c̃

k − ck)|b− b̃k〉
+ 〈B⊤b̃k|x− x̃k〉+ 〈A⊤p̃k|x− x̃k〉 − 〈p̃k|a− ãk〉 − 〈Bx̃k|b− b̃k〉
+ 〈p|Ax̃k − ãk〉 − 〈p̃k|Ax− a〉 − 〈b̃k|Bx〉+ 〈b|Bx̃k〉
= 〈Q1(c̃

k − ck)|x− x̃k〉+ 〈Q2(c̃
k − ck)|a− ãk〉+ 〈Q3(c̃

k − ck)|b− b̃k〉
+ 〈Ax̃k − ãk|p− p̃k〉
= 〈Q1(c̃

k − ck)|x− x̃k〉+ 〈Q2(c̃
k − ck)|a− ãk〉+ 〈Q3(c̃

k − ck)|b− b̃k〉
+ 〈Q4(c̃

k − ck)|p− p̃k〉 by (35)

= 〈Q(c̃k − ck)|c− c̃k〉.
(ii) similar to Lemma 3-(ii) and Lemma 4-(ii).
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Similar to the Lagrangian and PDS schemes, for the hybrid algorithms,
Π(c, c⋆) with c⋆ ∈ zerA is essentially a special instance of generalized Breg-
man distance generated by q(u) := f(x) + g(a) + h∗(b) between any point
u = (x, a,b) and a saddle point u⋆ = (x⋆, a⋆,b⋆). More specifically, 0 ≤
D♭

q(u,u
⋆) ≤ Π(c, c⋆) ≤ D♯

q(u,u
⋆). Indeed, the generalized Bregman distance

is given as

0 ≤ D♭
q(u,u

⋆) = inf
v∈∂q(u⋆)

q(u)− q(u⋆) + 〈v|u⋆ − u〉

= f(x)− f(x⋆) + inf
v∈∂f(x⋆)

〈v|x⋆ − x〉+ g(a)− g(a⋆) + inf
t∈∂g(a⋆)

〈t|a⋆ − a〉

+ h∗(b)− h∗(b⋆) + inf
s∈∂h∗(b⋆)

〈s|b⋆ − b〉

≤ f(x)− f(x⋆) + 〈B⊤b⋆ +A⊤p⋆|x− x⋆〉+ g(a)− g(a⋆)− 〈p⋆|a− a⋆〉
+ h∗(b)− h∗(b⋆)− 〈Bx⋆|b− b⋆〉
= f(x)− f(x⋆) + g(a)− g(a⋆) + h∗(b)− h∗(b⋆)

+ 〈Bx|b⋆〉 − 〈Bx⋆|b〉+ 〈p⋆|Ax− a〉
= f(x)− f(x⋆) + g(a)− g(a⋆) + h∗(b)− h∗(b⋆)

+ 〈Bx|b⋆〉 − 〈Bx⋆|b〉+ 〈p⋆|Ax− a〉 − 〈p⋆|Ax⋆ − a⋆︸ ︷︷ ︸
=0

〉

= L(x, a,b⋆,p⋆)− L(x⋆, a⋆,b,p)

= Π(c, c⋆) ≤ D♯
q(u,u

⋆).

Then, we obtain the convergence rate of the generalized Bregman distance
Π(ck, c⋆) in an ergodic sense.

Theorem 5 For all the hybrid algorithms shown in Table 7, the generalized
Bregman distance generated by f(x) + g(a) + h∗(b) between the ergodic point
1
k

∑k−1
i=0 c̃i and a saddle point c⋆ ∈ zerA has a rate of O(1/k):

0 ≤ Π

(
1

k

k−1∑

i=0

c̃i, c⋆
)

≤ 1

2k

∥∥c0 − c⋆
∥∥2
S ,

where {c̃i}i∈N and S are defined in Lemma 5 and 1.

The proof is similar to Theorem 2 or 4.

Likewise, for the class of hybrid algorithms, for given sets B1 ⊂ R
N , B2 ⊂

RM1 , B3 ⊂ RM2 and B4 ⊂ RM1 , the primal-dual gap function restricted to
B1 ×B2 ×B3 ×B4 is defined as

ΨB1×B2×B3×B4
(c) = sup

(b′,p′)∈B3×B4

L(x, a,b′,p′)− inf
(x′,a′)∈B1×B2

L(x′, a′,b,p),

(36)
which has the upper bound:
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Corollary 4 Under the conditions of Theorem 5, if the set B1×B2×B3×B4

is bounded, the primal-dual gap defined as (37) has the upper bound:

ΨB1×B2×B3×B4

(
1

k

k−1∑

i=0

c̃i
)

≤ 1

2k
sup

c∈B1×B2×B3×B4

∥∥c0 − c
∥∥2

S .

Furthermore, ΨB1×B2×B3×B4
( 1k

∑k−1
i=0 c̃i) ≥ 0, if the set B1 × B2 × B3 × B4

contains a saddle point c⋆ = (x⋆, a⋆,b⋆,p⋆) ∈ zerA.

The proof is similar to Corollary 2 or 3.

Remark 8 For MIX-I, II and III with corresponding M = I, Theorem 5

and Corollary 4 can be simplified as Π
(
1
k

∑k
i=1 c

i, c⋆
)
≤ 1

2k

∥∥c0 − c⋆
∥∥2

Q and

ΨB1×B2×B3×B4

(
1
k

∑k
i=1 c

i
)
≤ 1

2k supc∈B1×B2

∥∥c0 − c
∥∥2
Q.

Remark 9 Similarly to Remarks 5 and 7, under additional conditions on f , g
and h∗, one can obtain the convergence rate of O(1/k) of the sequence of f(x)+

g(a) + h(Bx), evaluated at the ergodic averaging point 1
k

∑k−1
i=0 c̃i, namely, it

holds that:

f

(
1

k

k−1∑

i=0

x̃i

)
+g

(
1

k

k−1∑

i=0

ãi
)
+h

(
B
(1
k

k−1∑

i=0

x̃i
))

−f(x⋆)−g(a⋆)−h(Bx⋆) ≤ C/k,

(37)
for some constant C.

To show this, we first rewrite L(x, a,b,p) in (33) as

L(u,v) := q(u) + 〈v|Uu〉 − l∗(v),

where u =

[
x
a

]
, v =

[
b
p

]
, U =

[
B 0
A −I

]
, q : (x, a) 7→ f(x) + g(a), l : (b,p) 7→

h(b). Since the sequence {p̃k}k∈N converges by Theorem 1, and thus lies in an

unknown bounded set B4 ⊂ RM1 . Obviously, 1
k

∑k−1
i=0 p̃i ∈ B4, p

⋆ ∈ B4. On
the other hand, if domf , domg and domh∗ are bounded, then we can simply
take the sets B1 = domf , B2 = domg and B3 = domh∗. Denoting the ergodic
averaging point by ĉk = 1

k

∑k−1
i=0 c̃i (x̂k, âk, b̂k and p̂k are defined similarly),

using Fenchel-Young inequality [4, Proposition 13.15], we develop

ΨB1×B2×B3×B4

(
ĉk
)

= sup
v′∈B3×B4

L
(
ûk,v′)− inf

u′∈B1×B2

L
(
u′, v̂k

)

= sup
v′∈B3×B4

q
(
ûk

)
+
〈
v′∣∣Uûk

〉
− l∗(v′)− inf

u′∈B1×B2

(
q(u′) +

〈
v̂k

∣∣Uu′〉− l∗
(
v̂k

))

= q
(
ûk

)
+ l

(
Uûk

)
+ l∗

(
v̂k

)
− inf

u′∈B1×B2

(
q(u′) +

〈
v̂k

∣∣Uu′〉)

≥ q
(
ûk

)
+ l

(
Uûk

)
+ l∗

(
v̂k

)
− q(u⋆)−

〈
v̂k

∣∣Uu⋆
〉

≥ q
(
ûk

)
+ l

(
Uûk

)
− q(u⋆)− l(Uu⋆)

= q
(
ûk

)
+ h

(
Bx̂k

)
− q(u⋆)− h(Bx⋆),
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which, combining with Corollary 4, yields (37). Still, (37) holds for all the
hybrid algorithms listed in Table 7. Similarly with Remark 5, the constant C
cannot be easily estimated, since the bounded set B4 is not a priori known.

5.3 Reductions of some hybrid algorithms

As reported in Table 8, MIX-I,II and III correspond to a standard PPA
with M = I, and thus, they can be readily expressed as a resolvent (19), by
Corollary 1-(iii).

Observing that neither ofM,Ω, Γ andΘ is allowed to be 0 for convergence.
It is impossible to reduce any variables (i.e. all the variables are active) in
MIX-I, II and III.

6 Concluding remarks

The numerical performance of these splitting algorithms has been reported in
[46, Sect. 7], which is not discussed here.

The proximal point analysis is shown to be able to (i) provide a unified
treatment of the generalized Bregman distance and ergodic primal-dual gap;
(ii) identify the active variables and reduce the algorithmic dimensionality.
The degeneracy reduction in this paper is essentially an application of the
degenerate analysis of [8] to the operator splitting algorithms. An important
implication of the degeneracy reduction is that it is possible to loosen the strict
convergence results (e.g., Theorem 1 and Corollary 1) to positive semi-definite
metric [45] under a certain conditions, which needs further careful study.

Despite of the success of interpretations using the proximal point analysis
demonstrated in [46] and this paper, an evident limitation is that it cannot
deal with, for example, the case of [11, Sect. 5], where only one function is
assumed to be strongly convex. It may need to exploit the inner structure of
A and Q based on a subspace analysis, e.g., partially strongly convex operator
[43], which will further enrich the degenerate theory poineered in [8].
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