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Abstract
Automated methods for facial animation are a necessary tool in the modern industry 
since the standard blendshape head models consist of hundreds of controllers, and a 
manual approach is painfully slow. Different solutions have been proposed that pro-
duce output in real-time or generalize well for different face topologies. However, 
all these prior works consider a linear approximation of the blendshape function 
and hence do not provide a high-enough level of detail for modern realistic human 
face reconstruction. A second-order blendshape approximation leads to higher fidel-
ity facial animation but generates a non-linear least squares optimization problem 
with high dimensionality. We derive a method for solving the inverse rig in blend-
shape animation using quadratic corrective terms, which increases accuracy. At the 
same time, due to the proposed construction of the objective function, it yields a 
sparser estimated weight vector compared to the state-of-the-art methods. The for-
mer feature means lower demand for subsequent manual corrections of the solution, 
while the latter indicates that the manual modifications are also easier to include. 
Our algorithm is iterative and employs a Majorization–Minimization paradigm to 
cope with the increased complexity produced by adding corrective terms. The sur-
rogate function is easy to solve and allows for further parallelization on the compo-
nent level within each iteration. This paper is complementary to an accompanying 
paper (Racković et al. arxiv preprint. https:// arxiv. org/ abs/ 2302. 04843, 2023) where 
we provide detailed experimental results and discussion, including highly-realistic 
animation data, and show a clear superiority of the results compared to the state-of-
the-art methods.
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1 Introduction

Human face animation is an increasingly popular field of research within the 
applied mathematics community, of interest not only for the production of mov-
ies and video games but also in virtual reality, education, communication, etc. A 
common approach to face animation is using blendshapes [1, 2]—blendshapes 
are a vector representation of the face, where each vector b1,… ,bm ∈ ℝ

3n stands 
for a single atomic deformation of the face, and a resting face is represented by 
b0 ∈ ℝ

3n . More complex expressions are obtained by combining the blendshape 
vectors, commonly using a linear delta blendshape function:

where �bi = bi − b0 for i = 1, ...,m , and wi ∈ [0, 1] are activation weights corre-
sponding to each blendshape. These models provide intuitive controls, even though 
building the base shapes is demanding in terms of time and effort [3–6]. Inverse 
rig estimation is a common problem that consists of choosing the right activation 
weights w1,… ,wm from (1) to produce a predefined expression b̂ ∈ ℝ

3n . It is one 
of the aspects of blendshape animation that can be automated, hence it is often 
addressed in the literature, usually posed in a least-squares fashion as

with possibly additional constraints or regularization. Here, and throughout the 
paper, ‖ ⋅ ‖ stands for the l2 norm. Possible approaches for solving the inverse rig 
can be classified into data-based and model-based techniques, where the first group 
demands large amounts of animation data for training purposes, and the second 
group works with only a blendshape function and the basis vectors. While various 
machine learning techniques show excellent performance [7–17], such methods 
demand long animated sequences that cover all the regular facial expressions to 
train a good regressor. This often makes them infeasible or unprofitable. Conversely, 
model-based approaches [2, 18–20] rely on applying optimization techniques and do 
not demand training data. Yet, a precise rig function or a good approximation is nec-
essary to provide high-quality results. Without exception, all the papers that propose 
model-based solutions work with a linear blendshape function, which does not offer 
high-enough fidelity for realistic animated faces.

We proposed a new model-based method for solving the inverse rig problem 
such that it includes the quadratic corrective terms, which leads to higher accu-
racy of the fit compared to the standard linear rig approximation [7, 21]. Our 
method utilizes a common framework of Majorization–Minimization [22, 23].

(1)f (w1,… ,wm) = b0 +

m∑

i=1

wi�bi,

(2)minimize
w1,…,wm

‖f (w1,… ,wm) − b̂‖2,



547

1 3

A majorization–minimization‑based method for nonconvex inverse…

1.1  Contributions

In the companion paper [24], we present a novel method for solving the inverse rig 
problem when the blendshape model is assumed to be quadratic. This method tar-
gets a specific subdomain of facial animation—highly-realistic human face models 
used in movie and video games production. Here the accurate fit plays a more criti-
cal role than the execution time. For this reason, the added complexity of a quad-
ratic blendshape rig is justified since it significantly increases the mesh fidelity of 
the result. Besides increasing the mesh accuracy, our solution yields fewer activated 
components than the state-of-the-art methods, which is another desirable property 
in production. The main contributions of the current paper are to provide a detailed 
derivation of the proposed inverse rig method and describe results on its conver-
gence guarantees. We refer to [24] for further practical and implementation aspects, 
as well as extensive numerical results on real-world animation data.

The rest of the paper is organized as follows. Section  2 formulates the inverse 
rig problem and covers the existing solutions from the literature. Section  3 intro-
duces our algorithm and gives a detailed derivation of each step. Section 4 discusses 
numerical results. Finally, we conclude the paper in Sect. 5.

2  Problem formulation and preliminaries

The main components of the blendshape model are the neutral mesh b0 ∈ ℝ
3n 

sculpted by an artist, as well as a set of m blendshapes b1,… ,bm ∈ ℝ
3n , where n 

is the number of vertices in the mesh. Blendshapes are topologically identical cop-
ies of a neutral mesh but with some vertices displaced in space to simulate a local 
deformation of the face. The offset between neutral mesh and blendshapes yields 
delta blendshapes �bi = b0 + bi , for i = 1,… ,m, that are added on top of a neu-
tral mesh b0 , with a weight wi ∈ [0, 1] , to produce an effect of local deformation as 
b0 + wi�bi. Multiple local deformers are usually combined to produce more com-
plex facial expressions. A blendshape function can then be defined as

where w = [w1,… ,wm]
T is a weight vector and B = [�b1,… ,�bm] is a blendshape 

matrix. The notation fL(⋅) indicates that this is a linear model, while for realistic face 
representation, it is common to consider a more complex form with quadratic terms, 
as explained in the following.

Some pairs of blendshapes, bi and bj , with an overlapping region of influence 
might produce artifacts on the face (mesh breaking or giving an unbelievable defor-
mation), hence a corrective term b{i,j} needs to be included to fix any issues and 
make the character appearance natural. An artist discovers these combinations, and 
corrective terms are conventionally sculpted by hand. Now, whenever the two blend-
shapes are activated simultaneously, the corrective term is added as well, with a 

(3)fL(w) = b0 +

m∑

i=1

wi�bi = b0 + Bw,
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weight equal to the product of two corresponding weights. We define a set P that 
stores tuples of indices (i,  j) such that a pair of belndshapes i and j have a corre-
sponding corrective term b{i,j} . A quadratic blendshape function is then defined as:

In production, it might be essential to solve the inverse problem. That is, consider-
ing there is a given mesh b̂ , that is conventionally obtained either as a 3D scan of an 
actor or a capture of the face markers, one needs to estimate a configuration of the 
weight vector w that produces a mesh as similar as possible to b̂ . This problem is 
known as the inverse rig problem or the automatic keyframe animation. As we will 
discuss in the next section, it is common to pose this in a least-squares setting.

2.1  Existing solutions

When we consider a model-based solution to the inverse rig problem, the state-of-
the-art method is [25], where the optimization problem is formulated as regularized 
least-squares minimization:

Here, and throughout the paper, ‖ ⋅ ‖ stands for the l2 norm. Regularization is neces-
sary because many blendshape pairs are highly correlated, i.e., produce relatively 
similar deformations over the mesh; hence, the unregularized problem is often ill-
posed, and the solution is not unique. Additionally, it is desired to keep the number 
of non-zero elements of w low because it allows for further manual editing, which is 
common in animation. The solution to (5) is given in a closed-form as

A modification to this solution is given in the same paper. Authors approximate a 
blendshape matrix B with a sparse matrix Bloc , by applying a heat kernel over the 
rows of an original blendshape matrix. This sets low values to zero, meaning that 
effects of the least significant blendshapes are excluded for each vertex.

A different approach is given in [26], where components are visited and opti-
mized sequentially, and after each iteration i = 1,… ,m , a residual term is updated:

Here step 1 finds the optimal activation of a single controller wi , and step 2 removes 
its effect for subsequent iterations. This yields a sparse weight vector and excludes 
the possibility of simultaneously activating mutually exclusive blendshapes (like 
mouth-corner-up and mouth-corner-down). However, the order in which 
the blendshapes are visited is crucial to obtain an acceptable solution. The authors 

(4)fQ(w) = b0 +

m∑

i=1

wi�bi +
∑

(i,j)∈P

wiwjb
{i,j}.

(5)minimize
w

‖Bw − b̂‖2 + �‖w‖2.

(6)w = (BT
B + �I)−1BT

b̂.

(7)
step 1: minimize

wi

‖wi�bi − b̂‖2,

step 2: b̂ ← b̂ − wi�bi.
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propose ordering them based on the average offset that each blendshape causes over 
the whole face.

Other papers consider approaches similar to (5) or (7), and they all assume a lin-
ear blendshape function. A linear model has an advantage over a quadratic because 
it gives rise to a convex problem, and it is thus simple and easy to work with; how-
ever, that simplicity comes at a price—it does not provide enough detail for a real-
istic human face representation in high-quality movies and video games. In the next 
section, we introduce our solution to the inverse rig problem that takes into account 
quadratic corrective terms.

3  Proposed solution

This section presents a detailed derivation of our method that utilizes second-order 
blendshape models; we refer to [24] for a detailed method’s presentation from the 
domain point of view and for extensive numerical experiments on the method. Our 
algorithm targets specifically a high-quality realistic human face animation, hence 
we assume that a real-time execution is not a priority and that the activation weights 
are strictly bounded to [0,  1] interval1. We first explain the algorithm derivation 
and then detail each algorithm step. The optimization problem looks for the opti-
mal weight vector configuration w that fits on a given mesh b̂ , assuming a quadratic 
blendshape function (4), as

where the first term is data fidelity and the second is regularization. The non-nega-
tivity constraint is important in blendshape animation since negative weights have 
no semantical meaning and make it harder for animators to adjust the obtained 
results manually. While weights larger than one might be useful for exaggerated 
cartoonish expressions, in realistic human avatars this is not a favorable behavior. 
The regularization term with 𝛼 > 0 enforces a low cardinality of the solution vector, 
which is a desired feature as it makes the results more artist-friendly [26]. The prob-
lem is approached in a fashion similar to the Levenberg-Marquardt method [27], 
where we choose the initial vector of controller weights w(0) ∈ ℝ

m , and at each itera-
tion t = 0,… , T  , solve for an optimal increment vector v ∈ ℝ

m that solves the fol-
lowing optimization problem:

The weights vector is updated as w(t+1) = w(t) + v , and the process is repeated 
until convergence. Under the quadratic approximation of the rig function, the 

(8)minimize
0≤w≤1

‖‖fQ(w) − b̂‖‖
2
+ �1Tw,

(9)minimize
−w(t)≤v≤1−w(t)

‖‖fQ(w(t) + v) − b̂‖‖
2
+ �1T (w(t) + v).

1 Many authors neglect this constraint with a justification that the values outside this interval can be still 
used for exaggerated expressions in animated characters. In our setting, this is not allowed by the con-
struction of the models and we have to take these constraints into account.
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objective function in (9) is fairly complex, hence we simplify it by applying Majori-
zation–Minimization (MM). That is, to solve (9), we define an upper bound function 
�(v;w) ∶ ℝ

m
→ ℝ over the objective function in (9) such that it is easier to mini-

mize and satisfies Conditions 1 and 2 given below. Note that these conditions define 
a class of functions �(v;w) as potential majorizers to the objective (9), but later in 
this section, we define a specific choice of �(⋅) used in the proposed algorithm.

Condition 1 For any feasible vector 0 ≤ w ≤ 1 , for all the values of an increment 
vector v such that 0 ≤ w + v ≤ 1 , the following holds:

Condition 2 The upper bound �(v;w) matches the value of the objective (9) at point 
v = 0 , i.e.,

In the rest of the paper we will write �(v) instead of �(v;w) , for the sake of simplic-
ity. Further we proceed with the problem in the form

and the following proposition gives us guarantees that such an approach leads to the 
minimization of the original objective.

Proposition 1 Under Conditions  1 and  2, a sequence of iterates w(t) for t ∈ ℕ 
obtained as the solutions to problem (12) (with w(t+1) = w(t) + v(t) ) produces a 
monotonically non-increasing sequence of values of the objective (8), i.e.,

Proof If v(t) is a minimizer of (12) at iteration t, i.e.,

then we have �(0) ≥ �(v(t)) . From this and from Conditions 2 and 1, we have the 
following relation:

which proves the proposition.   ◻

(10)‖fQ(w+v) − b̂‖2 + �1T (w + v) ≤ �(v;w).

(11)‖fQ(w) − b̂‖2 + �1T (w) = �(0;w).

(12)minimize
−w≤v≤1-w

�(v),

(13)‖fQ(w(t)) − b̂‖2 + �1Tw(t) ≥ ‖fQ(w(t+1)) − b̂‖2 + �1Tw(t+1) , t ∈ ℕ.

v(t) = argmin
−w(t)≤v≤1-w(t)

�(v),

(14)

‖fQ(w(t)) − b̂‖2 + �1T (w(t))

= �(0) ≥ �(v(t))

≥ ‖fQ(w(t) + v(t)) − b̂‖2 + �1T (w(t) + v(t)),
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Additionally, from [28], we have that under the above iterative method, the objec-
tive function converges to a local optimum or a saddle point as number of iterations 
t goes to infinity.

Upper Bound Function. Let us now introduce a specific majorizer that we apply 
in the proposed algorithm, and below we will give a complete derivation. We define 
the upper bound function of objective (9) as

which is an original regularization term added on a sum of coordinate-wise upper 
bounds �i(v) ∶ ℝ

m
→ ℝ of the data fidelity term, where n is the number of vertices 

in the mesh. The component-wise bounds have the form

where gi ∶= Biw + wTD
(i)
w − b̂i , and hi ∶= Bi + 2wTD

(i) are introduced to simplify 
the notation; D(i) ∈ ℝ

m×m is a symmetric (and sparse) matrix whose nonzero entries 
are extracted from the corrective blendshapes as D(i)

jk
= D

(i)

kj
=

1

2
b
{j,k}

i
 ; the largest sin-

gular value of a matrix D(i) is denoted �(D(i)) ; a function �M(D
(i), gi) ∶ (ℝm×m,ℝ) → ℝ 

is defined as

where �min(D
(i)) represents the smallest and �max(D

(i)) the largest eigenvalue of D(i) . 
Under the surrogate function (15), the problem (12) can be analytically solved com-
ponent-wise, where for each component j = 1,… ,m , the objective is a scalar quar-
tic equation:

The expressions for the polynomial coefficients q, r, s are

Notice that the coefficient q depends on a coordinate j, so it has to be computed for 
each controller separately, while r and s are calculated only once per iteration. We 
can find the extreme values of the polynomial using the roots of the cubic derivative 
q + 2rvj + 4sv3

j
= 0, and, if they are within the feasible interval [0, 1], compare them 

with the polynomial values at the borders to get the constrained minimizer. The idea 
of component-wise optimization of the weight vector makes our approach somewhat 

(15)�(v) =

3n∑

i=1

�i(v) + �1T (w + v),

(16)

�i(v) ∶= g2
i
+ 2gi

m�

j=1

hijvj + 2
�
gi�M(D

(i), gi) + ‖hi‖2
� m�

j=1

v2
j
+ 2m�2(D(i))

m�

j=1

v4
j

𝜆M(D
(i), gi) ∶=

{
𝜆min(D

(i)) if gi < 0,

𝜆max(D
(i)) if gi ≥ 0,

(17)
minimize

vj

qvj + rv2
j
+ sv4

j
,

s.t. 0 ≤ wj + vj ≤ 1.

(18)q = 2

3n�

i=1

gihij + �, r = 2

3n�

i=1

(gi�M(D
(i), gi) + ‖hi‖2), s = 2m

3n�

i=1

�2(D(i)).
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similar to that of [26], yet we do not update the vector until all the components are 
estimated. This solves the issue of the order in which the controllers are visited and 
additionally gives a possibility for a parallel implementation of the procedure. 
Another difference is that [26] considers only a single run over the coordinates, 
while for us, this is only a single step—we refer to it as an inner iteration. In this 
sense, we start with an arbitrary and feasible vector and repeat the inner iteration 
multiple times to provide an increasingly good estimate of the solution to (9), in a 
manner similar to the trust-region method [29, 30]. A complete inner iteration is 
summarized in Algorithm 1. In the following lines, we will detail a complete deriva-
tion of the upper bound given in (15).

Derivation of the Upper Bound. If we write down the data fidelity term from (9) as a 
sum, and consider each element i = 1,… , 3n of the sum separately, we can represent it 
in a canonical quadratic form:

Define a function �i(w) ∶ ℝ
m
→ ℝ as �i(w) ∶= (Biw + wTD

(i)
w − b̂i)

2 , which is a 
single coordinate of the data fidelity term. When we add the increment vector v on 
top of the current weight vector w , this yields:

The data fidelity term is a sum of functions �i(w) , hence in order to bound the 
objective, we bound each element of the sum �i(w + v) ≤ �i(v) . Let us first consider 
two nonlinear terms of �i(w) , and bound each of them separately. A bound over the 
quadratic term 2givTD

(i)
v depends on the sign of gi:

The bound over a quartic term (hiv + vTD
(i)
v)2 is obtained by applying the Cauchy-

Schwartz inequality three times:

The component-wise bound �i(v) is then given by (16) and a complete upper bound 
is obtained by summing the component-wise bounds and adding the regularization 
term (Eq. 15).

(19)
3n∑

i=1

(
Biw +

∑

(j,k)∈P

wjwkb
{j,k}

i
− b̂i

)2

=

3n∑

i=1

(
Biw + w

T
D

(i)
w − b̂i

)2

.

(20)
�i(w + v) =

(
gi + hiv + v

T
D

(i)
v
)2

= g2
i
+ 2gihiv + 2giv

T
D

(i)
v +

(
hiv + v

T
D

(i)
v
)2
.

(21)2giv
T
D

(i)
v ≤ 2gi�M

�
D

(i), gi
�
‖v‖2.

(22)

(hiv + v
T
D

(i)
v)2 ≤ 2(hiv)

2 + 2(vTD(i)
v)2

≤ 2‖hi‖2‖v‖2 + 2‖v‖4‖D(i)‖2 ≤ 2‖hi‖2‖v‖2 + 2m�2(D(i))

m�

j=1

v4
j
.
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Algorithm 1 Inner Iteration
Require: Blendshape matrix B ∈ R3n×m, corrective blendshape matrices D(i) ∈ Rm×m

for i = 1, ..., 3n, target mesh b̂ ∈ R3n, regularization parameter α ≥ 0 and weight vector
w ∈ [0, 1]m.

Ensure: v̂ - an optimal increment vector as a solution to (17).
Compute coefficients q, r,s from Eq. (18) and solve for an optimal increment vector v̂:
r = 2

∑3n
i=1(giλM (D(i), gi) + ‖hi‖2),

s = 2m
∑3n

i=1 σ
2(D(i)),

for k = 1, ...,m do
q = 2

∑3n
i=1 gihij + α

v̂k = argminv qv + rv2 + sv4

s.t. −wk ≤ v ≤ 1− wk

end for
return v̂

Feasibility. Let us now state another proposition showing that the above derived 
upper bound function is feasible for Proposition 1.

Proposition 2 The surrogate function �(v) ∶ ℝ
m
→ ℝ , defined as in (15) satisfies 

Conditions 1 and 2, and hence it satisfies Proposition 1.

In (20)-(22), function �(⋅) is derived so that it bounds the objective function (19) 
from above, hence it satisfies Condition 1 by construction.

Now recall that the data fidelity term is a sum of functions �i(⋅) . To prove that Con-
dition 2 is satisfied, it suffices to show that �i(w + 0) = �i(0) . From (20) we see that 
�i(w + 0) = g2

i
 , and from (16) we get �i(0) = g2

i
 , which proves it. Hence, the derived 

bound satisfies Proposition 1.
Complete Algorithm. As mentioned above, our solution is iterative, and based 

on applying Algorithm  1 until convergence. In each iteration t, the weight vector is 
updated by adding an estimated increment vector: w(t+1) = w(t) + v. The algorithm ter-
minates when either a given maximum number of iterations is reached, or the differ-
ence between the cost function in two consecutive iterations is below a given thresh-
old value 𝜖 > 0 . While any feasible vector 0 ≤ w ≤ 1 can be used for initialization, we 
can rely on domain knowledge to choose a good starting point leading to faster con-
vergence, and these strategies are discussed in the companion paper [24]. A complete 
method is summarized in Algorithm 2. Notice that in one of the steps of the algorithm, 
we compute eigen- and singular values of matrices D(i) . This computation is needed 
only once per animated character, and we can reuse the calculated values for each fol-
lowing frame that is to be fitted.
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Algorithm 2 Proposed Method
Require: Blendshape matrix B ∈ R3n×m, corrective blendshapes b{i,j} ∈ R3n for (i, j) ∈

P, target mesh b̂ ∈ R3n, regularization parameter α ≥ 0, initial weight vector w(0) ∈
[0, 1]m, maximum number of iterations T ∈ N, tolerance ε > 0.

Ensure: ŵ - an approximate minimizer of the problem (8).
For each coordinate i = 1, ..., 3n compose a matrix D(i) ∈ Rm×m from the corrective
terms, and extract singular and eigen values (σ, λmin, λmax):
for i = 1, ..., 3n do

for (j, k) ∈ P do
D

(i)
jk = D

(i)
kj = 1/2b{j,k}i .

end for
D(i) → λmin(D(i)), λmax(D(i)), σ(D(i)).

end for
Repeat Algorithm 1 until convergence:
for t = 0, ..., T do

Compute optimal increment v̂ using Algorithm 1
Update the weight vector w(t):
w(t+1) = w(t) + v̂
Check convergence
if |ψ(v̂)− ψ(0)| < ε then

ŵ ← w(t+1)
return ŵ

end if
end for
ŵ ← w(t+1)
return ŵ

Corollary 1 The estimate sequence w(t) produced by Algorithm 2 is feasible for prob-
lem (8) at all iterations t ∈ ℕ , as long as the initial weight vector w(0) is feasible.

4  Results

The experiments in this section are performed over an animated avatar Omar, avail-
able at Metahuman Creator.2 The character consists of m = 130 base blendshapes 
and n = 4000 vertices in the face. An optimized choice of regularization parameter 
� = 5 is estimated experimentally from the training data, to give a good trade-off 
between the high accuracy of the mesh fit and a low cardinality of the weight vector. 
In our experiments, the weight vector is initialized by (6), where the weights outside 
of the feasible set are clipped to 0 or 1, and then further optimized using our algo-
rithm. While any feasible vector can be used for initialization, this choice has shown 
quick convergence and precise mesh fit.

2 unrealengine.com/en-US/metahuman.
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Let us first examine the relationship between the objective function (8) and its 
corresponding surrogate function (15). Figure 1 shows several example frames 
and the behavior of two functions in the initial iterations. The blue cross repre-
sents the value of the function at an initial iterate wt , i.e., for v = 0 (As stated in 
Condition 2, the two functions have the same value in this point). Values of the 
two functions are then denoted by the corresponding color cross in the estimated 
iterate wt + vt . The other values of the two curves are obtained by interpolat-
ing the two vectors wt and wt + vt and estimating the corresponding function 
value. These results clearly show how minimizing the upper bound leads to a 
nice decrease in the objective.

Further, we show the final results of the method in Fig.  2. On the left side 
of the subfigures, one can see a barplot representing the estimated activation 
weights in the range [0,1]—we can see that the vector is relatively sparse, and 
most of the weights have low values. The average cardinality of the weight vec-
tor, over 500 test frames, is 85. Below we have the behavior of the objective 
function over iterations of the algorithm. Green crosses represent the value of 
the function (8) for the estimated iterate wt + vt , while red pluses denote the 
value of the corresponding upper bound function (15), in line with the results 
presented in Fig.  1. The plot zooms on initial iterations to show how the pro-
posed bound is tight, and the gap between the surrogate and objective quickly 
decreases. We can also notice a nice decrease in the objective, confirming the 
above-stated monotonicity and convergence properties.

Finally, on the right side of the subfigures, we show the reference mesh b̂ 
in gray, versus the reconstruction obtained by the proposed method. The recon-
structed mesh is colored so that red tones indicate a higher error, according to 
the color bar on the right. We can see that in each case, the reconstruction is 
really close to the original frame, and even the regions indicated by the red color 
are not visually different. The average root mean squared error over 500 test 
frames is 0.09.

For a detailed numerical discussion and comparison with other methods see 
[24]—the reference examines results over multiple animated characters and 
shows that the proposed method produces accurate and sparse solutions to the 
inverse rig problem.

Fig. 1  Several example frames showing a relationship between the objective function (green) and the 
proposed surrogate function (red), at iteration t. A current iterate w

t
 is marked by a blue cross, and the 

estimated next iterate w
t
+ v

t
 is marked by a red cross showing the values of a surrogate function, and by 

a green one, indicating the actual value of the objective function
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Fig. 2  Results over four animated frames. Barplots on the left show the estimated activation weight vec-
tor w ; below that is a scatter-plot showing the behavior of the objective function and the upper bound 
over the iterations; on the right, we have a reference mesh (gray) and the reconstruction by the proposed 
algorithm—colors indicate the level of offset over the mesh, corresponding to the color-bar on the right
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5  Conclusion

This paper introduced the first model-based method for solving the inverse rig 
problem under the quadratic blendshape function. The proposed algorithm is 
based on the applications of Majorization–Minimization. A specific surrogate 
function is derived, and we provide guarantees that it leads to a non-increasing 
cost sequence of the original non-convex optimization problem (8).

The algorithm targets a high-quality facial animation for the video games and 
movie industry, and hence it assumes that the higher mesh fidelity is more impor-
tant than the computation speed. For this reason, we rely on the quadratic blend-
shape function that is more precise than the standard linear one, and also that the 
weights are strictly constrained to a [0, 1] interval to avoid exaggerated or non-
credible expressions.

While this paper had the purpose of giving a complete derivation of the pro-
posed algorithm, [24] presents an in-depth discussion of the applications and 
results.
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