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Degree Sequence Optimization

in Bounded Treewidth

Shmuel Onn ∗†

Abstract

We consider the problem of finding a subgraph of a given graph which minimizes the
sum of given functions at vertices evaluated at their subgraph degrees. While the problem
is NP-hard already when all functions are the same, we show that it can be solved for
arbitrary functions in polynomial time over graphs of bounded treewidth. Its complexity
remains widely open, in particular over complete graphs and complete bipartite graphs.
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1 Introduction

The degree sequence of a simple graph G = (V,E) on V = [n] := {1, . . . , n} is the vector
d(G) = (d1(G), . . . , dn(G)), where di(G) := |{e ∈ E : i ∈ e}| is the degree of vertex i for all i.

In this article we are interested in the following discrete optimization problem.

Degree Sequence Optimization. Given a graph H on [n], and for i ∈ [n] functions
fi : {0, 1, . . . , n− 1} → Z, find the minimum of

∑n
i=1 fi(di(G)) over subgraphs G ⊆ H on [n].

For a graph G we let V (G) and E(G) be its sets of vertices and edges respectively.
Throughout, for graphs G,H we use G ⊆ H to indicate V (G) = V (H) and E(G) ⊆ E(H).

A special case of our problem is the general factor problem [2], which is to decide, given
H and subsets Bi ⊆ {0, 1, . . . , n − 1} for all i, if there is a G ⊆ H with di(G) ∈ Bi for all i.
Indeed, for each i define fi(x) := 0 if x ∈ Bi and fi(x) := 1 if x /∈ Bi. Then the optimal value
of our problem is zero if and only if there is a factor. A more special case is the (l, u)-factor
problem introduced by Lovász [7], where each Bi = {li, . . . , ui} is an interval. This reduces
to our problem even with convex functions, with fi(x) := li − x if 0 ≤ x ≤ li, fi(x) := 0 if
li ≤ x ≤ ui, and fi(x) := x − ui if ui ≤ x ≤ n − 1. The b-matching problem is the case with
Bi = {bi} a singleton for all i and the perfect matching problem is with bi = 1 for all i.

Degree sequence optimization can be done in polynomial time when all fi are convex
[1, 5]; when all fi are the same and H = Kn is complete [4]; and for arbitrary functions
over monotone subgraphs when H = Km,n is complete bipartite [6]. For general graphs it is
NP-hard even when all functions but one are the same, as H has a nonempty cubic subgraph,
which is NP-complete to decide, if and only if, for some i, the optimal value of degree sequence
optimization with fi(x) := (x− 3)2 and fj(x) := x(x− 3)2 for j 6= i, is equal to zero, see [5].

In contrast we prove here the following statement.
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Theorem 1.1 For any fixed k, the degree sequence optimization problem is polynomial time

solvable for any n, any graph H on [n] of treewidth bounded by k, and any functions f1, . . . , fn.

We conjecture that degree sequence optimization over the complete graph H = Kn and
complete bipartite graph H = Km,n can be done in polynomial time for all functions fi.

2 Proof

We need some notation. Let H = ([n], E) be a graph on [n]. A nice tree decomposition of H
is a rooted tree T where each node v ∈ V (T ) has a set Iv ⊆ [n] called the bag of v such that:
every i ∈ [n] lies in some bag; every edge {i, j} ∈ E is contained in some bag; if u, v, w ∈ V (T )
where v lies on the path in T between u and w, and i ∈ Iu ∩ Iw, then i ∈ Iv; the root r and
every leaf l of T satisfy Ir = Il = ∅; every non leaf node v ∈ V (T ) is one of the following:

• introduce node meaning it has a single child u and Iv = Iu ⊎ {i} for some i ∈ [n];

• forget node meaning it has a single child u and Iu = Iv ⊎ {i} for some i ∈ [n];

• join node meaning it has two children u,w and Iu = Iv = Iw.

The width of the tree is the maximum cardinality of a bag minus one. The treewidth of H,
denoted tw(H), is the minimum width of a nice tree decomposition of it. It is known that for
any fixed k, if H has treewidth at most k, then it is possible to compute in polynomial time
a nice tree decomposition T of H of width at most k, with |V (T )| = O(n). See [3] for more
details. So from here on we may assume that we have a nice tree decomposition T of H.

We let H[I] be the subgraph of H induced by I ⊆ [n]. For v ∈ V (T ) we let Tv be the
subtree of T rooted at v and I(Tv) := ∪{Iu : u ∈ V (Tv)} the union of all bags of nodes in Tv.

For every v ∈ V (T ), function cv : Iv → {0, 1, . . . , n− 1}, and subset Fv ⊆ E(H[Iv ]), let

g(v, cv , Fv) := min







∑

i∈I(Tv)

fi(di(G)) : G ⊆ H[I(Tv)], E(G[Iv ]) = Fv, di(G) = cv(i), i ∈ Iv







,

taken to be ∞ if the set is empty. Note that at the tree root r we have I(Tr) = [n] and so
H[I(Tr)] = H, and Ir = ∅ so Fr must be the empty set and cr = c∅ the no-value function on
∅, and so g(r, c∅, ∅) = min{

∑n
i=1 fi(di(G)) : G ⊆ H} is the optimal solution of our problem.

The function g(v, cv , Fv) is the optimal value of a subproblem of the degree sequence
optimization problem restricted to subgraphs G of the graph H[I(Tv)] induced by the vertex
set I(Tv) which is the union of all bags at nodes of the subtree Tv rooted at v, with further
restrictions on G forcing its subset of edges E(G[Iv ]) induced by the bag Iv of v to be equal to
Fv, and the degree di(G) of each vertex i ∈ Iv to be equal to cv(i). These functions enable us
to go down the tree from the leaves to the root and compute recursively all values g(v, cv , Fv)
at any node v of T by using all previously computed values g(u, cu, Fu) at all descendants
u of v in the tree. The proof proceeds by showing, for each of the three types of the non
leaf nodes, how to do these computations. In particular, at any introduce node v or join
node v, where these computations are more involved than in a forget node, we will define an
auxiliary function h(v, cv , Fv), give an explicit formula for it using the previously computed
values g(u, cu, Fu) at the descendants u of v, and then argue that g(v, cv , Fv) = h(v, cv , Fv).
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We proceed to show how to compute all g(v, cv , Fv) from the leaves to the root, thereby
solving our degree optimization problem. At any tree leaf l we have I(Tl) = Il = ∅ and Fl = ∅,
cl = c∅, and the only graph in the set is G∅ := (∅, ∅) and g(l, c∅, ∅) =

∑

i∈∅ fi(di(G∅)) = 0.

Introduce node v with child u and Iv = Iu ⊎ {i}. For any cv on Iv and Fv ⊆ E(H[Iv ]), let
Fu := Fv ∩ E(H[Iu]), define cu on Iu by

cu(j) :=

{

cv(j), if {i, j} /∈ Fv;
cv(j) − 1, if {i, j} ∈ Fv,

and let

h(v, cv , Fv) :=

{

∞, if cv(i) 6= |{j ∈ Iu : {i, j} ∈ Fv}| or cu(j) < 0 for some j ∈ Iu;
g(u, cu, Fu) +

∑

j∈Iv
fj(cv(j)) −

∑

j∈Iu
fj(cu(j)), otherwise.

We now show that g(v, cv , Fv) = h(v, cv , Fv). First we show g(v, cv , Fv) ≥ h(v, cv , Fv). If
g(v, cv , Fv) = ∞ then this clearly holds. Otherwise pick Gv ⊆ H[I(Tv)] with E(Gv [I]) = Fv

and dj(Gv) = cv(j) for all j ∈ Iv which attains
∑

j∈I(Tv)
fj(dj(Gv)) = g(v, cv , Fv). Since T

is a tree decomposition of H there is no edge {i, j} in Gv ⊆ H[I(Tv)] with j /∈ Iu and hence
cv(i) = |{j ∈ Iu : {i, j} ∈ Fv}|. Let Gu = Gv[I(Tu)]. Then E(G[Iu]) = Fu and for each j ∈ Iu,

cu(j) =

{

cv(j) = dj(Gv) = dj(Gu), if {i, j} /∈ Fv;
cv(j) − 1 = dj(Gv) − 1 = dj(Gu), if {i, j} ∈ F ,

so cu(j) = dj(Gu) and in particular cu(j) ≥ 0 for all j ∈ Iu. Therefore

g(v, cv , Fv) =
∑

j∈I(Tv)

fj(dj(Gv))

=
∑

j∈I(Tu)

fj(dj(Gu)) +
∑

j∈Iv

fj(cv(j)) −
∑

j∈Iu

fj(cu(j))

≥ g(u, cu, Fu) +
∑

j∈Iv

fj(cv(j)) −
∑

j∈Iu

fj(cu(j))

= h(v, cv , Fv) .

Next we show g(v, cv , Fv) ≤ h(v, cv , Fv). If h(v, cv , Fv) = ∞ then we are done. Otherwise

h(v, cv , Fv) = g(u, cu, Fu) +
∑

j∈Iv

fj(cv(j)) −
∑

j∈Iu

fj(cu(j))

and g(u, cu, Fu) is finite. Pick Gu ⊆ H[I(Tu)] with E(Gu[I]) = Fu and dj(Gu) = cu(j)
for j ∈ Iu attaining

∑

j∈I(Tu)
fj(dj(Gu)) = g(u, cu, Fu). Let Gv ⊆ H[I(Tv)] be such that

Gv[I(Tu)] = Gu and E(Gv) ∩ E(H[Iv ]) = Fv. Then dj(Gv) = cv(j) for j ∈ Iv, and

g(v, cv , Fv) ≤
∑

j∈I(Tv)

fj(dj(Gv))

=
∑

j∈I(Tu)

fj(dj(Gu)) +
∑

j∈Iv

fj(cv(j)) −
∑

j∈Iu

fj(cu(j))

= g(u, cu, Fu) +
∑

j∈Iv

fj(cv(j)) −
∑

j∈Iu

fj(cu(j)) = h(v, cv , Fv) .
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We need to compute h(v, cv , Fv) for n|Iv| = O(nk+1) values of cv and O(2(|Iv |
2

)) = 2O(k2) possi-
ble sets Fv , each computation involving a constant number of operations, so all is polynomial.

Forget node v with child u and Iu = Iv ⊎ {i}. Then for any cv on Iv and Fv ⊆ E(H[Iv]),

g(v, cv , Fv) = min {g(u, cu, Fu) : Fu ⊆ E(H[Iu]), Fu ∩ E(H[Iv ]) = Fv , cu(j) = cv(j), j ∈ Iv} .

We need to compute this for n|Iv| = O(nk) values of cv and O(2(|Iv |
2

)) = 2O(k2) possible Fv ,
each computation involving taking minimum over a set of size O(n2), so all is polynomial.

Join node v with children u,w and Iu = Iv = Iw. For any cv on Iv and Fv ⊆ E(H[Iv ]) let

h(v, cv , Fv) := min{g(u, cu, Fu) + g(w, cw , Fw)

+
∑

i∈Iv

(fi(cv(i)) − fi(cu(i)) − fi(cw(i))) : Fv = Fu ⊎ Fw, cv = cu + cw} ,

the set running over partitions Fv = Fu ⊎ Fw and function decompositions cv = cu + cw.
We now show that g(v, cv , Fv) = h(v, cv , Fv). Let I := Iu = Iv = Iw. Let Icu := I(Tu) \ I

and Icw := I(Tw) \ I. First we show g(v, cv , Fv) ≥ h(v, cv , Fv). If g(v, cv , Fv) = ∞ then this
clearly holds. Otherwise pick Gv ⊆ H[I(Tv)] with E(Gv [I]) = Fv and di(Gv) = cv(i) for all
i ∈ I which attains

∑

i∈I(Tv)
fi(di(Gv)) = g(v, cv , Fv). Consider any partition Fv = Fu ⊎ Fw.

Let Gu ⊆ Gv[I(Tu)] be the subgraph with E(Gu) = E(Gv [I(Tu)])\Fw and let Gw ⊆ Gv[I(Tw)]
be the subgraph with E(Gw) = E(Gv [I(Tw)]) \ Fu. Define functions cu and cw on I by
cu(i) := di(Gu) and cw(i) := di(Gw) for all i ∈ I. Since T is a tree decomposition of H
we have Icu ∩ Icw = ∅. Hence E(Gv) = E(Gu) ⊎ E(Gw), and di(Gv) = di(Gu) for i ∈ Icu,
di(Gv) = di(Gw) for i ∈ Icw, and di(Gv) = di(Gu) + di(Gw) for i ∈ I so cv = cu + cw. Hence

g(v, cv , Fv) =
∑

i∈I(Tv)

fi(di(Gv))

=
∑

i∈Icu

fi(di(Gu)) +
∑

i∈I

fi(cv(i)) +
∑

i∈Icw

fi(di(Gw)) =
∑

i∈I

fi(cv(i))

+





∑

i∈I(Tu)

fi(di(Gu)) −
∑

i∈I

fi(cu(i))



 +





∑

i∈I(Tw)

fi(di(Gw)) −
∑

i∈I

fi(cw(i))





=
∑

i∈I(Tu)

fi(di(Gu)) +
∑

i∈I(Tw)

fi(di(Gw)) +
∑

i∈I

(fi(cv(i)) − fi(cu(i)) − fi(cw(i)))

≥ g(u, cu, Fu) + g(w, cw , Fw) +
∑

i∈Iv

(fi(cv(i)) − fi(cu(i)) − fi(cw(i)))

≥ h(v, cv , Fv) .

Conversely, consider a partition Fv = Fu ⊎ Fw and a decomposition cv = cu + cw attaining

g(u, cu, Fu) + g(w, cw , Fw) +
∑

i∈Iv

(fi(cv(i)) − fi(cu(i)) − fi(cw(i))) = h(v, cv , Fv) .

If h(v, cv , Fv) = ∞ then g(v, cv , Fv) ≤ h(v, cv , Fv). Otherwise g(u, cu, Fu) and g(w, cw , Fw)
are finite. Pick Gu ⊆ H[I(Tu)] with E(Gu[I]) = Fu and di(Gu) = cu(i) for i ∈ I attain-
ing

∑

i∈I(Tu)
fi(di(Gu)) = g(u, cu, Fu), and pick Gw ⊆ H[I(Tw)] with E(Gw[I]) = Fu and
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di(Gw) = cw(i) for i ∈ I attaining
∑

i∈I(Tw) fi(di(Gw)) = g(w, cw , Fw). Let Gv ⊆ H[I(Tv)] be
such that E(Gv) = E(Gu) ⊎ E(Gw). Then E(Gv [I]) = Fv and di(Gv) = cv(i) for i ∈ I, and

g(v, cv , Fv) ≤
∑

i∈I(Tv)

fi(di(Gv)) =
∑

i∈I(Tu)

fi(di(Gu)) +
∑

i∈I(Tw)

fi(di(Gw))

+
∑

i∈I

(fi(cv(i)) − fi(cu(i)) − fi(cw(i)))

= g(u, cu, Fu) + g(w, cw , Fw) +
∑

i∈I

(fi(cv(i)) − fi(cu(i)) − fi(cw(i)))

= h(v, cv , Fv) .

We need to compute g(v, cv , Fv) = h(v, cv , Fv) for n|Iv| = O(nk+1) values of cv and for

O(2(|Iv |
2

)) = 2O(k2) possible Fv . Each computation involves taking the minimum over all
2O(k2) partitions Fv = Fu⊎Fw and O(nk+1) decomposition cv = cu +cw. So all is polynomial.
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