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Abstract

We consider the problem of measuring the margin of robust feasibility of solutions to a
system of nonlinear equations. We study the special case of a system of quadratic equations,
which shows up in many practical applications such as the power grid and other infrastructure
networks. This problem is a generalization of quadratically constrained quadratic program-
ming (QCQP), which is NP-Hard in the general setting. We develop approaches based on
topological degree theory to estimate bounds on the robustness margin of such systems. Our
methods use tools from convex analysis and optimization theory to cast the problems of check-
ing the conditions for robust feasibility as a nonlinear optimization problem. We then develop
inner bound and outer bound procedures for this optimization problem, which could be solved
efficiently to derive lower and upper bounds, respectively, for the margin of robust feasibility.
We evaluate our approach numerically on standard instances taken from the MATPOWER and
NESTA databases of AC power flow equations that describe the steady state of the power grid.
The results demonstrate that our approach can produce tight lower and upper bounds on the
margin of robust feasibility for such instances.

1 Introduction
Solving systems of equations is ubiquitous in computational mathematics. In many applications,
these problems are made challenging due to the functions in the equations being nonlinear and/or
nonconvex. Another aspect adding to the problem complexity is the uncertainty in the problem pa-
rameters. Our work is motivated by two central computations performed as part of power systems
operations are power flow (PF) studies and optimal power flow (OPF). PF studies ensure the power
grid state (i.e., voltages and flows across the network) will remain within acceptable limits in spite
of contingencies (e.g., loss of a generator or transmission line) and other uncertainties (e.g., shift-
ing demand or renewable sources of power). OPF seeks further to choose values for controllable
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assets in the system (e.g., generators whose rate of power production could be controlled) so as to
meet demand at minimum cost. These problems have inherent nonlinearities and nonconvexities,
making them hard to solve in their general form.

To further complicate the problem, the rapid adoption of renewable energy sources such as
wind and solar energy is adding unprecedented uncertainties to modern power systems. Since
these sources depend on the weather, their energy output is not perfectly controllable. In fact, this
output can be forecasted with only limited accuracy. While demand-side flexibility can be used
to balance fluctuations in solar and wind generation, its amount can in turn be difficult to predict
[31, 37]. Due to all these uncertainties, it is increasingly difficult to ensure there is sufficient power
generation to meet demand while accounting for losses and network limits.

We study quadratic systems of equations with parameters, and take a robust viewpoint of un-
certainty. Specifically, we aim to quantify the worst-case impact of uncertainty in parameters on
feasibility. To this end, we study the robust feasibility problem, which includes the robust version
of the standard PF problem as a special case. The power system can be described by a system of
nonlinear equations in a set of variables that capture the state of the power grid, i.e., voltages at
every point in the power network, and include the controllable inputs as well as uncertain inputs.
In the main PF problem, we are given a fixed value of the controllable inputs and an uncertainty
set for the uncertain inputs. The goal of the robust feasibility problem is to characterize whether
the system has a solution within specified bounds (capturing engineering limits on voltages, flows,
etc.) for each choice of the uncertain inputs in the uncertainty set.

More concretely, we study a system of quadratic equations F (x) = u where F : Rn 7→ Rn is
quadratic in x for x,u ∈ Rn. We consider situations where the parameters u are uncertain, and we
are interested in guaranteeing the existence of a solution to F (x) = u within limits on x and u.
We draw on results from topological degree theory and Borsuk’s theorem from algebraic topology
and nonlinear analysis to develop tests for existence of solutions. Using ideas from optimization
such as convex relaxations of quadratic constraints, we develop rigorous and efficient algorithms
based on these tests for robust feasibility. We develop efficient implementations of these algorithms
capable of scalably solving large instances of PF problems. While we use power systems as the
main application area, the methods we develop are fairly general, and could be applied to problems
in other domains as well, e.g., stochastic processes and gas distribution networks.

1.1 Our Contributions
We study systems of quadratic equations, and define a robustness margin as a measure of the sys-
tem’s robust feasibility (see Definition 2.1). We develop approaches based on topological degree
theory to estimate bounds on the robustness margin of such systems (see Section 3). We use tools
from convex analysis and optimization theory to cast the problem of checking the conditions for
robust feasibility as a nonlinear optimization problem. We then develop inner bound (Section 4)
and outer bound (Section 5) formulations for this optimization problem, which could be solved
efficiently to derive lower and upper bounds, respectively, for the margin of robust feasibility. We
evaluate our approach numerically on standard instances taken from the MatPower database of
AC power flow equations that describe the steady state of the power grid (Section 7). The results
demonstrate that our approach can produce tight lower and upper bounds on the robustness margin
for such instances.
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1.2 Related Work
Robust feasibility and optimization have been well-studied by both the optimization and topology
communities. What is lacking is an approach that can guarantee and quantify robust feasibility on
large scale systems in an efficient manner. In this article we address this deficiency by developing
theory that utilizes results from topological degree theory and convex optimization. We provide
a theoretical foundation for determining robust feasibility of systems of quadratic equations and
computational methods for producing lower and upper bounds on the maximum error bound for
which one can guarantee robust solvability (the radius of robust solvability). To highlight the
efficacy of our approach we derive procedures, which we test numerically on several quadratic
systems constructed from the AC power flow equations that describe the steady state of the power
grid with added uncertainty. The results show that our approach can be applied to large scale
systems to produce tight lower and upper bounds on the radius of robust solvability, which we
shall define as the robustness margin of the system.

In optimization, the focus has been on robust convex optimization where uncertainty sets are
specified for the parameters of a convex optimization problem (typically an LP or conic program)
[3], while the robust versions of generic polynomial programming problem are related by a hi-
erarchy of SDP relaxations [27, 28]. Robust nonconvex optimization has received only limited
attention (a notable exception is the work of Bertsimas et al. [6]). These approaches do not provide
rigorous guarantees for robust feasibility with nonconvex constraints.

In algebraic topology, there have been a number of studies on these problems based on several
approaches, including ones based on robustness of level sets and persistent homology [5, 16],
well groups and diagrams [12, 19, 20], topological degree and robust satisfiability [18, 21], and
on Borsuk’s theorem and interval arithmetic [22, 23, 24]. While the theory developed by these
approaches is fairly complete, the associated algorithms typically rely on explicit simplicial or
cellular decompositions of the problem space. But the size of such decompositions typically grows
exponentially in the problem dimension, and hence these algorithms are typically impractical for
large-scale applications.

Looking specifically at applications such as the power systems, there has been significant inter-
est in solving the non-robust version of the OPF problem to global optimality. The driver has been
the development of strong convex relaxations of the nonconvex optimization problems combined
with ideas from global optimization such as spatial branch-and-cut, bound tightening, etc. [10, 14].
Uncertainty has been handled in a chance-constrained framework [9, 43]. However, this approach
has typically been applied only to linear approximations or convex relaxations of the AC power
flow equations, and does not guarantee feasibility with respect to the true nonlinear power flow
equations [9, 26, 36, 38].

There is significant empirical work on solving the PF equations with probabilistic uncertainty
[32, 42] and specifying conditions on the power injections over which the power flow equations
are guaranteed to have a solution [11, 40, 41]. However, many of these algorithms are based
on sampling heuristics and either do not offer mathematical guarantees of robust feasibility or
do not directly address the robust feasibility problem. More recently, Dvijotham, Nguyen, and
Turitsyn [15] developed an approach to handle uncertainty which produced inner/lower bounds on
the distance from the nominal values of the uncertain parameters for which the system can still
be guaranteed to have solutions. This approach closely aligns with the methods describing our
inner bound procedures, and further can produce a certificate of tightness under special conditions.
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However, this method depends critically on the choice of norms, which is not straightforward to
make.

Notation: We denote vectors by bold lowercase letters, e.g., x,u ∈ Rn, and matrices by upper
case letters, e.g., A ∈ Rm×n. The vectors of all zeros and all ones are denoted 0 and 1, respec-
tively. Individual entries in a vector x are denoted xi, for instance. We let [n] denote the numbers
{1, 2, . . . , n}.

2 Problem Formulation
We study systems of quadratic equations of the form

Q(x) + Lx = u (1)

where Q : Rn 7→ Rn is a vector-valued quadratic function, that is, there exist matrices Q1, . . . , Qn

∈ Rn×n, such that
[Q(x)]i = xTQix ∀i ∈ [n]

and L ∈ Rn×n, u ∈ Rn. We are interested in solutions to this system of equations under linear
constraints of the form

(Ax)i ≤ bi ∀i ∈ [n] (2)

where we assume that (Ax)i ≤ bi for each i is free of redundant constraints and x and u have
the same dimension. However, the parameter u is uncertain and known only up to certain error
bounds:

umin
i = u∗i − ei ≤ ui ≤ u∗i + ei = umax

i ∀i ∈ [n] (3)

where u∗ is a forecast for u and e denotes the error bounds associated with the forecast. For exam-
ple, in the case of quadratic equations appearing in infrastructure networks like the power grid, ui
represents uncertain power generation or consumption (for example uncertain weather-dependent
power sources like solar or wind power). In the case of stochastic processes, u∗ represents an ini-
tial state distribution. Further, note that if the polyhedron given by Ax ≤ b is not full dimensional,
then there would exist at least a i ∈ [1, · · · , n] such that xi could be any number as long as satisfies
(1). In this case,for the corresponding uncertain parameter ui, there are no umini and umax

i .

Definition 2.1 (Robust Feasibility and Robustness Margin problem). Determine whether for all
values of u satisfying (3), the system of equations (1) has a solution lying within the interior of the
set of all x satisfying the constraints in (2). If this is true, the system comprised of (1),(2),(3) is
said to be robust feasible. The largest r for which ei ≥ r ∀i with ei > 0 in (3) and such that the
system is robust feasible is defined as the robustness margin. See Figure 1 for a pictorial depiction.

There are many practical uncertainty sets developed in previous studies such as ellipsoidal un-
certainty [4], cardinality-constrained uncertainty [7], norm uncertainty [8], and some other types
of uncertainty sets constructed based on probability theory [1, 2] and data driven approaches [29].
We have presented the definition for robustness margin in the most general form so as to capture
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Figure 1: Illustration of robust feasibility. The system is robust feasible at the level of r (left), but
is not robust feasible at r′ > r (right).

most scenarios that may be considered by the researcher. Note that for a given choice of r, our
uncertainty set specified as the `∞-ball of radius r forms the largest such set—many other com-
monly used uncertainty sets, e.g., `1-ball, `2-ball, ellipsoid (with major axis r), are subsets of the
`∞-ball. For instance it very well may be the case that only some of the dimensions of u will have
margins of uncertainty. Furthermore, one may have need of computing the robustness margin for
only a subset of the dimensions of u which pertain to problem areas or nodes of particular interest
to the research.This manual restriction will of course produce a robustness margin greater than or
equal to that obtained by considering all dimensions, which certainly remains an option under the
current setting.

3 Theoretical Results
We now describe the main technical results of this paper. In the first subsection we describe the
setting under which the problem can be solved using the results which follow.

3.1 Topological Degree Theory
Our results take advantage of the well studied area of topological degree theory. For an introduction
to topological degree theory see the works of [17], [33], and [34]. It suffices to say that should
Ω ⊂ Rn be open and bounded, F : Ω → R continuous, differentiable, and F (x) 6= y ∀x ∈ ∂Ω
for some y ∈ Rn, then the degree of F at y over Ω, denoted d (Ω, F,y) ∈ Z, is defined. For
the purposes of this article we utilize the following property of degree as our definition of the
topological degree of a function F at y over a set Ω. See O’Regan et al. [34] for details.

d (Ω, F,y) =
∑

x∈F−1(y)

sign (JF (x)) (4)
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where sign (JF (x)) denotes the sign of the determinant of the Jacobian of F at x, i.e.,

sign (JF (x)) =


−1 if JF (x) < 0,

0 if JF (x) = 0, and
1 if JF (x) > 0.

We assume that the sum in Equation (4) evaluates to 0 if F−1(y) = ∅. Additionally we utilize the
following common properties of the topological degree. Again, see O’Regan et al. [34] for details.

If H : [0, 1]× Ω̄→ Rn is continuous such that H(t,x) 6= y ∀t ∈ [0, 1], x ∈ ∂Ω, then

d (Ω, H(t, ·),y) does not depend on t. (5)

If d(Ω, F,y) 6= 0, then there exists x ∈ Ω such that F (x) = y. (6)

3.2 New Theoretical Results
In this section we will take full advantage of properties (4), (5), and (6) as they apply to the Robust
Feasibility Problem. We begin by assuming there is a unique solution to the forecasted system at
which point the Jacobian is non-zero. We conclude by property (4) that the degree is non-zero at
u∗ for the forecasted system. We then utilize property (5) to equate the degree of u to the degree
of u∗ for all u satisfying the limits specified in Equation (3) (under a proposed robustness margin),
which by property (6) allows us to guarantee solutions to the system under all realizations of u
satisfying the limits (in 3), i.e., verify the system is robust feasible for a given robustness margin.
Invoking property (5), however, requires us to develop a homotopy that captures the system under
all possible realizations of u satisfying the limits in (3). Once we define such a homotopy we
reduce the Robust Feasibility Problem to the problem of verifying the hypothesis of property (5).

To that end let F (x) = Q(x) + Lx, Ω = {x|Ax ≤ b} and x̂ ∈ Int(Ω) be a solution to
the forecasted system F (x) = u∗ given in Equation (1), such that sign (JF (x̂)) 6= 0. For a
review of efficient methods of verification that could be used here, see the work of Griewank
[25]. If no solution exists, then certainly the system is not robust feasible. We define Ωu =
{u |u satisfies limits in Equation (3)}. Our task is then to verify using existing methods or those
we propose in this paper that no other solutions exist in Int(Ω). This step may require further
restricting the domain or even a slight perturbation of the forecasted u. Thus by property (4) we
have verified that d (Ω, F (x),u∗) 6= 0. Note that this is not the only method for verification, but in
some sense is the easiest to carry out for our purposes.

We now introduce the homotopy we use to invoke property (5). Let `u∗ represent an arbitrary
line passing through u∗ and let lmin and lmax be the two points of intersection of ∂Ωu and `u∗ . We
define a homotopy H`u∗ : [0, 1]× Ω̄→ Rn as

H`u∗ (t,x) = F (x)− [(1− t)lmin + tlmax] . (7)

Based on this homotopy, we present the key result on verification of robust solvability problem.

Lemma 3.1. Let Ω = {x|Ax ≤ b}, Ωu = {u |u satisfies limits in Equation (3)} and F (x) =
Q(x) + Lx, as described in Equations (1), (2), and (3). If d(Ω, H`

(
1
2
,x
)
,0) 6= 0 for each choice

of ` = `u∗ , then the system is robust solvable if and only if the following statement holds:

6 ∃x ∈ ∂Ω,u ∈ Ωu such that F (x)− u = 0 . (8)
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Proof. Since d (Ω, F (x),u∗) 6= 0 is verified by property (4), to show the problem is robust solv-
able, it follows by the fact that there exists a unique solution x̂ ∈ Int(Ω) to the forecasted system
given in Equation (1) such that H`u∗

(
1
2
, x̂
)

= F (x̂) − u∗ = 0 and sign
(
JH

`u∗ , 12

(x̂)
)
6= 0. And

this condition holds if and only if d(Ω, H`

(
1
2
,x
)
,0) 6= 0 according to property (6). Note that

this property holds for all such lines passing through u∗ since for each û ∈ Ωu \ {u∗}, there ex-
ists a line ˆ̀

u∗ passing through u∗ and t ∈ [0, 1], such that û = (1 − t)̂lmin + t̂lmax. Thus, when
d(Ω, H`

(
1
2
,x
)
,0) 6= 0 for each choice of `u∗ , we have

d(Ω, H`

(
1

2
,x

)
,0) 6= 0 ⇐⇒ F (x)− u 6= 0,∀x ∈ ∂Ω,u ∈ Ωu .

Hence the system is robust solvable if and only if the statement (8) holds.

Note that the statement (8) is equivalent to property (5) holding. From here on we will assume
d(Ω, H

(
1
2
,x
)
,0) 6= 0 and focus our efforts on the development of methods for validating or

invalidating the statement (8).

Lemma 3.2. Let X ⊂ Rn be full-dimensional and compact. If F : Rn → Rn is continuous, and

min
‖λ‖=1

max
x∈X

λTF (x)

obtains its optimal value at x̂ and λx̂ then F (x̂) ∈ ∂F (X).

Proof. We get the result by arriving at a contradiction. Assume F (x̂) ∈ F (X) \ ∂F (X). Let θ the
angle between λx̂ and F (x̂). Thus

min
‖λ‖=1

max
x∈X

λTF (x) = λTx̂F (x̂) = ‖F (x̂)‖ cos(θ).

Since X ⊂ Rn is full-dimensional and compact, it has nonempty interior [30]. And since F is
continuous, F (X) is also nonempty and compact. Hence there exists an r > 0 such thatBr(F (x̂)),
the ball of radius r centered at F (x̂), is in F (X) \ ∂F (X). Let y be the antipodal point on
∂Br(F (x̂)) to the point of intersection between the line segment connecting the origin to F (x̂)
and Br(F (x̂)). It follows then that ‖y‖ > ‖F (x̂)‖ and θ is the angle between λx̂ and y. Let
x∗ ∈ X be such that F (x∗) = y. Such an x∗ exists since y lies inside F (x) which is nonepty and
F is continuous. Therefore λTx̂F (x∗) = ‖F (x∗)‖ cos(θ) > ‖F (x̂)‖ cos(θ) = λTx̂F (x̂), which is a
contradiction. The lemma now follows.

We illustrate Lemma 3.2 in Figure 2. The compact set X ⊂ R2 is shown in pink with boundary
shown in blue. For continuous F : R2 → R2, let x̂ be the point and λx̂ the unit vector that give the
optimal value of min‖λ‖=1 maxx∈X λTF (x) as λTx̂F (x̂) based on Lemma 3.2. These vectors are
shown in red. In the case when the origin is contained in F (X), as it happens here, we observe that
there exists another point x and unit vector λx satisfying F (x) ∈ ∂F (X) (and thus x ∈ ∂X) such
that we can get the lower bound of min‖λ‖=1 maxx∈X λTF (x) as minx∈∂X max‖λ‖=1 λTF (x)
(shown in green).

We formalize the last observation for the general case in our main theorem, which characterizes
the structure of the function F .

7



Figure 2: Illustration of Lemma 3.2. The unit vectors λx̂ and λx are shown as the red and green
arrows, respectively.

Theorem 3.3. Let X ⊂ Rn be full-dimensional and compact, F : Rn → Rn be continuous such
that F (X) contains the origin. If F is injective over X then

min
‖λ‖=1

max
x∈X

λTF (x) ≥ min
x∈∂X

max
‖λ‖=1

λTF (x).

Proof. Consider the origin lies on the boundary of F (X), and let x̂ ∈ ∂X such that F (x̂) = 0.
Such an x̂ exists since ∂F (X) = F (∂X) by the Invariance of Domain theorem, as F is continuous
and injective over a compact set (so, an interior point cannot get mapped to a boundary point).
Then clearly

min
‖λ‖=1

max
x∈X

λTF (x) ≥ min
‖λ‖=1

λTF (x̂) = 0 = max
‖λ‖=1

λTF (x̂) ≥ min
x∈∂X

max
‖λ‖=1

λTF (x).

Hence assume the origin lies in the interior of F (X). Let x̂ be the point and λx̂ the unit vector at
which

min
‖λ‖=1

max
x∈X

λTF (x)

obtains its optimal value. We consider two cases.
Case 1: If the angle θ between F (x̂) and λx̂ is 0, then max

‖λ‖=1
λTF (x̂) = λTx̂F (x̂). Furthermore

by Lemma 3.2, F (x̂) ∈ ∂F (X) and thus x̂ ∈ ∂X since F is injective, i.e., F maps ∂X to ∂F (X),
by hypothesis. It follows now that

min
x∈∂X

max
‖λ‖=1

λTF (x) ≤ max
‖λ‖=1

λTF (x̂) = λTx̂F (x̂) = min
‖λ‖=1

max
x∈X

λTF (x).
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Case 2: Assume the angle θ 6= 0 (between F (x̂) and λx̂). Let x∗ be a point on the boundary
of X such that the angle between λx̂ and F (x∗) is 0. Such a point must exist as F (X) is compact
and by hypothesis F (X) contains the origin, is injective, and by assumption the origin lies in the
interior of F (X). It follows then that

min
x∈∂X

max
‖λ‖=1

λTF (x) ≤ max
‖λ‖=1

λTF (x∗) = λTx̂F (x∗) ≤ max
x∈X

λTx̂F (x) = min
‖λ‖=1

max
x∈X

λTF (x).

The theorem now follows.

Theorem 3.3 and Lemma 3.2 provide us with the theoretical tools we need to develop pro-
cedures for approximating the robustness margin. The hypothesis of Theorem 3.3 does however
require us to assume the system is injective under the constraints in Equation (2). However, injec-
tivity is only required to ensure ∂F (X) = F (∂X), and thus we can generalize to systems that are
not necessarily injective if they yet retain ∂F (X) = F (∂X) as an applicable property. With this in
mind we carry with us the necessary property ∂F (X) = F (∂X) throughout the rest of the article.

We will use the terminology “inner bound procedures” to describe the processes of verifying
robust feasibility while expanding the uncertainty box centered at u∗ in order to compute the lower
bounds on the robustness margin, which these procedures undertake. We use the terminology
“outer bound procedures” to capture in a similar fashion the procedures used to compute the upper
bounds on the robustness margin by contracting the uncertainty box until the system may be robust
feasible. As such we dedicate the next two sections to the development of these inner and outer
bound formulations.

4 Computing Lower Bounds on the Robustness Margin
In this section we will derive procedures for computing a lower bound on the robustness margin.
We start with an exact formulation, which turns out to be hard to implement efficiently in practice.
Hence we relax the procedures until they become computationally tractable. We end the section by
providing three different implementations of our final derived, relaxed, computationally tractable
procedure specified in Equation (10). Each of these three practical implementations brings a unique
set of attributes, which makes none of them the clearly preferred candidate.

Theorem 4.1. Let Ω = {x|Ax ≤ b}, Ωu = {u|umin
i ≤ ui ≤ umax

i ∀i}, and F (x) = Q(x) + Lx
as described in Equations (1), (2), and (3). Let

z = min
x∈∂Ω,u∈Ωu

max
‖λ‖=1

λT (F (x)− u) .

If there is an r > 0 such that r ≤ ei ∀i with ei > 0, where ei denotes the error bounds associated
with umin

i and umax
i , and if z > 0 then the system is robust feasible and has a robustness margin of

at least r.

Proof. If Equation (8) is invalidated then there exists x̂ ∈ ∂Ω such that F (x̂) = û for some û ∈ Ωu

and thus

z = min
x∈∂Ω,u∈Ωu

max
‖λ‖=1

λT (F (x)− u) ≤ max
‖λ‖=1,x=x̂

λT (F (x)− û) = 0.

9



Hence if z > 0, Equation (8) is validated, and the system is robust feasible. It follows then by
definition that the system has a robustness margin of at least r.

Theorem 4.2. Let ∂Ωi = {x|(Ax)i = bi, Ax ≤ b}, Ωu = {u|umin
i ≤ ui ≤ umax

i ∀i}, and
F (x) = Q(x) + Lx as described in Equations (1) to (3). Define

zi = min
x∈∂Ωi,u∈Ωu

‖F (x)− u‖. (9)

The system is robust feasible if and only if zi > 0 for each i = 1, . . . ,m, where m is the number of
rows of A.

Proof.
⇒

If the system is not robust feasible then there exists û′ ∈ Ωu such that F (x) = û′ has no interior
solution. Since F (x) = û′ has a solution and F is continuous over a compact domain, there
must exist an x̂ ∈ Ω = {x|Ax ≤ b} such that F (x̂) = û for some û ∈ Ωu ∩ ∂F (X). Since
∂F (X) = F (∂X) we have that x̂ ∈ ∂Ω, which implies that there is an i such that Ax̂i = bi, and
thus 0 ≤ zi ≤ ‖F (x̂)− û‖ = 0.
⇐

If there exists a i such that zi = 0, then it follows that there must be the x̂ ∈ ∂Ω which contains x̂i
as an element such that F (x̂) = û for some û ∈ Ωu. Thus there is no interior point x to make the
equation F (x) = û hold. Then based on Definition 2.1, the system is not robust feasible.

The optimization problems presented in Theorem 4.2 are nonlinear and nonconvex. Hence it
may be difficult to solve them in general. In fact, since F (x) is quadratic in x, they are quadratically
constrained quadratic programs (QCQPs), which are NP-hard in general [35]. At the same time,
we can use well known semidefinite programming relaxations for QCQPs to obtain lower bounds
on the optimal values [39]. Since Q is quadratic, it can also be written as a linear function of xxT .
More concretely, we can write

Q(x)i = xTQix = Trace(Qixx
T )

where each Qi is as defined in Equation (1). Since x should satisfy Ax ≤ b, we get

(b− Ax)(b− Ax)T ≥ 0 ⇒ bbT − AxbT − b(Ax)T + A(xxT )AT ≥ 0.

If we allow a symmetric positive semidefinite matrix X to take the place of xxT and drop the rank
constraint (rank(X) = 1)) we can construct the following relaxation for the optimization problem
presented in Theorem 4.2:

ẑi = min
x
bi − (Ax)i

subject to Trace (QiX) + Lix ≥ umin
i ∀i

Trace (QiX) + Lix ≤ umax
i ∀i

Ax ≤ b
bbT − AxbT − b(Ax)T + AXAT ≥ O
X is symmetric and positive semidefinite.

(10)
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Here Li denotes the ith rows of L, and O denotes the 2n× 2n matrix of zeros with the constraints
understood to be component-wise inequalities. Note that if we impose rank(X) = 1, we do get an
exact formulation. At the same time, it may be difficult to impose this constraint. But the system
(in Equation (10)) without the rank constraint is a convex optimization problem (a semidefinite
program, in fact) and can be solved efficiently. Since this is a relaxation of the procedure described
in Theorem 4.2, if ẑi > 0 for each i, the condition in Theorem 4.2 (i.e., zi > 0 ∀i) is satisfied.
We can further relax the formulation in Equation (10) by dropping the condition that X be positive
semidefinite, which transforms the problem from a semidefinite program to a linear program. We
now present three formulations for this new, relaxed program, and provide numerical results for
each of them in Section 7.2. We also describe the advantages and drawbacks of each formulation.

LP Feasibility Procedure

Find an x
subject to (Ax)i = bi

Trace (QiX) + Lix ≥ umin
i ∀i

Trace (QiX) + Lix ≤ umax
i ∀i

Ax ≤ b
bbT − AxbT − b(Ax)T + AXAT ≥ O
X is symmetric.

(11)

This procedure has the advantage of being a linear program and hence can be solved efficiently.
But as noted by the objective zi, one must iterate over each dimension ofAx checking feasibility of
the procedure. Of course, should the procedure prove feasible then we have found a solution on the
boundary and thus invalidating the Statement in (Equation (8)). If the procedure proves infeasible
then we are free to push the robustness margin higher and test again. An alternative approach is
to consider all of the dimensions of Ax simultaneously by introducing extra binary variables and
creating a MIP as follows.

MIP Procedure

max z
subject to Trace (QiX) + Lix ≥ umin

i ∀i
Trace (QiX) + Lix ≤ umax

i ∀i
Ax ≤ b
bbT − AxbT − b(Ax)T + AXAT ≥ O
X is symmetric
z ≤ (Ax)i − bi +R(1− di) ∀i for some large enough R∑
i

di = 1

di ∈ {0, 1} ∀i.

(12)

The MIP and LP Feasibility procedures are similar and should theoretically give the same
results. However, as we will show in our numerical studies, the LP Feasibility procedure could
outperform the MIP procedure by producing higher robustness margins and running faster in higher
dimensions. In both procedures, the process ends after a boundary solution is found. This solution
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may not be a boundary solution to the actual system, but may be an artifact of the relaxations used
to create the procedures. One way of tackling this issue is by updating the constraints using an
iterative process as outlined in the following procedure.

LP Bound Tightening Procedure

max zi = (Ax)i
subject to Trace (QiX) + Lix ≥ umin

i ∀i
Trace (QiX) + Lix ≤ umax

i ∀i
Ax ≤ b
bbT − AxbT − b(Ax)T + AXAT ≥ O
X is symmetric.

(13)

What distinguishes the LP Bound Tightening procedure from the other two procedures is the
ability to use it iteratively by updating the constraints of Equation (13), replacing b with z, the
vector of zi’s found after running the procedure over all dimensions of Ax. Since clearly z ≤ b,
we have that the polytope {x |Ax ≤ z} ⊆ {x |Ax ≤ b}. Thus it follows that any system deemed
robust feasible using Equation (11) or Equation (12) will certainly be found robust feasible using
Equation (13), but a system found robust feasible using Equation (13) may not be found robust
feasible using Equation (11) or Equation (12). The drawback of the bound tightening procedure,
as we shall see in the Computational Results (Section 7.2), is choice of parameters to be manually
set in order to tell the procedure when to stop.

5 Computing Upper Bounds on the Robustness Margin
Due to the hardness of solving the problem min

x∈∂Ω,u∈Ωu

max
‖λ‖=1

λT (F (x)− u) , we derived a se-

quence of relaxations in order to arrive at a method that was computationally efficient for non-
trivial data sets. We can similarly work with min

‖λ‖=1
max

x∈Ω̄,u∈Ωu

λT (F (x)− u) to produce computa-

tionally efficient procedures to compute upper bounds for the robustness margin.

Theorem 5.1. Let Ω̄ = {x|Ax ≤ b}, Ωu = {u|umin
i ≤ ui ≤ umax

i ∀i}, and F (x) = Q(x) + Lx
as described in Equations (1) to (3). Let

z = min
‖λ‖=1

max
x∈Ω̄,u∈Ωu

λT (F (x)− u) .

If there is an r > 0 such that r ≤ ei for all i with ei > 0, where ei is the error bound associated
with umin

i and umax
i , and if z = 0 then the system has robustness margin of no more than r.

Proof. Observe by Lemma 3.2, if zi = min‖λ‖=1 maxx∈Ω̄,u∈Ωu
λT (F (x)− u∗) = 0, then we have

F (x̂) ∈ ∂F (X) = F (∂X). Thus, it’s followed by the statement that there exist a x ∈ ∂X such
that F (x)− u = 0 for some u ∈ Ωu which invalids Equation (8).

12



We can relax the computation suggested in Theorem 5.1 by utilizing the same techniques as
before, replacing xxT with a positive semidefinite matrix X , with the option of dropping the
condition thatX be positive semidefinite. This step transforms the computation from a semidefinite
program to a linear or mixed integer program depending on how one deals with the constraint
‖λ‖ = 1. In our tests we use the `1 norm and introduce variables that capture the absolute value of
each λi. We obtain the following procedure.

Outer Bound Procedure: Formulation

z = min
‖λ‖=1

max
x

λT (F (x)− u∗)

subject to Ax ≤ b
bbT − AxbT − b(Ax)T + AXAT ≥ O
X is symmetric.

(14)

In order to implement this procedure, we use linear programming duality to write the problem
in Equation (14) as direct minimization LP (in place of a min-max problem). To construct the
dual of the inner maximum objective function, we first write the constraints as M x̂ ≤ B and the
objective as g(Q,L, λ)x̂−λTu∗, where x̂T = [xT X̂T ], with X̂ being the vector form of the upper
triangular (including diagonal) portion of X . We enforce the constraint that X is symmetric by
utilizing only the upper triangular portion of X . We can write M x̂ ≤ B using only the upper
triangular entries including the diagonal as follows.



A11 . . . A1n 0 . . . 0
... . . . ...

... . . . ...
Am1 . . . Amn 0 . . . 0

b1A11 + b1A11 . . . b1A1n + b1A1n −A11A11 . . . −A1nA1n
... . . . ...

... . . . ...
brAq1 + bqAr1 . . . brAqn + bqArn −Aq1Ar1 . . . −A1nA2n

... . . . ...
... . . . ...

bmAm1 + bmAm1 . . . bmAmn + bmAmn −Am1Am1 . . . −AmnAmn





x1
...
xn
X11

...
Xqr

...
Xnn


≤



b1
...
bm
b1b1

...
bqbr

...
bmbm


.

We can write the objective function as g(Q,L, λ)x̂− λTu∗ in the following way.

[
n∑
j=1

Lj,1λj . . .
n∑
j=1

Lj,nλj
n∑
j=1

λjQ
j
11 . . .

n∑
j=1

λjQ
j
nn

]


x1
...
xn
X11

...
Xnn


−
[
λ1 . . . λn

] u
∗
1
...
u∗n

 .

If u∗ = 0, then the objective function reduces to just g(Q,L, λ)x̂.

On the other hand, if u∗ 6= 0 then we can add an extra dummy variable xn+1 with the constraint
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xn+1 = 1, to obtain the following system.



A11 . . . A1n A1,n+1 0 . . . 0
... . . . ...

...
... . . . ...

Am1 . . . Amn Amn+1 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 −1 0 . . . 0

b1A11 + b1A11 . . . b1A1n + b1A1n 0 −A11A11 . . . −A1nA1n
... . . . ...

...
... . . . ...

brAq1 + bqAr1 . . . brAqn + bqArn 0 −Aq1Ar1 . . . −A1nA2n
... . . . ...

...
... . . . ...

bmAm1 + bmAm1 . . . bmAmn + bmAmn 0 −Am1Am1 . . . −AmnAmn





x1
...
xn
xn+1

X11
...

Xqr
...

Xnn


≤



b1
...
bm
1
−1
b1b1

...
bqbr

...
bmbm


.

We can then write the objective function g(Q,L, λ)x̂ as follows.

[
n∑
j=1

Lj,1λj . . .
n∑
j=1

Lj,nλj
n∑
j=1

−λju∗j
n∑
j=1

λjQ
j
11 . . .

n∑
j=1

λjQ
j
nn

]


x1
...
xn
xn+1

X11
...
...

Xnn


.

In either case, the final optimization problem, and hence the procedure we use in our tests, is
given as follows.

Outer Bound Procedure

z = min
‖λ‖=1,y

BTy

subject to MTy = g(Q,L, λ)T

y ≥ 0.

(15)

6 Illustrative Example
We present a toy example to illustrate the lower bound feasibility and bound tightening procedures
as well as the upper bound approximation method. We take the problem data as follows.

A =


−1 0

1 0
0 −1
0 1

 , b =


−0.5

3
−0.5

3

 , Q1 =

[
1 0
0 0

]
, Q2 =

[
0 0
0 1

]
, L =

[
1 −3
2 −1

]
, and u∗ =

[
−2

4

]
.

These components of data correspond to the following quadratic system.

F (x) =

[
x2

1 + x1 − 3x2

x2
2 + 2x1 − x2

]
=

[
−2

4

]
with Ωx =

{
x
∣∣ [0.5

0.5

]
≤
[
x1

x2

]
≤
[
3
3

]}
.

14



This system has a unique solution in Ωx given by

x =

[
x1

x2

]
u
[
1.36
1.74

]
.

Running the Outer Bound Procedure (Equation (15)) gives an upper bound on the robustness mar-
gin of 2.63462. Running the LP feasibility procedure results in an lower bound on the robustness
margin of 1.20454, while the bound tightening yields a lower bound of 1.706649. We illustrate
F (Ωx) with u∗ in Figure 3. Notice that the bound tightening procedure produces a better lower
bound approximation as theoretically predicted.

Figure 3: Illustration of F (Ωx) (dark blue surface), u∗ (center of the boxes), and Ωu∗ with radii
given by the upper bound procedure (light blue box), bound tightening procedure (turquoise box),
and feasibility procedure (yellow box).

7 Implementation on Power Systems
We now present results from computational studies that demonstrate the efficiency of the bound-
ing procedures we have introduced. For all the numerical results presented, we apply the LP and
MIP feasibility procedures (Equations (11) and (12)), the LP bound tightening procedure (Equa-
tion (13)), and the Outer bound procedure (Equation (15)) to find lower and upper bounds for the
robustness margins with respect to the optimal power flow equations derived using datasets ob-
tained from the MatPower package found in the MATLAB software [44] and the NICTA Energy
System Test Case Archive (NESTA) [13]. We specifically show results for tests conducted on cases
5, 9, 14, 29, 30, 39 and 57. In every case the power flow equations were converted into the form of
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a system of quadratic equations we study (as described in Equations (1) to (3)). To simulate real
life scenarios we allowed the first 5 dimensions of u to represent renewable energy, and the others
representing no variation. We then slowly increased the variation of the first 5 dimensions of u,
while utilizing procedures for the upper and lower bound verification to verify robust feasibility.
We first detail specifically how this transformation was conducted.

7.1 OPF to Quadratic System
As described by Dvijotham et al. [15], the AC power flow equations can be written as follows.

Re

(
n∑
k=1

Vi
(
YikVk + Yi0V0

))
= pi, ∀i ∈ PQ

Im

(
n∑
k=1

Vi
(
YikVk + Yi0V0

))
= qi, ∀i ∈ PQ

Re

(
n∑
k=1

Vi
(
YikVk + Yi0V0

))
= pi, ∀i ∈ PV

|Vi|2 = vi, ∀i ∈ PV,

(16)

where Vi denotes the complex voltage phasor, pi the active and qi the reactive power injection,
and Y the admittance matrix at node i. PV denotes the set of PV or Generator nodes/buses, PQ
denotes the set of PQ or Load buses, and vi denotes the squared voltage magnitude setpoints at the
PV buses. We can then rewrite Equation (16) into the system outlined in Equations (1) to (3) by
setting

x =
[
Re(V1) . . . Re(Vn) Im(V1) . . . Im(Vn)

]T and
u =

[
p1 . . . pn q1 . . . qn v1 . . . vn

]T
.

7.2 Computational Results
The procedures were computed with Ax ≤ b = B1 for B ∈ {0.001, 0.005, 0.01}. A in these
cases is a matrix such that Ax ≤ b controls the flow between nodes in the power grid, i.e., each
row of Ax ≤ b has the form xi − xj ≤ bk. All computations were performed on a laptop running
the 64bit MacOS Catalina operating system containing an 2.3GHz dual-core Intel Core i5, Turbo
Boost up to 3.6GHz, with 64MB of eDRAM. Details on the computation are given in Table 1,
for determining the practical scaling properties of these procedures with the fixed B = 0.001. We
display the data on a case by case basis to highlight the effect of allowing more fluctuation between
the nodes, i.e., as B increases, in Figure 4.

Case #
BdTgtLower MIPLower LPLower LPUpper

Time(s) Var Cons# Time(s) Var# Cons# Time(s) Var# Cons# Time(s) Var# Cons#
5 10.91 44 616 0.32 69 641 0.43 44 616 0.52 615 88
9 35.82 152 1364 6.88 189 1401 2.82 152 1364 2.95 1347 288

14 743.11 377 6532 93.31 458 6613 468.55 377 6532 35.73 6495 718
29 9436.28 1536 25477 3164.68 1703 25816 9236.42 1536 25477 483.72 24377 3126
30 9888.07 1769 27176 3674.53 1934 27341 9484.48 1769 27176 531.31 27075 3438
39 21764.43 3248 39265 9436.08 3771 41026 18329.58 3248 39265 1442.36 41342 4855

Table 1: Solution times, number of variables, and number of constraints for the procedures we
considered on the Cases 5, 9, 14, 29, 30, and 39.
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Figure 4: Lower and upper bound estimates on the robustness margin for Case 5 (Top Left), Case
9 (Top Right), Case 14 (Middle Left), Case 29 (Middle Right), Case 30 (Bottom left), and Case 39
(Bottom right). 17



Case 57 is not included in the table and graphs as the only inner bound procedure to run in
a reasonable time was the Feasibility procedure that produced a maximum robustness margin of
≈ 0.003 with a computational time of ≈ 48924 seconds, and a gap to the outer bound procedure
of ≈ 0.030 when B = 0.001, which had a running time of ≈ 27080 seconds.

As evident from the graphs, the LP Bound Tightening Procedure produces a better approxi-
mation of the lower bound on the robustness margin as the complexity of the data set increases.
The outer bound procedure (in Equation (15)) is derived using looser relaxations of the original
problem compared to any of those used to derive lower bounds (in Equations (11) to (13)). Hence
we expect that the upper bound produced is not as tight as the lower bounds. Certainly one would
expect the bound tightening procedure to out perform the other inner bound procedures for all
cases, but the choice of procedure parameters has a big effect on the efficiency and capability of
the procedure. For instance, setting a low tolerance for a minimal sufficient change in the dimen-
sions of b will result in a better lower bound approximation, but an extremely long running time
for most cases. Thus in the low as well as marginally high complexity cases, it should be expected
that the other procedures will out perform the bound tightening procedure as these manually set
parameters will have more of an impact.

8 Discussion
We have proposed novel and efficient techniques for determining robust solvability of quadratic
systems with uncertainty. It is worth mentioning that the same machinery can be used to determine
robustness margins of solutions to static systems by taking A to be the identity, ei = 0 ∀i, and
simply adjusting b accordingly.

We have employed results on the computational complexity of QCQPs to shed some light on
the hardness of the optimization problems in the key Theorem 4.2. It would be interesting to prove
NP-hardness of the optimization problems in Equation (9) using direct arguments.

Our implementation on power systems in Section 7 is just one direct application of the general
(theoretical) framework we have developed. We are exploring other avenues for applying our
framework including gas and water flow networks.

In the context of our application to power systems, we must point out that finding the robustness
margin of an OPF instance is inherently harder than solving the original OPF instance itself. Hence
it is expected that larger sized instances of the default OPF problem are solved in practice than ones
for which our inner and outer bound procedures are run efficiently.

We have presented (in Section 7.2) bounds on the robustness margins for solutions of OPF
instances. One generalization we could consider is that of combining measures of robustness and
optimality. In practice, a near optimal solution with a large robustness margin might be more
desirable than an optimal solution with a small robustness margin.
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