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Abstract
This paper focuses on a class of variational inequalities (VIs), where the map defin-
ing the VI is given by the component-wise conditional value-at-risk (CVaR) of a 
random function. We focus on solving the VI using sample average approximation, 
where solutions of the VI are estimated with solutions of a sample average VI that 
uses empirical estimates of the CVaRs. We establish two properties for this scheme. 
First, under continuity of the random map and the uncertainty taking values in a 
bounded set, we prove asymptotic consistency, establishing almost sure convergence 
of the solution of the sample average problem to the true solution. Second, under the 
additional assumption of random functions being Lipschitz, we prove exponential 
convergence where the probability of the distance between an approximate solution 
and the true solution being smaller than any constant approaches unity exponen-
tially fast. The exponential decay bound is refined for the case where random func-
tions have a specific separable form in the decision variable and uncertainty. We 
adapt these results to the case of uncertain routing games and derive explicit sample 
guarantees for obtaining a CVaR-based Wardrop equilibria using the sample average 
procedure. We illustrate our theoretical findings by approximating the CVaR-based 
Wardrop equilibria for a modified Sioux Falls network.

Keywords Variational inequalities · Sample average approximation · Conditional 
value-at-risk · Wardrop equilibrium

1 Introduction

Consider the following variational inequality problem VI(X,F) : find x∗ ∈ X  such 
that
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where X ⊂ ℝ
n is a compact set and each component i ∈ {1, 2,… n} of the map 

F ∶ ℝ
n
→ ℝ

n , denoted Fi ∶ ℝ
n
→ ℝ , is given by

In the above equation, fi ∶ X × U → ℝ is referred to as the random function, the 
set U ⊂ ℝ

m is compact, and ℙ is the distribution of u supported over the set U . We 
assume fi is continuous. The map Fi gives the conditional value-at-risk (CVaR) at 
level � ∈ (0, 1) of the random function fi . The CVaR computes the tail expecta-
tion of the underlying random variable [18] and can be determined by the following 
optimization

where 𝔼
ℙ
 is the expectation under the distribution ℙ and the operator [ ⋅ ]+ gives the 

positive part, i.e., [v]+ = max{0, v} . The parameter � characterizes the risk-averse-
ness. When � is close to unity, the decision-maker is risk-neutral, whereas, � close to 
the origin implies high risk-averseness. The main purpose of the paper is to analyze 
the statistical properties of a sample average approximation (SAA) scheme for solv-
ing the variational inequality VI(X,F) given in (1). The set of solutions of this prob-
lem is denoted by SOL(X,F).

Variational inequality problems defined using a set of random functions is sur-
veyed in [17]. The most widely studied VI problem in this context, termed stochas-
tic variational inequalities (SVIs), is the one where the map defining the VI is the 
expectation of a random function. Risk-based VIs, where the VI map is given as the 
risk of a random function, naturally generalize the setup of SVI and find application 
in finding the Wardrop equilibria in a network routing problem where users are risk-
averse. While several works explore sample average schemes for SVIs, there is no 
such study for risk-averse VIs. This paper aims to fill this gap.

Early investigations on statistical aspects of SAA for generalized equations and 
SVIs appeared in [8, 9], respectively. These works focused on asymptotic properties 
of the SAA schemes, that is, consistency of estimators and their asymptotic distri-
butions. The former is concerned with showing the convergence with probability 
one of solutions of the SAA to solutions of the original problem as the sample size 
tends to infinity. The latter determines the distribution of the approximate solutions 
in the asymptotic limit. While these properties show the limiting behavior, they do 
not illustrate the guarantees in the finite-sample regime. This feature was explored 
in [15, 19, 27, 28] where it was shown that for generalized equilibrium problems 
under various set of assumptions, one can demonstrate exponential convergence of 
the approximate solutions. Meaning that the probability that the SAA solution is a 
fixed distance away from the original solution decays exponentially as the sample 
size tends to infinity. Technically, establishing such a property relies on conducting 
sensitivity analysis for the VI and then combining it with uniform large deviation 
bounds on random functions. All these studies share the common property that the 

(1)(x − x∗)⊤F(x∗) ≥ 0, for all x ∈ X,

(2)Fi(x) = CVaRℙ

� [fi(x, u)].

(3)CVaRℙ

� [fi(x, u)] = inf
t∈ℝ

{
t +

1

�
𝔼
ℙ
[fi(x, u) − t]+

}
,
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underlying map is the expectation of the random function, while in this paper we 
look at CVaR-based maps.

The works [1, 11, 21] study SAA of CVaR in the context of stochastic optimiza-
tion problems, where CVaR is either being minimized or used to define the con-
straints. In [11, 21] asymptotic consistency and exponential convergence of Karush-
Kuhn-Tucker (KKT) points of the sample average optimization problem to that of 
the true one was established. In [1], the SAA of CVaR is used to approximate the 
solution of risk-constrained optimization problem. Since CVaR is used to define 
a VI problem in our case, the analysis does not follow directly from these exist-
ing results. Moreover, as opposed to the general large deviation bounds provided 
in these works, the exponential bounds derived here are explicit without involving 
ambiguous constants. In another data-based approach [16], the CVaR is perceived as 
the expected shortfall and desirable statistical guarantees are obtained for the opti-
mizers of its sample average.

One of the motivations for our work is to approximate the Wardrop equilibirum 
for a network routing problem where agents choose paths that have minimum risk. 
Such a setting was extensively studied in [13] where various notions of equilibrium 
and related computational aspects of finding them were discussed. Among other 
works that consider risk, [12, 14] assume the cost of each path to be the weighted 
sum of the mean and the variance of the uncertain cost. However, none of these 
works focus on CVaR-based routing. In the transportation literature, the CVaR-
based equilibrium is also known as the mean excess traffic equilibrium, see e.g., [2, 
29] and references therein. While these works have explored numerous algorithms 
for computing the equilibrium, they lack theoretical performance guarantees for 
sample-based solutions.

For analyzing the SAA of (1), we assume that a certain number of independent 
and identically distributed samples of the random variable u are available using 
which the expectation operator in the definition of the CVaR is replaced with its 
sample average. The resulting empirical CVaR gives rise to a set of functions that 
are sample average versions of F. Using these, we define a sample average vari-
ational inequality. Our contributions are as follows: 

 (i) We establish asymptotic consistency of the sample average scheme, that is, 
the set of solutions of the sample average VI converge almost surely, in a set-
valued sense, to the set SOL(X,F).

 (ii) Under the assumption that random functions are uniformly Lipschitz continu-
ous in x, we show exponential convergence of the solution set of the sample 
average VI to the set SOL(X,F) . That is, given any constant, the probability 
that the distance of a solution of the sample average problem from the set 
SOL(X,F) is less than that constant approaches unity exponentially with the 
number of samples.

 (iii) We give tighter sample guarantees with explicit expression for the coefficient 
in the exponential bound for a particular class of separable random functions.

 (iv) We illustrate the application of the derived approximations in computing 
a CVaR-based Wardrop equilibrium for a network routing problem that is 
defined using uncertain costs.
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A preliminary version of the paper appeared as [3], where the focus was finding the 
Wardrop equilibrium problem for a network routing problem. As compared to it, 
the present article has a more general problem setup focusing not just on a Wardrop 
equilibrium problem, but on a general VI. In addition, the tighter sample guarantees 
for separable functions given in Sect. 4 are new here and the simulation example is 
much more elaborate.

Notation Let ℝ , ℝ≥0 , ℝ>0 , and ℕ denote the set of real, nonnegative real, 
positive real, and natural numbers, respectively. Let ‖ ⋅ ‖ denote the Euclid-
ean 2-norm. We use [N] ∶= {1,… ,N} for positive integer N. For x ∈ ℝ , we let 
[x]+ = max(x, 0) and ⌈x⌉ be the smallest integer greater than or equal to x. The car-
dinality of a set S is denoted by |S| . The distance of a point x ∈ ℝ

m to a set S ⊂ ℝ
m 

is denoted by dist(x,S) ∶= infy∈S ‖x − y‖ . The deviation of a set A ⊂ ℝ
m from S is 

�(A,S) ∶= supy∈A dist(y,S).

2  Preliminaries

Here we collect relevant mathematical background used throughout the paper.

2.1  Variational inequality

Given a map F ∶ ℝ
n
→ ℝ

n and a closed set X ⊂ ℝ
n , the variational inequality (VI) 

problem, denoted VI(X,F) , involves finding x∗ ∈ X  such that (x − x∗)⊤F(x∗) ≥ 0 
for all x ∈ X  . Such a point is called a solution of the VI problem. The set of solu-
tions of VI(X,F) are denoted by SOL(X,F) . The map F is monotone on the set X  if 
(F(x) − F(x�))⊤(x − x�) ≥ 0 for all x, x� ∈ X  . The map F is strictly monotone on X  if 
this inequality is strict for x ≠ x′ . Finally, F is strongly monotone on X  with modulus 
𝜎 > 0 if (F(x) − F(x�))⊤(x − x�) ≥ 𝜎‖x − x�‖2 for all x, x� ∈ X  . If F is either strictly 
or strongly monotone, then SOL(X,F) is singleton.

2.2  Uniform convergence

A sequence of functions {fN ∶ X → Y}∞
N=1

 , where X  and Y are Euclidean spaces, 

is said to converge uniformly on a set X ⊂ X  to f ∶ X → Y if for any 𝜖 > 0 , there 
exists N� ∈ ℕ such that supx∈X ‖fN(x) − f (x)‖ ≤ � , for all N ≥ N� . Similar defini-
tion applies for convergence in probability. That is, consider a random sequence of 
functions {f �

N
∶ X → Y}∞

N=1
 defined on a probability space (�,F,P) . The sequence 

is said to converge uniformly to f ∶ X → Y on X almost surely (shorthand, a.s.) if 
f �
N
→ f  uniformly on X for almost all � ∈ �.
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2.3  Risk measures

Next we review notions on value-at-risk and CVaR from [18]. Given a real-valued 
random variable Z with probability distribution ℙ , we denote the cumulative dis-
tribution function by HZ(�) ∶= ℙ(Z ≤ �) . The left-side �-quantile of Z is defined 
as H−1

Z
(�) ∶= inf{� | HZ(�) ≥ �} . Given a probability level � ∈ (0, 1) , the value-at-

risk of Z at level � , denoted VaRℙ

� [Z] , is the left-side (1 − �)-quantile of Z. Formally,

The CVaR, also referred to as the average value-at-risk in [18], of Z at level � , 
denoted CVaRℙ

� [Z] , is given as

Under the continuity of the cumulative distribution function at VaRℙ

� [Z] , we have 
that CVaRℙ

� [Z] is the expectation of Z when it takes values bigger than VaRℙ

� [Z] . 
That is, CVaRℙ

� [Z] ∶= 𝔼[Z ≥ VaRℙ

� [Z]] . The parameter � characterizes the risk-
averseness. When � is close to unity, the decision-maker is risk-neutral, whereas, 
� close to the origin implies high risk-averseness. The minimum in (4) is attained 
at a point in the interval [tm, tM] , where tm ∶= inf{� | HZ(�) ≥ 1 − �} , and 
tM ∶= sup{� | HZ(�) ≤ 1 − �}.

3  Sample average approximation of VI(X, F)

The approach in the sample average framework is to replace the expectation opera-
tor in any problem with the average over the obtained samples [18]. This is one of 
the main Monte Carlo methods for problems with expectations; see [5] for a detailed 
survey of other sample-based techniques. In our setup, for each component Fi , we 
will replace the expectation operator in the definition of the CVaR in  (3) with the 
sample average. The thus formed set of functions result in a VI problem that approx-
imates VI(X,F).

Note that the map F is continuous since fi , i ∈ [n] are so and X  and U are com-
pact. One can reason this fact using arguments similar to those of the proof of 
Lemma 4. As a consequence of the continuity of F, the set of solutions SOL(X,F) 
of the problem VI(X,F) is nonempty and compact [7, Corollary 2.2.5]. For conveni-
ence, we use the notation S = SOL(X,F).

Let Û
N
∶= {û1, û2,… , ûN} be the set of N ∈ ℕ independent and identically dis-

tributed samples of u drawn from ℙ . Then, the sample average approximation of the 
CVaR associated to component i ∈ [n] is

VaRℙ

� [Z] ∶= H−1
Z
(1 − �) = inf{� | ℙ(Z ≤ �) ≥ 1 − �}.

(4)CVaRℙ

� [Z] = inf
t∈ℝ

{
t +

1

�
𝔼[Z − t]+

}
.
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The above expression is also known as the empirical estimate of the CVaR , or 
empirical CVaR in short. The expression is also the CVaR of the random function 
at level � under the empirical distribution 1

N

∑N

j=1
�ûj , where �ûj is the unit point mass 

at ûj . Note that ĈVaR
N

�  is random as it depends on the realization Û
N

 of the random 
variable. To emphasize this dependency, we represent with ⋅̂ N entities that are ran-
dom. Using (5) as the approximate function, define the sample average VI problem 
as VI(X, F̂N) , where

for all i ∈ [n] . We denote the set of solutions of VI(X, F̂N) by �S
N
⊂ X  . This serves 

as a reminder that it approximates S . The notion of approximation is made precise 
next. Note that Ŝ

N
 is nonempty as X  is compact and F̂N is continuous.

Definition 1 (Asymptotic consistency and exponential convergence) The set Ŝ
N

 
is an asymptotically consistent approximation of S , or in short, Ŝ

N
 is asymptoti-

cally consistent, if any sequence of solutions {x̂N ∈ Ŝ
N
}∞
N=1

 has almost surely (a.s.) 

all accumulation points in S . The set Ŝ
N

 is said to converge exponentially to S if 
for any 𝜖 > 0 , there exist positive constants c� and �� such that for any sequence 
{x̂N ∈ Ŝ

N
}∞
N=1

 , the following holds

for all N ∈ ℕ . ∙

The asymptotic consistency of Ŝ
N

 is equivalent to saying �(Ŝ
N
,S) → 0 a.s. as 

N → ∞ . The expression (6) gives a precise rate for this convergence. In our work, 
all convergence results are for N → ∞ and so we drop restating this fact for conveni-
ence’s sake. In the following sections, we will establish the asymptotic consistency 
and the exponential convergence of Ŝ

N
.

3.1  Asymptotic consistency of Ŝ
N

We begin with stating the bound on the optimizers of the problem defining the 
CVaR  (3) and the empirical CVaR  (5). This restricts our attention to compact 
domains for variables (x, t, u), a property useful in showing consistency. Denote for 
each i ∈ [n] , functions 

(5)ĈVaR
N

� [fi(x, u)] ∶= inf
t∈ℝ

{
t +

1

N�

N∑

j=1

[fi(x, û
j) − t]+

}
.

F̂N
i
(x) ∶= ĈVaR

N

� [fi(x, u)],

(6)ℙ
N
(
dist(̂xN ,S) ≤ �

)
≥ 1 − c�e

−��N
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 The map �̂N
i

 is the sample average of �i . Given our assumption that U is compact, 
we have that the expected value of fi is bounded for any x ∈ X  . Using this fact, 
one can deduce by strong law of large numbers [6] that for any fixed (x, t) ∈ X ×ℝ , 
�̂N
i
(x, t) → �i(x, t) a.s. We however require uniform convergence of these maps to 

conclude consistency, which will be established in Theorem 1 below. Observe that, 
by definition, CVaRℙ

� [fi(x, u)] = inft∈ℝ �i(x, t) and ĈVaR
N

� [fi(x, u)] = inft∈ℝ �̂N
i
(x, t) . 

The following result gives explicit bounds on the optimizers of these problems.

Lemma 1 (Bounds on optimizers of problems defining (empirical) CVaR ) For any 
x ∈ X  and i ∈ [n] , the optimizers of the problems in  (3) and  (5) exist and belong 
to the compact set T = [�, L] , where � ∶= min{fi(x, u) | x ∈ X, u ∈ U, i ∈ [n]} and 
L ∶= max{fi(x, u) | x ∈ X, u ∈ U, i ∈ [n]} . Furthermore, the set of functions

for i ∈ [n] , satisfy for all (x, t, u) ∈ X × T × U,

Proof From [18, Chapter 6], optimizers of (3) and (5) exist and they lie in the closed 
interval defined by the left- and the right-side (1 − �)-quantile of the respective ran-
dom variables. Hence, they belong to T  . To conclude (9), notice

Here, the first inequality follows from the bound on fi , the first equality is because 
t ∈ [�, L] , and the second inequality is due to 𝛼 < 1 . Similarly, for the lower bound, 
�i(x, t, u) ≥ t +

1

�
[� − t]+ = t ≥ � . This completes the proof.   ◻

We make a note here that optimizers of problems defining the CVaR in (3) and (5) 
exist and are bounded for more general cases, even when the support of the random 
variable is unbounded, see e.g., [18, Chapter 6]. Nevertheless, the above result pro-
vides an explicit bound which is used later in deriving precise exponential conver-
gence guarantees.

(7a)�i(x, t) ∶= t +
1

�
𝔼
ℙ
[fi(x, u) − t]+,

(7b)�̂N
i
(x, t) ∶= t +

1

N�

N∑

j=1

[fi(x, û
j) − t]+.

(8)�i(x, t, u) ∶= t +
1

�
[fi(x, u) − t]+,

(9)�i(x, t, u) ∈
[
�,� +

L − �

�

]
.

�i(x, t, u) = t +
1

�
[fi(x, u) − t]+ ≤ t +

1

�
[L − t]+

= t +
1

�
(L − t) = (1 −

1

�
)t +

1

�
L

≤ (1 −
1

�
)� +

1

�
L.
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As a consequence of Lemma 1, one can show uniform convergence of �̂N
p

 to �p . 
Our next step is to analyze the sensitivity of F as one perturbs the underlying map � . 
In combination with the uniform convergence of �̂N

p
 , this result leads to the uniform 

convergence of F̂N to F.

Lemma 2 (Sensitivity of F with respect to � ) For any 𝜖 > 0 , if we have 
supi∈[n],(x,t)∈X×T |�̂N

i
(x, t) − �i(x, t)| ≤ � , where T  is defined in Lemma  1, then 

supx∈X ‖F̂N(x) − F(x)‖ ≤
√
n�.

Proof The first step is to show the sensitivity of the map CVaRℙ

� [fi(⋅, u)] with respect 

to �p . To this end, fix i ∈ [n] and x ∈ X  , and let t̂N
i
(x) ∈ argmin

t∈ℝ

�̂N
i
(x, t) and 

ti(x) ∈ argmin
t∈ℝ

�i(x, t) . These optimizers exist due to Lemma 1. We now have

The first inequality is due to optimality and the second inequality holds by assump-
tion. Similarly, one can show that

The above two sets of inequalities along with the fact that 
ĈVaR

N

� [fi(x, u)] = �̂N
i

(
x, t̂N

i
(x)

)
 and CVaRℙ

� [fi(x, u)] = �i

(
x, ti(x)

)
 lead to the 

conclusion

Finally, the conclusion follows from the inequality 
‖F̂N (x) − F(x)‖ ≤

√

n supi∈[n] |F̂N
i (x) − Fi(x)| 

that holds for all x ∈ X  .   ◻

The final preliminary result states proximity of Ŝ
N

 to S given that the difference 
between F̂N and F is bounded. The proof is a consequence of [27, Lemma 2.1] that 
studies sensitivity of generalized equations.

Lemma 3 (Sensitivity of S with respect to F) For any 𝜖 > 0 , there exists 𝛿(𝜖) > 0 

such that �(Ŝ
N
,S) ≤ � whenever supx∈X ‖F̂N(x) − F(x)‖ ≤ �(�).

Next is the main result of this section, establishing the asymptotic consistency of 
Ŝ
N

.

Theorem 1 (Asymptotic consistency of Ŝ
N

 ) We have �(Ŝ
N
,S) → 0 almost surely.

�i

(
x, ti(x)

)
− � ≤ �i

(
x, t̂N

i
(x)

)
− � ≤ �̂N

i

(
x, t̂N

i
(x)

)
.

�̂N
i

(
x, t̂N

i
(x)

)
− � ≤ �i

(
x, ti(x)

)
.

(10)sup
x∈X

|||ĈVaR
N

� [fi(x, u)] − CVaRℙ

� [fi(x, u)]
||| ≤ �.
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Proof Consider first the a.s. uniform convergence �̂N
i
→ �i over the compact set 

X × T  . Note that �i(x, t) = 𝔼
ℙ
[�i(x, t, u)] where �i is given in (8) and so, �̂N

i
 is the 

sample average of �i . For any fixed u ∈ U , the map �i(⋅, ⋅, u) is continuous and for 
any (x, t) ∈ X × T  , due to Lemma 1, the map �i(x, t, ⋅) is dominated by the integra-
ble function (a constant in this case) � +

L−�

�
 . Hence, by the uniform law of large 

numbers result [18, Theorem  7.48], we conclude that �̂N
i
→ �i uniformly a.s. on 

X × T  . Using this fact in the sensitivity result of Lemma  2 implies that F̂N
→ F 

uniformly a.s. on the set X  . Finally, we arrive at the conclusion using Lemma 3.   ◻

3.2  Exponential convergence of Ŝ
N

Here, our strategy will be to use the concentration inequality for the empirical 
CVaR given in [24] and derive the uniform exponential convergence of F̂N to F. 
Later, we will use Lemma 3 to infer exponential convergence of Ŝ

N
 . Note that the 

inequality given in [24] requires compact support of the random variable and it 
is tight when it comes to the dependency on the risk parameter � . For unbounded 
support, one can use deviation inequalities from [10].

For i ∈ [n] and x ∈ X  , the deviation between the CVaR and its empirical coun-
terpart can be bounded using the results in [24, Theorem 3.1] as

In the above bound, the denominator in the exponent uses the fact that any realiza-
tion of fi(x, u) given any x is supported on the compact set [�, L] . Similar to the nar-
rative of the previous section, while the above inequality holds pointwise, what we 
need is uniform exponential bound for proximity of F to F̂N . Below, we will derive 
such a bound under the following condition.

Assumption 2 (Uniform Lipschitz continuity of fi ) There exists a constant M > 0 
such that �fi(x, u) − fi(x

�, u)� ≤ M‖x − x�‖ , for all x, x� ∈ X  , u ∈ U , and i ∈ [n] . ∙

Under the above Lipschitz condition on the random functions, one can show 
the following.

Lemma 4 (Lipschitz continuity of (empirical) CVaR ) Under Assumption 2, for any 

i ∈ [n] , functions x ↦ ĈVaR
N

� [fi(x, u)] and x ↦ CVaRℙ

� [fi(x, u)] are Lipschitz contin-

uous over the set X  with constant M
�

.

Proof We will show the property for the function x ↦ ĈVaR
N

� [fi(x, u)] . The reason-
ing for x ↦ CVaRℙ

� [fi(x, u)] follows analogously. Consider any x, x� ∈ X  . Recall 
from (7) that

(11)ℙ
N
(|||ĈVaR

N

� [fi(x, u)] − CVaRℙ

� [fi(x, u)]
||| ≥ �

)
≤ 6 exp

(
−

��2

11(L − �)2
N
)
.
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Assumption 2 yields the Lipschitz continuity property for the map �̂N
i

 . To establish 
this, fix any i ∈ [n] and t ∈ ℝ and notice that

In the above relations, the first is a consequence of the triangle inequality, the 
second inequality follows from the fact that the map [ ⋅ ]+ is Lipschitz continu-
ous with constant as unity, and the last inequality uses the Lipschitz continu-
ity property of fi . Now let t̄, t̄� ∈ ℝ be such that �𝜓N

i
(x, t̄) = inft∈ℝ �𝜓N

i
(x, t) and 

�𝜓N
i
(x�, t̄�) = inft∈ℝ �𝜓N

i
(x�, t) . Existence of such an optimizer follows from the discus-

sion in [18, Section 6.2.4]. Next note the following sequence of inequalities that can 
be inferred from the optimality condition and the Lipschitz continuity property of 
�̂N
i

 shown above,

One can exchange x with x′ in the above reasoning and obtain

Inequalities (13) and (14) imply that ���inft∈ℝ �̂N
i
(x, t) − inft∈ℝ �̂N

i
(x�, t)

��� ≤
M

�
‖x − x�‖ . 

The proof concludes by using this fact in (12).   ◻

Next, we establish the exponential convergence of F̂N . The proof is largely 
inspired from the steps given in [19, Theorem 5.1] and is a standard argument in 
these set of results. We note that the obtained bound is very crude and in practice, 
the achieved performance is much better.

Proposition 1 (Uniform exponential convergence of F̂N to F) Under Assumption 2, 
for any 0 < 𝜖 < diam(X)∕2 , the following holds for all N ∈ ℕ,

(12)|||ĈVaR
N

� [fi(x, u)] − ĈVaR
N

� [fi(x
�, u)]

||| =
|||inft∈ℝ

�̂N
i
(x, t) − inf

t∈ℝ
�̂N
i
(x�, t)

|||.

����̂
N
i
(x, t) − �̂N

i
(x�, t)

��� =
���t +

1

N�

N�

j=1

[fi(x, û
j) − t]+

−
�
t +

1

N�

N�

j=1

[fi(x
�, ûj) − t]+

����

≤
1

N�

N�

j=1

���[fi(x, û
j) − t]+ − [fi(x

�, ûj) − t]+
���

≤
1

N�

N�

j=1

���fi(x, û
j) − fi(x

�, ûj)
��� ≤

M

�
‖x − x�‖.

(13)
inf
t∈ℝ

�𝜓N
i
(x, t) = �𝜓N

i
(x, t̄) ≤ �𝜓N

i
(x, t̄�) ≤ �𝜓N

i
(x�, t̄�) +

M

𝛼
‖x − x�‖

= inf
t∈ℝ

�𝜓N
i
(x�, t) +

M

𝛼
‖x − x�‖.

(14)inf
t∈ℝ

�̂N
i
(x�, t) ≤ inf

t∈ℝ
�̂N
i
(x, t) +

M

�
‖x − x�‖.
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where 

 and diam(X) = supx,x�∈X ‖x − x�‖ is the diameter of X .

Proof The idea of moving from the pointwise exponential bound (11) to a uniform 
bound is to impose the pointwise bound jointly on a finite number of points and use 
the Lipschitz continuity property (Lemma 4) to bound the deviation of the rest of the 
set from this finite set. Making precise the mathematical details, note that one can 
cover the set X  with

number of points, labeled C ∶= {x̃1,… , x̃K} ⊂ X  , such that for any x ∈ X  , there 
exists a point x̃i(x) ∈ C with

The number K can be computed as follows. From (17), we require ‖x − x̃i(x)‖ ≤
𝜖𝛼

4M
 . 

Thus, from Definition 3 in Appendix, the number of points in C need only be bigger 
than the ��

4M
-covering number of X  . Thus, any upper bound on this covering number 

suffices. From Lemma 7, one such upper bound is 
(

3diam(X)

(��∕4M)

)n
1

vol(B)
 , where vol(B) is 

the volume of the unit norm ball B in ℝn . Since vol(B) ≥ 2�n∕2

⌈n∕2⌉! , we get the desired 
value for K given in (16). Having identified the set of points C , we next combine the 
Lipschitz bound given in Lemma 4 and the inequality (17), to get for all i ∈ [n] and 
x ∈ X  , 

 The above inequalities control the deviation of the functions ĈVaR
N

� [fi(⋅, u)] and 
CVaRℙ

� [fi(⋅, u)] over the set X  from the values these functions take on the set C . The 
next step entails bounding the deviation of the CVaR and the empirical CVaR on the 
set C . Employing (11) and the union bound, we have

ℙ
N
�
sup
x∈X

‖�FN(x) − F(x)‖ > 𝜖
�
≤ 𝛾(𝜖) exp(−𝛽(𝜖)N),

(15a)�(�) ∶= 6n
�12Mdiam(X)

��

�n ⌈n∕2⌉!
2�n∕2

,

(15b)�(�) ∶=
��2

44n(L − �)2
,

(16)K ∶=
�12Mdiam(X)

��

�n ⌈n∕2⌉!
2�n∕2

(17)(M∕𝛼)‖x − x̃i(x)‖ ≤ 𝜖∕4.

(18a)|||
�CVaR

N

𝛼 [fi(x, u)] −
�CVaR

N

𝛼 [fi(x̃
i(x), u)]

||| ≤ 𝜖∕4,

(18b)
|||CVaR

ℙ

𝛼 [fi(x, u)] − CVaRℙ

𝛼 [fi(x̃
i(x), u)]

||| ≤ 𝜖∕4.
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The next set of inequalities characterize the difference between the CVaR and the 
empirical CVaR over the set X  using the Lipschitz continuity property  (18). Fix 
i ∈ [n] and let x ∈ X  . Note that using (18),

Next, the deviation between the CVaR and its empirical counterpart is bounded 
using (19) and the above characterization as

The final step is to connect the above inequality to the difference between F̂N and F. 
From the proof of Lemma 2, one can deduce that if supx∈X ‖�FN(x) − F(x)‖ > 𝜖 , then

Therefore, using (20) we obtain

This concludes the proof.   ◻

(19)

ℙ
N
(

sup
i∈[n],x∈C

|||ĈVaR
N

� [fi(x, u)] − CVaRℙ

� [fi(x, u)]
||| ≥

�

2

)

≤
∑

i∈[n]

∑

x∈C

ℙ
N
(|||ĈVaR

N

� [fi(x, u)] − CVaRℙ

� [fi(x, u)]
||| ≥

�

2

)

≤ 6nK exp
(
−

��2

44(L − �)2
N
)
.

|�CVaR
N

𝛼 [fi(x, u)] − CVaRℙ

𝛼 [fi(x, u)]|

≤ |�CVaR
N

𝛼 [fi(x, u)] −
�CVaR

N

𝛼 [fi(x̃
i(x), u)]|

+ |�CVaR
N

𝛼 [fi(x̃
i(x), u)] − CVaRℙ

𝛼 [fi(x̃
i(x), u)]|

+ |CVaRℙ

𝛼 [fi(x̃
i(x), u)] − CVaRℙ

𝛼 [fi(x, u)]|

≤
𝜖

2
+ |�CVaR

N

𝛼 [fi(x̃
i(x), u)] − CVaRℙ

𝛼 [fi(x̃
i(x), u)]|.

(20)

ℙ
N
(

sup
i∈[n],x∈X

|||ĈVaR
N

� [fi(x, u)] − CVaRℙ

� [fi(x, u)]
||| ≥ �

)

≤ ℙ
N
(

sup
i∈[n],x∈X

|||ĈVaR
N

� [fi(x, t)] − CVaRℙ

� [fi(x, u)]
||| ≥

�

2

)

≤ 6nK exp
(
−

��2

44(L − �)2
N
)
.

sup
i∈[n],x∈X

���
�CVaR

N

𝛼 [fi(x, u)] − CVaRℙ

𝛼 [fi(x, u)]
��� >

𝜖√
n
.

ℙ
N(sup

x∈X

‖�FN(x) − F(x)‖ > 𝜖) ≤ ℙ
N
�

sup
i∈[n],x∈X

���
�CVaR

N

𝛼 [fi(x, u)]

− CVaRℙ

𝛼 [fi(x, u)]
��� >

𝜖√
n

�

≤ 6nK exp
�
−

𝛼𝜖2

44n(L − �)2
N
�
.
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The main result is given below. The proof follows from the uniform exponen-
tial convergence of F̂N.

Theorem 3 (Exponential convergence of Ŝ
N

 to S ) Let Assumption 2 hold. Then, for 
any 0 < 𝜖 < diam(X)∕2 , and N ∈ ℕ , the following inequality holds

where � and � are given in  (15) and 𝛿 ∶ ℝ>0 → ℝ>0 is a map such that the pair 
(�, �(�)) satisfies the condition of Lemma 3.

Proof Consider any 𝜖 > 0 . By Lemma  3, if supx∈X ‖F̂N(x) − F(x)‖ ≤ �(�) , then 
�(Ŝ

N
,S) ≤ � . From Proposition 1, for any 𝛿(𝜖) > 0 , there exist �(�(�)) and �(�(�)) , 

given in (15a) and (15b), respectively, such that

for all N. The proof follows by using the above facts and the set of inequalities:

  ◻

Remark 1 (Sample guarantees for approximating S with Ŝ
N

 ) Theorem 3 implies that 
if one wants �(Ŝ

N
,S) ≤ � with confidence 1 − � , where � ∈ (0, 1) is a small positive 

number, then one would require at most

number of samples of the random variable. Due to the exponential rate, a good fea-
ture of this sample guarantee is that N depends on the accuracy � logarithmically. 
That is, one can obtain high confidence bounds with fewer samples. However, the 
sample size grows poorly with other parameters, especially, �(�) and the dimension 
n. Further, note that to obtain an accurate sample guarantee, one needs to estimate 
�(⋅) which depends on the regularity of random functions. Improving the sample 
complexity for specific random functions is discussed in the following section. ∙

ℙ
N
(
𝔻(Ŝ

N
,S) ≤ �

)
≥ 1 − �(�(�))e−�(�(�))N ,

ℙ
N
�
sup
x∈X

‖�FN(x) − F(x)‖ > 𝛿(𝜖)
�
≤ 𝛾(𝛿(𝜖))e−𝛽(𝛿(𝜖))N

ℙ
N(𝔻(�S

N
,S) ≤ 𝜖) ≥ ℙ

N
�
sup
x∈X

‖�FN(x) − F(x)‖ ≤ 𝛿(𝜖)
�

= 1 − ℙ
N
�
sup
x∈X

‖�FN(x) − F(x)‖ > 𝛿(𝜖)
�
.

N(� , �) =
1

�(�(�))
log

��(�(�))
�

�

=
44n(L − �)2

��(�)2

�
log

�6n⌈n∕2⌉!
2�n∕2�

�
+ n log

�12Mdiam(X)

��

��
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4  Separable uncertain functions

Here we illustrate how specific structure of the random functions yields tighter 
sample guarantees. Further, we discuss the tractability of solving the sample aver-
age VI problem.

Proposition 2 (Exponential convergence for separable functions) Assume that the 
random functions have the form

where f̃i , gi , and f̌i are non-negative real-valued continuous functions. Then, for any 
𝜖 > 0 and N ∈ ℕ , the following holds

where �(�) ∶=
��2

11n(fmaxgrge)2
,  with fmax: = supi∈[n],x∈ f̃i(x) and 

grge ∶= sup
i∈[n]

(
sup
u∈U

gi(u) − inf
u∈U

gi(u)
)
.

Proof Since CVaR is positive-homogeneous and shift-invariant [18, Chapter 6], one 
gets

for all i ∈ [n] . Using this fact, for any 𝜖 > 0 , we reason as

where (a) follows from (23) (note that a similar equality as (23) holds for CVaRℙ

� ) 
and the fact that f̃  takes non-negative values and (b) is a result of the deviation ine-
quality (11) applied in combination with the union bound. Using (24) and proceed-
ing along the lines of Theorem 3 we obtain (22).   ◻

Recounting the way we obtained exponential convergence in the previous section, 
the key step was in Proposition 1 where we moved from the deviation inequality for 
finite number of points in X  to the uniform exponential convergence of F̂ . Such an 
exercise was inevitable due to the possible interdependence of x and u in the random 

(21)fi(x, u) = f̃i(x)gi(u) + f̌i(x) for all i ∈ [n],

(22)ℙ
N
(
𝔻(Ŝ

N
,S) ≤ �

)
≥ 1 − 6ne−�(�(�))N ,

(23)�CVaR
N

𝛼 [fi(x, u)] = f̃i(x)
�CVaR

N

𝛼 [gi(u)] + f̌i(x),

(24)

ℙ
N
�
sup
x∈X

‖�FN(x) − F(x)‖ > 𝜖
�

≤ ℙ
N
�

sup
i∈[n],x∈X

���
�CVaR

N

𝛼 [fi(x, u)] − CVaRℙ

𝛼 [fi(x, u)]
��� >

𝜖√
n

�

(a)

≤ ℙ
N
�
sup
i∈[n]

���
�CVaR

N

𝛼 [gi(u)] − CVaRℙ

𝛼 [gi(u)]
��� >

𝜖√
nfmax

�

(b)

≤ 6n exp
�
−

𝛼𝜖2

11n(fmaxgrge)2
N
�
,
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function. Not only that, the bound for this reason scaled poorly with many param-
eters, such as, the dimension n and the size of X  . However, when the random func-
tion takes the form (21), then one need not construct a cover for X  to derive uniform 
exponential convergence of F̂ . Thus, we obtain a tighter bound (22).

Remark 2 (Sample guarantees and tractability for separable functions) Same as 
Remark 1, we deduce using Proposition 2 that for separable functions (21), the accu-
racy �(Ŝ

N
,S) ≤ � with confidence 1 − � is guaranteed with

number of samples. As expected, the above sample size does not depend on the size 
of X  . Further, for the above derivation we need not assume the random function to 
be Lipschitz continuous.

We next comment about solving VI(X, F̂N) for separable functions. For conveni-
ence, denote the concatenation of f̃i and f̌i for i ∈ [n] with functions f̃  and f̌  , respec-

tively. Further, let the vector ĝN ∶= (ĈVaR
N

� [gi(u)])i∈[n] collect the empirical CVaR 
of the random function of each path. Then, the aim is to solve VI(X, f̃ ⊙�gN + f̌ ) , 
where ⊙ represents component-wise product. Given samples, the approach would 
be to compute ĝN and then solve the VI. Note that computing each component ĝN

i
 

amounts to solving a linear program:

The appealing part of this process is the deconstruction into two steps: computing 
the empirical CVaR independent of x and solving the VI without worrying about 
samples. Further, one can derive conditions on the underlying functions that guar-
antee monotonicity of f̃ ⊙�gN + f̌  that consequently lead to efficient algorithms that 
solve the VI, see e.g., methods given in [7]. ∙

Note that if F is strictly monotone, then the solution set S is a singleton. In that 
case, asymptotic consistency implies that all sequences {x̂N} converge to the unique 
solution. If in addition F satisfies a stronger assumption, that of being strongly 
monotone and having a separable form, then one can estimate the map � used in the 
exponential convergence bound. The next result formalizes this implication.

Lemma 5 (Estimating � for strongly monotone F) Assume that the random functions 
are of the form fi(x, u) = f̃i(x) + gi(u) for all i ∈ [n] , where f̃i and gi are real-valued 
continuous functions. Suppose the concatenated function f̃ ∶= (fi)i∈[n] is strongly 

monotone over X  with modulus 𝜎 > 0 . Then, supx∈X ‖F̂N(x) − F(x)‖ ≤ � implies 

�(Ŝ
N
,S) ≤ �−1�.

N(�, �) =
11n(fmaxgrge)2

��(�)2
log

(
6n

�

)

ĝN
i
= min

{
t +

1

N�

N∑

j=1

yj

|||||
yj ≥ gp(û

j) − t, ∀j ∈ [N],

t ∈ ℝ, yj ≥ 0, ∀j ∈ [N]

}
.
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Proof Note that F(x) = f̃ (x) + 𝜅 , where components of the vector � are given 
by �i ∶= CVaRℙ

� [gi(u)] for all i. Similarly, we have �FN(x) = f̃ (x) + �𝜅N where 

�̂N
i
∶= ĈVaR

N

� [gi(u)] . By assumption,

By the definition of the solution of a VI, for any x∗ ∈ SOL(X,F) and 

x̂N ∈ SOL(X, F̂N) , we have (�xN − x∗)⊤F(x∗) ≥ 0 and (x∗ −�xN)⊤�FN(�xN) ≥ 0 . Com-
bining these inequalities gives us (x∗ −�xN)⊤(F(x∗) − �FN(�xN)) ≤ 0 . Using the separa-
ble forms of the functions, we get

Using strong monotonicity condition (x∗ −�xN)⊤(f̃ (x∗) − f̃ (�xN)) ≥ 𝜎‖x∗ −�xN‖2 and 
the Cauchy-Schwartz inequality in the above expression, we get

The proof now follows from (25).   ◻

The above result can be used to further refine the convergence rate given in Prop-
osition  2. In the following section, we apply our results to the uncertain network 
routing problem.

5  Application: computing CVaR‑based Wardrop equilibrium

Consider a network given by a directed graph G ∶= (V, E) , where V and E ⊆ V × V 
stand for the set of nodes and edges, respectively. The sets of origin and destination 
nodes1 are the sets of sources and sinks in the network, and are denoted by O ⊂ V 
and D ⊂ V , respectively. The set of origin–destination (OD) pairs is W ⊆ O ×D . 
Let Pw denote the set of available paths for the OD pair w ∈ W and let P = ∪w∈WPw 
be the set of all paths.2 Consider the setting of nonatomic routing where numerous 
agents traverse the network and so each individual agent’s action has infinitesimal 
impact on the aggregate traffic flow. As a consequence, flow is modeled as a con-
tinuous variable. Each agent is associated with an OD pair w ∈ W and is allowed to 
select any path p ∈ Pw . The route choices give rise to the aggregate traffic which is 
modeled as a flow vector h ∈ ℝ

|P|
≥0

 with hp being the flow on a path p ∈ P . The flow 
between each OD pair must satisfy the travel demand. We denote the demand for the 
OD pair w ∈ W by dw ∈ ℝ≥0 and the set of feasible flows by

(25)sup
x∈X

‖F̂N(x) − F(x)‖ = ‖�̂ − �‖ ≤ �.

(x∗ −�xN)⊤(f̃ (x∗) − f̃ (�xN)) ≤ (x∗ −�xN)⊤(�𝜅 − 𝜅).

�‖x∗ − x̂N‖2 ≤ ‖x∗ − x̂N‖‖�̂ − �‖.

1 A source is a vertex with no incoming edge and a sink is a vertex with no outgoing edge.
2 A path is an ordered sequence of unique vertices such that two subsequent vertices form an edge.
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Agents who choose path p ∈ P experience a non-negative uncertain cost denoted by 
Cp ∶ ℝ

|P|
≥0

×ℝ
m
→ ℝ≥0 , (h, u) ↦ Cp(h, u) , where u ∈ ℝ

m models the uncertainty. Let 
ℙ and U ⊂ ℝ

m be the distribution and support of u, respectively. Assume that U is 
compact. For the cost function, assume that for every p ∈ P and u ∈ U , the function 
h ↦ Cp(h, u) is continuous. For every p ∈ P and h ∈ H , the function u ↦ Cp(h, u) is 
measurable. In addition, for all p ∈ P , assume that Cp takes finite value over H × U . 
The above described elements collectively represent an uncertain routing game. To 
assign an appropriate objective for agents, we assume that agents are risk-averse and 
look for paths with least CVaR. We assume that all agents have the same risk-aver-
sion characterized by the parameter � ∈ (0, 1) . The CVaR associated to path p as a 
function of the flow is

The notion of equilibrium then is that of Wardrop [4], given below.

Definition 2 (Conditional value-at-risk based Wardrop equilibrium (CWE)) A flow 
vector h∗ ∈ ℝ

|P|
≥0

 is called a CVaR-based Wardrop equilibrium (CWE) for the uncer-
tain routing game if: (i) h∗ satisfies the demand for all OD pairs and (ii) for any OD 
pair w, a path p ∈ Pw has nonzero flow if the CVaR of path p is minimum among all 
paths in Pw . Formally, h∗ is a CWE if h∗ ∈ H and h∗

p
> 0 for p ∈ Pw only if

We denote the set of CWE by S��� ⊂ H . ∙

The set S��� is equivalent to the set of solutions to the variational inequality (VI) 
problem VI(H,G) (see Sect. 2 for relevant notions) [20], where

for all p ∈ P . Note that the set H is compact and convex. Further, the map h ↦ G(h) 
is continuous since Cp , p ∈ P are so and H and U are compact. Therefore, the set of 
solutions SOL(H,G) is nonempty and compact [7, Corollary 2.2.5]. Consequently, 
the set S��� is nonempty and compact. Due to this connection between the CWE and 
the solution of the risk-based VI, we can apply the results developed in the previous 
section to study the sample average approximation to the CWE. We present the fol-
lowing main result. Given N i.i.d samples of u, the sample average approximation of 

the function G is defined component-wise as ĜN
p
(h) ∶= ĈVaR

N

� [Cp(h, u)] , where

(26)H ∶=
�
h ∈ ℝ

�P�
≥0

���
∑

p∈Pw
hp = dw for all w ∈ W

�
.

(27)CVaRℙ

� [Cp(h, u)] = inf
t∈ℝ

{
t +

1

�
𝔼
ℙ

[
Cp(h, u) − t

]
+

}
.

(28)CVaRℙ

� [Cp(h
∗, u)] ≤ CVaRℙ

� [Cq(h
∗, u)], ∀q ∈ Pw.

Gp(h) ∶= CVaRℙ

� [Cp(h, u)],

ĈVaR
N

� [Cp(h, u)] ∶= inf
t∈ℝ

{
t +

1

N�

N∑

i=1

[Cp(h, û
i) − t]+

}
.
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Denote the set of solutions of the VI(H, ĜN) by Ŝ
N

���
 . We have the guarantee:

Theorem 4 (Convergence of Ŝ
N

���
 to S��� ) The following hold: 

 (i) For any 𝜖 > 0 , there exists 𝛿(𝜖) > 0 such that �(Ŝ
N

���
,S���) ≤ � whenever 

suph∈H ‖ĜN(h) − G(h)‖ ≤ �(�).

 (ii) Almost surely �(Ŝ
N

���
,S���) → 0.

Furthermore, assume there exists a constant M > 0 such that �Cp(h, u) − Cp(h
�
, u)� ≤ M‖h − h�‖ 

for all h, h� ∈ H , u ∈ U , and p ∈ P . Let � ∶= min{Cp(h, u) | h ∈ H, u ∈ U, p ∈ P} 
and L ∶= max{Cp(h, u) | h ∈ H, u ∈ U, p ∈ P} . Then, for any 𝜖 > 0 , and N ∈ ℕ , the 
following inequality holds

where �(�) satisfies the condition given in (i), and

The proof follows in the same way as that of Theorem 1 and 3, using the fact that 
the covering number of H can be bounded as given in Lemma 9 in the appendix. This 
sharper bound on covering number brings out a notable difference in the constants 
given in the exponential bound (29) as compared to those derived in Theorem 3.

6  Numerical example: Sioux falls

Here we illustrate the method of sample average approximation for the computation 
of the CWE through an example. We consider the Sioux Falls traffic network that 
consists of 24 nodes and 76 edges [23]. The (deterministic) cost associated to each 
edge e ∈ E of the network is the travel time and is given as an affine function of the 
flow on the edge, fe(�e) ∶= te

(
1 + be

�e

ce

)
 , where �e is the flow on edge e ∈ E , te is 

the free-flow travel time, and ce is the capacity of the edge. The values for constants 
te and ce are taken from the repository [23]. The constant be is fixed to be 100 for all 
edges. For simplicity, we consider three OD pairs W = {(1, 19), (13, 8), (12, 18)} 
and for each pair, we choose 10 paths that have the shortest free-flow travel time. 
The demand is given as d(1,19) = 300 , d(13,8) = 600 , and d(12,18) = 200 . The cost of 
each path is set to be the summation of the costs of the edges contained in it. That is, 
for some path p ∈ P , Cp(h) =

∑
e∈p fe(�e) , where the summation is over all edges 

that constitute the path. Note that the flow on any edge is the sum of the flow of the 
paths that use that edge. That is, �e =

∑
{p∈P � e∈p} hp . We assume that the cost asso-

ciated to each edge that contains either of the nodes 10, 16, or 17 is uncertain. Spe-
cifically, for such an edge e, the uncertain cost is given as Je(�e, ue) = fe(�e) + ue , 

ℙ
N
(
𝔻(Ŝ

N

���
,S���) ≤ �

)
≥ 1 − �(�(�))e−�(�(�))N ,

(29)�(�) ∶= 6�P�
�

w∈W

⌈
4M�W�

√
�Pw�

��
⌉, �(�) ∶=

��2

44�P�(L − �)2
.
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where ue has uniform distribution over the set [0, 0.5te] . For all other edges, we set ue 
to be zero with probability one. All uncertainties are assumed to be mutually inde-
pendent. The uncertain cost of a path p ∈ P is given as Cp(h, u) =

∑
e∈p Je(�e, ue) . 

This defines completely the routing game with uncertain costs.

6.1  Affine separable costs and LCP

In the example explained above, cost Cp is linear in flow and the uncertainty is addi-
tive. Therefore, solving the sample average VI is equivalent to solving a linear com-
plementarity problem (LCP), which in turn is a convex optimization problem with 
quadratic cost and affine constraints. We next drive this optimization problem. Let 
Q ∈ {0, 1}|E|×|P| be the (edge, path)-incidence matrix where Qep entry is 1 if and 
only if edge e belongs to path p. Then, using the linear relationship between edge 
and path flows, the vector containing all edge flows can be written as � = Qh , where 
h consists of flows on paths. Stacking all uncertain edge costs Je in a vector J and 
using its affine separable form, we obtain

where u and t are vector of uncertainties and free-flow travel time of all edges, 
respectively, and R is a diagonal matrix where the diagonal entry corresponding to 
edge e is bete∕ce . Using the above relation, the vector of costs incurred on paths 
takes the form

Further, since CVaR is shift-invariant, we obtain

where the last term in the above relation is the vector of element-wise CVaR s. Simi-
larly, the sample average approximation of G is given as

Our aim is find the solution of VI(H, Ĝ) . To represent the set of feasible flows 
in a compact form, denote B ∈ {0, 1}|W|×|P| as the (OD pair, path)-incidence 
matrix where Bwp is 1 if and only if p ∈ Pw . Denoting the vector of demands as 
d = (dw)w∈W , the set of feasible flows are vectors h ≥ 0 satisfying Bh = d . Using 
this notation and the explanation given in [26, Section 2.2], finding the solution of 
VI(H, ĜN) is equivalent to solving the LCP given as: find x = (h;v) ∈ ℝ

|P|+|W| such 
that

where

J(h, u) = RQh + t + u,

C(h, u) = Q⊤RQh + Q⊤t + Q⊤u.

G(h) = Q⊤RQh + Q⊤t + CVaRℙ

𝛼 [Q
⊤u],

�GN(h) = Q⊤RQh + Q⊤t + �CVaR
N

𝛼 [Q
⊤u].

x ≥ 0, �MN(x) ≥ 0, and x⊤ �MN(x) = 0,
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Solving LCP is equivalent to finding the optimizer of the following problem

Since M̂N is affine in x, the above problem is quadratic and one can show using the 
properties of matrices Q, R, and B, that the problem is convex. To summarize, the 
VI(H,G) can be approximated by VI(H, ĜN) and the latter can be solved by first 

finding �CVaR
N

𝛼 [Q
⊤u] and then solving (30).

6.2  Computing CWE

For the above explained Sioux falls example, we set � = 0.05 . This defines uniquely 
the CWE h∗ . For the sample average approximation, we consider three scenarios 
with different number of samples, N ∈ {50, 500, 5000} . We consider 500 runs for 
each of the scenarios. Each run collects N number of i.i.d samples of the uncer-
tainty u, constructs the empirical �CVaR

N

𝛼 [Q
⊤u] , and computes the approximation of 

�MN(x) ∶=

[
Q⊤RQ − B⊤

B 0

]
x +

[
Q⊤t + �CVaR

N

𝛼 [Q
⊤u]

−d

]
.

(30)
minimize x⊤ �MN(x)

subject to �MN(x) ≥ 0,

x ≥ 0.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

N=50
N=500
N=5000

Fig. 1  Plot illustrating the the convergence of the approximate solution ĥN to the CVaR-based Wardrop 
equilibrium h∗ for Sioux falls network, see Sect. 6 for details. Each line is the cumulative distribution of 
‖ĥN − h

∗‖ with a different sample size used for the approximation. The distribution is obtained using 500 
runs
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the CWE ĥN by solving (30). Figure 1 illustrates our results. It plots the cumulative 
distribution function of the random variable ‖ĥN − h∗‖ as estimated using the 500 
runs. Note that the complete distribution moves to the left with increasing number of 
samples. This confirms our theoretical findings that as N increases, the approximate 
solution ĥN approaches the CWE almost surely.

7  Conclusions

We considered a risk-based variational inequality and studied the sample average 
approximation method for solving it. In particular, we derived asymptotic consist-
ency and exponential convergence under suitable assumptions. For the case of sepa-
rable random function, we derived sharper convergence bounds. Lastly we demon-
strated the application of our result in the case of uncertain network routing problem 
where one can determine the CVaR-based Wardrop equilibrium using the sample 
average scheme. Future work will involve exploring tractability of the resulting sam-
ple average VI under various conditions. We also wish to investigate other efficient 
sampling techniques, especially when the dimension of the problem is large. Finally, 
we plan to investigate decentralized learning methods for finding the solution of 
risk-averse VIs.

Appendix

Here, we estimate the covering number of a general set X  and the feasible flow set 
H related to the network routing problem. This computation helps in establishing 
Proposition 1 and Theorem 4. In order to present the results, we need a couple of 
definitions.

Definition 3 (Covering number [22, Chapter  3]) Given a set X ⊂ ℝ
n and a real 

value 𝜖 > 0 , a set of m ∈ ℕ points {x1, x2,… , xm} is called an �-cover of X  if 
X ⊂ ∪m

k=1
B(xk, 𝜖) , where B(x, �) is the closed ball in Euclidean metric with center as 

x and radius � . The minimum number of points required to form an �-cover of X  is 
called the �-covering number. ∙

From [25], we have the following result. We give the proof here for the sake of 
completeness.

Lemma 6 (Covering number of a set) The �-covering number of a convex set X ⊂ ℝ
n 

that satisfies 𝜖B ⊂ X  is upper bounded by 
(

3

�

)n
vol(X)

vol(B)
 , where vol stands for vol-

ume and B is the unit norm ball in ℝn.

Proof Note that the �-covering number is bounded above by the �-packing num-
ber of the set [22, Chapter  3]. The latter is defined as the maximum number 
of points that can be selected from X  such that they are mutually more than � 
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distance apart. Let {x1, x2,… , xP} ⊂ X  be these points and P be the �-packing num-
ber. Our next step is to derive a bound for P. Note that by definition of packing, 

closed balls B(xi, �∕2) ∶= {y ∈ ℝ
n � ‖xi − y‖ ≤ �∕2} , i ∈ {1,… ,P} are disjoint 

and ∪P
i=1

B(xi, 𝜖∕2) ⊂ X + (𝜖∕2)B , where the set addition is considered to be the 
Minkowski sum. Taking the volume on both sides yields

This implies P ≤
vol(X+(�∕2)B)

vol((�∕2)B)
 . Next we wish to show that

under our hypothesis. First note that if x ∈ X + (�∕2)B , then there exists y ∈ X  and 

z ∈ (�∕2)B such that x = y + z . By assumption, 𝜖B ⊂ X  and so z ∈ (1∕2)X  . This 

implies that x ∈ X + (1∕2)X  . Thus, X + (𝜖∕2)B ⊂ X + (1∕2)X  . Next using convex-

ity one can show that X + (1∕2)X ⊂ (3∕2)X  . Indeed, pick any x ∈ X + (1∕2)X  , 

we have y, z ∈ X  such that x = y + (1∕2)z . That is, 2
3
x =

2

3
y +

1

3
z . Using convexity 

we get 2
3
x ∈ X  and so x ∈ 3

2
X  . This establishes  (31). Using this inclusion we get 

vol(X + (�∕2)B) ≤ vol((3∕2)X) . Finally, substituting this in the bound on P, we have

This completes the proof.   ◻

The following is an application of the above result.

Lemma 7 (Covering number of a compact set) The �-covering number of a compact 

set X ⊂ ℝ
n , where � ≤ diam(X)

2
 , is upper bounded by 

(
3diam(X)

�

)n
1

vol(B)
 , where vol(B) is 

the volume of the unit norm ball B in ℝn and diam(X) = supx,x�∈X ‖x − x�‖ is the 

diameter of X .

Proof Consider the set M ∶= [−diam(X)∕2, diam(X)∕2]n , where diam(X) is 
the diameter of the set X  . One can verify that the covering number of X  is upper 
bounded by that of the set M . This is because the set X  can be entirely contained 
in M after performing a translation operation. Note that vol(M) = diam(X)n . The 
result then follows from Lemma 6.   ◻

Next, we provide a bound on the covering number of a simplex. In the consequent 
result, we use this bound to analyze the covering number of the feasible flow set H.

vol(X + (�∕2)B) ≥ vol
(
∪P
i=1

B(xi, �∕2)
)
= Pvol((�∕2)B).

(31)X + (𝜖∕2)B ⊂ (3∕2)X

P ≤
vol(X + (�∕2)B)

vol((�∕2)B)
≤

vol((3∕2)X)

vol((�∕2)B)
=
(
3

�

)n vol(X)

vol(B)
.
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Lemma 8 (Covering number for a simplex) For the simplex 
�n
d
∶= {x ∈ ℝ

n
≥0

� ∑n

i=1
xi = d} , the �-covering number is bounded above by

where K = ⌈
√
nd

�
⌉.

Proof Consider the set of points

where K = ⌈
√
nd

�
⌉ . Note that C ⊂ 𝛥n

d
 . We will show that this is a valid �-cover for 

�n
d
 . To this end, pick any point x ∈ �n

d
 . We will construct a point xc ∈ C such that 

‖x − xc‖ ≤ � . Let xup, xdn ∈ ℝ
n
≥0

 be such that each j-th component is given by

Note that xdn ⪯ x ⪯ xup , where ⪯ denotes element-wise inequality. Further, 
∑n

j=1
xdn
j

≤
∑n

j=1
xj = d ≤

∑n

j=1
x
up

j
 . By construction, for any vector y satisfying 

xdn ⪯ y ⪯ xup , we have ‖y − x‖∞ ≤
d

K
 . Consequently, for such a vector we have

Thus, our aim is to find a vector y that belongs to C and for which xdn ⪯ y ⪯ xup 
holds. Define

Note that � is an integer as 
∑n

j=1
xj = d and each component xdn

j
 is a product of an 

integer and the quantity d
K

 . Now consider a vector y� ∈ {0, 1}n such that 
∑n

j=1
y�
j
= � . 

Set y = xdn + y� . It is easy to see that by construction xdn ⪯ y ⪯ xup and y ∈ C . The 
former establishes ‖y − x‖ ≤ � due to the reasoning in (33). Thus, C is an �-cover for 
�n
d
 . As a consequence, to complete the proof we need to enumerate the points in C . 

To this end, note that for any point xc = d
(

i1

K
,
i2

K
,… ,

in

K

)
∈ C , we have

(32)
(
n + K − 1

K − 1

)
,

C ∶=
{( i1d

K
,
i2d

K
,… ,

ind

K

) ||| is ∈ [K] ∪ {0},∀s ∈ [n], and

n∑

s=1

is = K
}
,

x
up

j
= min

{
i ∗ d

K

|||
i ∗ d

K
≥ xj, i ∈ [K] ∪ {0}

}
,

xdn
j

= max
{
i ∗ d

K

|||
i ∗ d

K
≤ xj, i ∈ [K] ∪ {0}

}
.

(33)‖y − x‖ ≤
√
n‖y − x‖∞ ≤

√
nd

K
≤ �.

� =
K

d

n∑

j=1

(xj − xdn
j
).
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Since each is is a nonnegative integer, using the above inequality, the number of 
points in C is the number of ways K identical objects can be put into n distinct bins. 
This number is given as (32).   ◻

Using the above result, we next derive an upper bound on the �-covering number 
the set H.

Lemma 9 (Covering number of H ) The �-covering number of the set of feasible 
flows H given in (26) is bounded above by

where 
∏

 denotes the product and Kw = ⌈ �W�
√
Pwdw

�
⌉ for all w ∈ W.

Proof First note that H =
∏

w∈W Hw , where 
∏

 represents the Cartesian product and

for all w ∈ W . That is, Hw represents the set of feasible flows for paths correspond-
ing to the OD pair w. From Lemma 8, the number of points required to cover the set 
Hw with balls of radius �

|W| is

where Kw = ⌈ �W�
√
Pwdw

�
⌉ . Consider these set of points to be represented by Cw ⊂ Hw . 

Now consider the set of points C = {(hw)w∈W | hw ∈ Cw for all w ∈ W} . The number 
of points in C is equal to the value in (34). We show next that C is an �-cover for H . 
Pick any h = (hw)w∈W ∈ H , we have

where the first condition follows from the triangle inequality and the second from 
the definition of Cw . This completes the proof.   ◻
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n∑

s=1

Kxc
s
= d

n∑

s=1

is = d ⋅ K.

(34)
∏

w∈W

(|Pw| + Kw − 1

Kw − 1

)
,

Hw ∶=
{
hw ∈ ℝ

|Pw|
≥0

|||
∑

p∈Pw

hw
p
= dw

}

(|Pw| + Kw − 1

Kw − 1

)
,

min
h̄∈C

‖h − h̄‖ ≤
�

w∈W

min
w∈Cw

‖hw − h̄w‖ ≤
�

w∈W

𝜖

�W� = 𝜖,



495

1 3

Sample average approximation of conditional value‑at‑risk…

Data availability The datasets generated during and/or analysed during the current study are available 
from the corresponding author on reasonable request.

Declarations 

Conflict of interest The author declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Anderson, E., Xu, H., Zhang, D.: Varying confidence levels for CVaR risk measures and minimax 
limits. Math. Program. 180, 327–370 (2020)

 2. Chen, A., Zhou, Z.: The �-reliable mean-excess traffic equilibrium model with stochastic travel 
times. Transp. Res. Part B 44, 493–513 (2010)

 3. Cherukuri, A.: Sample average approximation of CVaR-based Wardrop equilibrium in routing 
under uncertain costs. In: IEEE Conference on Decision and Control (Nice, France, Dec. 2019), 
pp. 3164–3169

 4. Correa, J.R., Stier-Moses, N.E.: Wardrop equilibria. Encyclopedia of Operations Research and Man-
agement Science (2011)

 5. de Mello, T.H., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. 
Surv. Oper. Res. Manag. Sci. 19(1), 56–85 (2014)

 6. Durrett, R.: Probability: Theory and Examples. Series in Statistical and Probabilistic Mathematics, 
4th edn. Cambridge University Press (2010)

 7. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Prob-
lems. Springer, New York (2003)

 8. Gürkan, G., Özge, A.Y., Robinson, S.: Sample-path solution of stochastic variational inequalities. 
Math. Program. 84(2), 313–333 (1999)

 9. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic 
programming. Math. Oper. Res. 18(1), 148–162 (1993)

 10. Kolla, R.K., Prashanth, L.A., Bhat, S.P., Jagannathan, K.: Concentration bounds for empirical con-
ditional value-at-risk: the unbounded case. Oper. Res. Lett. 47(1), 16–20 (2019)

 11. Meng, F.W., Sun, J., Goh, M.: Stochastic optimization problems with CVaR risk measure and their 
sample average approximation. J. Optim. Theory Appl. 146(2), 399–418 (2010)

 12. Nikolova, E., Stier-Moses, N.E.: A mean-risk model for the traffic assignment problem with stochas-
tic travel times. Oper. Res. 62(2), 366–382 (2014)

 13. Ordónez, F., Stier-Moses, N.E.: Wardrop equilibria with risk-averse users. Transp. Sci. 44(1), 63–86 
(2010)

 14. Prakash, A.A., Seshadri, R., Srinivasan, K.K.: A consistent reliability-based user-equilibrium prob-
lem with risk-averse users and endogenous travel time correlations: Formulation and solution algo-
rithm. Transp. Res. Part B 114, 171–198 (2018)

 15. Ralph, D., Xu, H.: Convergence of stationary points of sample average two-stage stochastic pro-
grams: a generalized equation approach. Math. Oper. Res. 36(3), 568–592 (2011)

 16. Ramponi, F.A., Campi, M.C.: Expected shortfall: Heuristics and certificates. Eur. J. Oper. Res. 267, 
1003–1013 (2018)

 17. Shanbhag, U.V.: Stochastic variational inequality problems: Applications, analysis, and algorithms. 
TUTORIALS in Operations Research , pp. 71–107 (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


496 A. Cherukuri 

1 3

 18. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. SIAM, Phila-
delphia (2014)

 19. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modelling and 
sample average approximation. Optimization 57(3), 395–418 (2008)

 20. Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transp. Res. Part B: Meth-
odol. 13(4), 295–304 (1979)

 21. Sun, H., Xu, H., Wang, Y.: Asymptotic analysis of sample average approximation for stochastic 
optimization problems with joint chance constraints via conditional value at risk and difference of 
convex functions. J. Optim. Theory Appl. 161(1), 257–284 (2014)

 22. Temlyakov, V.: Greedy Approximation, Cambridge Monographs on Applied and Computational 
Mathematics. Cambridge University Press (2011)

 23. Transportation Networks for Research Core Team. Transportation networks for research. https:// 
github. com/ bstab ler/ Trans porta tionN etwor ks. Accessed 12 Aug 2020

 24. Wang, Y., Gao, F.: Deviation inequalities for an estimator of the conditional value-at-risk. Oper. 
Res. Lett. 38(3), 236–239 (2010)

 25. Wu, Y.: Lecture notes on informational-theoretic methods in high-dimensional statistics, Available 
at:http:// www. stat. yale. edu/ ~yw562/ teach ing/ 598/ lec14. pdf (2016)

 26. Xie, Y., Shanbhag, U.V.: On robust solutions to uncertain linear complementarity problems and 
their variants. SIAM J. Optim. 26(4), 2120–2159 (2016)

 27. Xu, H.: Sample average approximation methods for a class of stochastic variational inequality prob-
lems. Asia-Pacific J. Oper. Res. 27(1), 103–119 (2010)

 28. Xu, H.: Uniform exponential convergence of sample average random functions under general sam-
pling with applications in stochastic programming. J. Math. Anal. Appl. 368, 692–710 (2010)

 29. Xu, X., Chen, A., Cheng, L., Yang, C.: A link-based mean-excess traffic equilibrium model under 
uncertainty. Transp. Res. Part B 95, 53–75 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks
http://www.stat.yale.edu/%7eyw562/teaching/598/lec14.pdf

	Sample average approximation of conditional value-at-risk based variational inequalities
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Variational inequality
	2.2 Uniform convergence
	2.3 Risk measures

	3 Sample average approximation of 
	3.1 Asymptotic consistency of 
	3.2 Exponential convergence of 

	4 Separable uncertain functions
	5 Application: computing CVaR-based Wardrop equilibrium
	6 Numerical example: Sioux falls
	6.1 Affine separable costs and LCP
	6.2 Computing CWE

	7 Conclusions
	Appendix
	References




