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Abstract
The semiproximal Support Vector Machine technique is a recent approach for Mul-
tiple Instance Learning (MIL) problems. It exploits the benefits exhibited in the 
supervised learning by the Support Vector Machine technique, in terms of generali-
zation capability, and by the Proximal Support Vector Machine approach in terms of 
efficiency. We investigate the possibility of embedding the kernel transformations 
into the semiproximal framework to further improve the testing accuracy. Numerical 
results on benchmark MIL data sets show the effectiveness of our proposal.

Keywords  Multiple instance learning · Support vector machine · Semiproximal 
support vector machine · Kernel transformations

1  Introduction

Multiple Instance Learning (MIL) [20] deals with classification of point sets: 
such sets are named bags and the corresponding points inside the bags are called 
instances. The main peculiarity of a MIL problem, with respect to the classical 
supervised classification, resides in the fact that only the labels of each overall bag 
give a contribution to the learning phase, since the labels of the instances belonging 
to the bags are unknown.

The first MIL problem proposed in the literature is a drug design problem [12], 
aimed at discriminating between active and non-active molecules (bags) on the basis 
of the possible three-dimensional conformations (instances) they can assume. MIL 
applications can be found in various fields: text categorization, image recognition, 
medical diagnosis, bankruptcy prediction and so on.
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In this work we focus on binary MIL problems, whose aim is to discriminate 
between positive and negative bags. For such problems a crucial question, related 
to the number of classes of instances, is what we mean by a positive bag in contra-
position to a negative one. In the case of two classes of instances, a very common 
assumption in the literature is the so-called standard MIL assumption, stating that a 
bag is positive if and only if it contains at least a positive instance. A typical applica-
tion is in medical diagnosis by means of images [22]: a patient is considered positive 
if and only if his/her medical scan (bag) is characterized by at least an abnormal 
subregion (instance) and is negative if and only if all the subregions of his/her medi-
cal scan are normal.

For solving a MIL problem, in the literature there exist various approaches [1, 9], 
depending on the space where the classification process is performed. In particular, 
in the instance-space approaches the classification is carried out at the instance level 
and the class label of each bag is obtained as aggregation of the information com-
ing from the labels of the corresponding instances. On the other hand, if the clas-
sification process is performed at the global level, i.e. considering each overall bag 
as a global entity, we say that the corresponding approach is of the bag-space type. 
A compromise between the instance-space and the bag-space approaches is given 
by the so-called embedding-space approaches, where each bag is represented by a 
specific instance and only such representative instances will successively contrib-
ute to the classification process. Some instance-space approaches are mi-SVM [2], 
MICA [21], MICbundle [8] and, more recently, MIL-RL [5] and mi-SPSVM [7]. An 
embedding-space approach is MI-SVM [2], while some bag-space techniques can 
be found in [19, 26, 27]. Finally, very recently, a semi-embedding-space technique 
(Algorithm MI-MSph) has been designed in [3], where the positive bags are repre-
sented by the respective barycenters, maintaining the representation of the negative 
bags in terms of their original instances.

In this paper we propose a kernel version of the recent MIL semiproximal Sup-
port Vector Machine approach presented in [7] and based on the combination of two 
different philosophies designed for supervised classification: the well-established 
Support Vector Machine (SVM) technique, characterized by a good generaliza-
tion capability (see for example [10]), and the Proximal Support Vector Machine 
(PSVM) approach, which has exhibited a reasonable compromise between efficiency 
and accuracy (see [17]).

The kernel trick is a well-known technique providing nonlinear separation sur-
faces in the SVM framework (see for example [23]). If, on one hand, using ker-
nel functions substantially improves the final accuracy of the classifier, on the other 
hand the kernel techniques in general exhibit higher computational times, which 
could limit their use in solving large scale problems. Despite of that, our semiproxi-
mal kernel-based approach exhibits quite comparable CPU times and significantly 
better accuracy with respect to the linear version of the algorithm, whose compu-
tational efficiency has been amply shown in [7] by means of extensive numerical 
experiments.

The paper is organized in the following way. In the next section we formalize 
the binary MIL problem and we recall the mi-SPSVM algorithm presented in [7]. 
In Sect.  3 we present the corresponding kernelized version of mi-SPSVM and in 
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Sect. 4 some numerical experiments are proposed on a set of benchmark MIL prob-
lems. Finally in Sect. 5 some conclusions are drawn.

Throughout the paper we indicate by ‖x‖ the Euclidean norm of the vector x and 
by xTy the scalar product between the vectors x and y.

2 � The semiproximal SVM approach for MIL

Given m positive bags X+

i
 , i = 1,… ,m , and k negative ones X−

i
 , i = 1,… , k , let J+

i
 

and J−
i
 be the corresponding index sets such that

and

with xj ∈ ℝ
n being a generic instance.

Under the standard MIL assumption, the objective is to find a separation surface 
S such that all the instances of the negative bags lie on one side with respect to S 
and, for each positive bag, at least an instance lies on the other side (see Fig. 1, with 
four bags: two positive and two negative).

The semiproximal SVM technique (Algorithm mi-SPSVM in [7]) is an instance-
space approach which generates a separation hyperplane

by exploiting the nice properties exhibited by both the SVM (good accuracy) and 
PSVM (good efficiency) techniques for supervised classification. In particular, given 
two finite sets of points (instances) X+ and X− , indexed respectively by J+ and J− , in 
the standard SVM approach the quadratic programming problem

X
+

i
= {xj ∈ ℝ

n | j ∈ J+
i
} i = 1,… ,m

X
−

i
= {xj ∈ ℝ

n | j ∈ J−
i
} i = 1,… , k,

H(w, b)
△
={x ∈ ℝ

n | wTx + b = 0},

Fig. 1   A surface S separating 
two positive bags (continuous 
polygons) and two negative ones 
(dashed polygons). The circles 
inside the bags are the instances
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is solved, providing a separation hyperplane placed in the middle between the two 
supporting hyperplanes (see Fig. 2):

and

In problem (1), variables �j s represent a measure of the misclassification error of 
the instances xj s, while the positive constant C tunes the trade-off between the maxi-
mization of the margin (the area comprised between H+ and H− ), obtained by mini-
mizing the Euclidean norm of w, and the minimization of the misclassification error.

On the other hand the PSVM technique [17], for C > 0 , solves the optimization 
problem

providing a separation hyperplane placed in the middle between two proximal 
hyperplanes, H+ and H− , which cluster the points of X+ and X− , respectively (see 
Fig. 3).

(1)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min
w,b,�

1

2
‖w‖2 + C

�
j∈J+

�j + C
�
j∈J−

�j

�j ≥ 1 − (wTxj + b) j ∈ J+

�j ≥ 1 + (wTxj + b) j ∈ J−

�j ≥ 0 j ∈ J+ ∪ J−

H+(w, b)
△
={x ∈ ℝ

n | wTx + b = 1}

H−(w, b)
△
={x ∈ ℝ

n | wTx + b = −1}.

(2)

⎧⎪⎪⎨⎪⎪⎩

min
w,b,�

1

2

����
w

b

����
2

+
C

2

�
j∈J+

�2
j
+

C

2

�
j∈J−

�2
j

�j = 1 − (wTxj + b) j ∈ J+

�j = 1 + (wTxj + b) j ∈ J−,

Fig. 2   A separating hyper-
plane H provided by the SVM 
approach for supervised clas-
sification. H+ and H− are the 
supporting hyperplanes
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Differently from problem (1), problem (2) is stricly convex with respect to both 
w and b and it can be solved in a closed form, improving significantly the efficiency 
with respect to the classical SVM technique.

Coming back to the solution of the MIL problem introduced at the beginning of 
this section, the main idea characterizing the semiproximal approach (Algorithm 
mi-SPSVM in [7]) takes into account the different roles played by the positive and 
the negative bags. In fact, considering the standard MIL assumption, a correct clas-
sification of the negative bags requires more effort with respect to the classification 
of the positive ones, the former needing the correct classification of all the instances 
and the latter of at least one. In other words, classifying correctly the positive bags is 
indeed easier than classifying the negative ones, allowing H+ to possibly be a proxi-
mal (clustering, instead of supporting) hyperplane for the instances of the positive 
bags.

In particular, indicating by J+ the index set of all the instances of the positive 
bags and by J− the index set of all the instances of the negative bags, the mi-SPSVM 
algorithm initially solves the quadratic program

providing a separation hyperplane located in the middle between a supporting 
hyperplane H− for the instances of the negative bags and a proximal hyperplane H+ 
which clusters the instances of the positive bags (see Fig. 4).

The algorithm, named mi-SPSVM and described in Algorithm  1, proceeds by 
repeatedly solving problem (3) for different configurations of the sets J+ and J− , in 
order to compute the current separation hyperplane H(w̄, b̄) . In particular, the core 
of the procedure is constituted by steps 6-11, aimed at determining the sets J∗ and 

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
w,b,�

1

2

����
w

b

����
2

+
C

2

�
j∈J+

�2
j
+ C

�
j∈J−

�j

�j = 1 − (wTxj + b) j ∈ J+

�j ≥ 1 + (wTxj + b) j ∈ J−

�j ≥ 0 j ∈ J−,

Fig. 3   A separating hyperplane 
H provided by the PSVM 
approach for supervised classifi-
cation. H+ and H− are the proxi-
mal (clustering) hyperplanes
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J̄ needed to update J+ and J− at steps 13-14. While the satisfaction of the standard 
MIL assumption is guaranteed by means of the set J∗ whose indexes remain in J+ , 
at each iteration the cardinality of J− is increased by adding the indexes of the set 
J̄ : such indexes indeed correspond to the current positive instances which lie in the 
negative side with respect to the current hyperplane.

In [7] the finite termination of the algorithm has been shown, proving also that 
the sequence of the optimal objective function values of problem (3), generated by 
varying J+ and J− at each iteration according to steps 13-14, is monotonically nonin-
creasing. Finally, the numerical experiments therein presented, in comparison with 
some other reimplemented approaches drawn from the literature, have proved a very 
good performance of mi-SPSVM, not only in terms of accuracy but also in terms of 
CPU time.

3 � Embedding kernel transformations into the semiproximal 
approach

Kernel transformations constitute a very powerful trick useful to construct nonlin-
ear classifiers, starting from a linear separation surface (hyperplane) obtained in a 
higher dimensional space.

Fig. 4   The semiproximal SVM 
hyperplane H separating two 
positive bags (continuous 
polygons) and two negative ones 
(dashed polygons). The circles 
inside the bags are the instances
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In particular, let I be the input space, such that xj ∈ I ⊆ ℝ
n , for any j ∈ J+

i
 , 

i = 1,… ,m , and for any j ∈ J−
i
 , i = 1,… , k , and let F ⊆ ℝ

N be the feature space such 
that N > n . Given a map

the kernel function K is defined as:

such that

Analogously to the standard SVM, embedding the kernel functions into Algorithm 
mi-SPSVM is related to the optimal solution to the Wolfe dual of problem (3):

� ∶ I ↦ F,

K ∶ I × I ↦ ℝ

K(x, y) = �(x)T�(y).
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where � is the vector containing the Lagrangian multipliers introduced in corre-
spondence to the constraints

� is the vector containing the Lagrangian multipliers defined in correspondence to 
the constraints

e is the vector of ones of appropriate dimension, X+ is the matrix whose jth row is 
the vector xj , j ∈ J+ , and X− is the matrix whose jth row is the vector xj , j ∈ J−.

From the primal-dual relationships, the optimal solution (w∗, b∗) obtained by solving 
problem (3) is also computable by means of the following formulae:

and

where ( �∗,�∗ ) is the optimal solution to problem (4). Note that, differently from the 
classical SVM model, the optimal value of the bias b∗ is uniquely determined by (6), 
due to the strict convexity of the primal problem (3) with respect to w and b.

It is easy to show that rewriting the Wolfe dual problem (4) in terms of the kernel 
function K gives:

where the generic elements of the matrices K++ , K−− and K+− are of the type:

(4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min
�,�

1

2
�TX+X+T� +

1

2
�TX−X−T� − �TX+X−T�

+
1

2
(eT� − eT�)2 +

‖�‖2
2C

− �Te − �Te

0 ≤ � ≤ Ce,

�j = 1 − (wTxj + b), j ∈ J+,

�j ≥ 1 + (wTxj + b), j ∈ J−,

(5)w∗ = X+T�∗ − X−T�∗

(6)b∗ = eT�∗ − eT�∗,

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
�,�

1

2
�TK++� +

1

2
�TK−−� − �TK+−�

+
1

2
(eT� − eT�)2 +

‖�‖2
2C

− �Te − �Te

0 ≤ � ≤ Ce,

K++
pq

= K(xp, xq), with p, q ∈ J+,

K−−
pq

= K(xp, xq), with p, q ∈ J−,



643

1 3

The semiproximal SVM approach for multiple instance learning:…

and

Note that, in order to tackle the above problem (7), it is enough to know only the 
analytical form of the kernel function K , without needing explicitly the map � (this 
is the reason of the expression “the kernel trick”, very common in the literature). 
Moreover, problem (7) coincides exactly with problem (4) in case the linear kernel 
function K(x, y) = xTy is adopted.

We conclude this section by observing that using the kernel trick into Algorithm 
mi-SPSVM involves also steps 8 and 11, where, in order to compute the sets J∗ and 
J̄ , the quantity w̄T𝜙(xj) + b̄ should be evaluated for j ∈ J+ . Taking into account for-
mulae (5) and (6), with xj substituted by �(xj) for any j ∈ J+ ∪ J− , it is easy to see 
that also in this case there is no need to know explicitly the map � , since such evalu-
ation corresponds to calculating the following vector:

where ( �∗,�∗ ) is the optimal solution to problem (7).

4 � Computational study of the semiproximal kernelized version

The kernelized version of Algorithm mi-SPSVM, named mi-KSPSVM, has been 
implemented in Matlab (version R2019b) and run on a Windows 10 system, charac-
terized by 16 GB of RAM and a 2.30 GHz Intel Core i7 processor. About the choice 
of the kernel function, we have used the RBF (Radial Basis Function) kernel [25]

which is the most common one adopted in the literature.
The code has been tested on the twelve most commonly used (in the literature) 

benchmark MIL problems [2], listed in Table 1: the first three data sets are image 
recognition problems, the TST ones are text categorization problems, while the last 
two ones are drug design problems.

A crucial issue regards the choice of the hyperparameters C and � : the former 
adjusts the trade-off between the maximization of the margin and the minimization 
of the misclassification error, while the latter tunes the kernel function values in for-
mula (8).

We have adopted the following strategies. About the choice of C we have used 
a bi-level cross validation approach [4] of the same type adopted in [7], using the 
same grid of values 2i , with i = −7,… , 7 , as in [21]. As for � , we have preliminar-
ily investigated on some potential values taken inside the grid 2i , with i = −4,… , 7 , 
noting that the best testing accuracies are obtained in correspondence to the values 
of i belonging to the set {−3,−2, 2, 3, 4} . Then, in order to automate the choice, we 

K+−
pq

= K(xp, xq), with p ∈ J+, q ∈ J−.

K++�∗ − K+−�∗ + eT�∗ − eT�∗,

(8)K(x, y) = exp

�
−
‖x − y‖2
2�2

�
,
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have embedded the computation of � into the bi-level cross validation using the grid 
2i , with i = −3,−2, 2, 3, 4.

In Table 2 we report the results in terms of average training correctness, average 
testing correctness (accuracy) and average CPU time, compared with the linear ker-
nel semiproximal version mi-SPSVM [7] run on the same machine as mi-KSPSVM. 
Highlighting in bold the best correctness value for each data set, it appears clear 
that, while in terms of computational times the two algorithms are quite comparable, 

Table 1   Data sets

Data set Dimension (n) Instances Bags ( m + k) Positive bags 
(m)

Negative 
bags (k)

Elephant 230 1391 200 100 100
Fox 230 1320 200 100 100
Tiger 230 1220 200 100 100
TST1 6668 3224 400 200 200
TST2 6842 3344 400 200 200
TST3 6568 3246 400 200 200
TST4 6626 3391 400 200 200
TST7 7037 3367 400 200 200
TST9 6982 3300 400 200 200
TST10 7073 3453 400 200 200
Musk-1 166 476 92 47 45
Musk-2 166 6598 102 39 63

Table 2   mi-KSPSVM vs mi-SPSVM [7]: average training correctness, average testing correctness (accu-
racy) and average CPU time

Data set mi-KSPSVM mi-SPSVM

Training (%) Testing (%) CPU time 
(secs)

Training (%) Testing (%) CPU time 
(secs)

Elephant 84.78 81.00 0.68 82.00 76.50 0.83
Fox 89.33 63.00 0.42 71.39 59.00 1.64
Tiger 91.56 83.00 0.88 85.33 74.50 0.86
TST1 99.53 95.25 5.50 97.44 94.25 4.10
TST2 99.75 81.25 5.38 88.50 74.50 5.06
TST3 98.75 88.50 4.33 96.44 86.25 5.33
TST4 98.69 85.75 6.77 91.33 81.75 5.93
TST7 96.81 83.25 5.58 92.42 81.75 5.90
TST9 97.61 70.75 7.14 88.00 68.50 6.04
TST10 97.69 83.50 7.33 96.14 78.75 7.70
Musk-1 99.52 86.67 0.04 93.25 82.22 0.06
Musk-2 94.67 79.00 25.47 86.74 73.00 216.86
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on the other hand mi-KSPSVM significantly overcomes mi-SPSVM not only in 
terms of accuracy, but also in terms of average training correctness.

For the sake of completeness, in Table  3 we report the average testing results 
of mi-KSPSVM and mi-SPSVM, expressed in terms of sensitivity, specificity 
and F-score. While the sensitivity and the specificity express the capability of the 
classifier to correctly identify the positive bags (sensitivity) and the negative ones 
(specificity), the F-score is the harmonic mean of sensitivity and precision, the latter 
expressing the percentage of the true positive bags among all the bags classified as 
positive. From Table 3 (where, for each data set and for each evaluation metric, the 
best value is highlighted in bold), mi-KSPSVM appears to be the best performant 
also in terms of specificity and F-score. We recall that, in case the accuracy is not 
equal to 100%, low values of sensitivity [resp. specificity] are generally a conse-
quence of high values of specificity [resp. sensitivity].

In order to investigate the behaviour of the code with respect to the literature, 
in Table 4 we also present the comparison of our accuracy results with those ones 
obtained by the following approaches, for which we have reported the best published 
values obtained using indifferently the linear or the nonlinear kernel:

•	 mi-SVM [2]: it is an instace-space approach based on solving heuristically 
a SVM type mixed integer program, by means of a BCD (Block Coordinate 
Descent) method [24].

•	 MI-SVM [2]: it is an embedding-space approach, where each positive bag is rep-
resented by a single feature vector, the instance furthest from the current hyper-
plane.

•	 MICA: [21]: it is an instance-space approach, where each positive bag is repre-
sented by the convex combination of its instances.

Table 3   mi-KSPSVM vs mi-SPSVM [7]: average testing results in terms of sensitivity, specificity and 
F-score

Data set mi-KSPSVM mi-SPSVM

Sensitivity (%) Specificity (%) F-score (%) Sensitivity (%) Specificity (%) F-score (%)

Elephant 98.12 64.57 83.46 98.46 55.99 80.43
Fox 82.42 43.10 68.48 92.70 24.24 68.59
Tiger 94.35 71.87 84.42 90.22 58.13 77.21
TST1 93.94 94.46 95.09 94.37 93.93 94.13
TST2 82.61 78.92 81.83 83.20 65.47 76.44
TST3 90.82 86.74 88.88 91.16 81.40 87.12
TST4 85.80 85.73 84.26 85.41 79.77 80.61
TST7 81.77 84.07 82.64 83.18 80.66 81.76
TST9 77.63 64.61 72.49 78.21 59.26 71.24
TST10 83.65 83.67 81.91 82.86 77.92 77.79
Musk-1 91.81 85.42 83.85 96.90 75.50 81.53
Musk-2 69.00 85.44 69.11 77.17 70.63 66.24
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•	 MICbundle [8]: it is an instace-space approach, solving a nonsmooth nonconvex 
optimization problem by means of bundle methods [14–16].

•	 MI-Kernel [19]: it is a bag-space kernel-based approach, where the similari-
ties between the bags are measured by set kernels.

For each data set, the best value is in bold and the character “−” means that the 
corresponding result is not available. Looking at Table  4, we observe that our 
approach is the best on six data sets (Fox, TST1, TST3, TST7, TST9, TST10) out 
of 12, and it appears quite comparable on Elephant, Tiger and Musk-1.

To better analyze the accuracy and the CPU time results, we have also per-
formed the nonparametric statistical Friedman test [13], used to compare differ-
ent classifiers (see [11, 18]) and furnished by the Statistics and Machine Learn-
ing Toolbox of Matlab. Such test is based on providing, for each data set, any 
classifier with a rank, computed on the basis of its performance with respect to 
the other approaches. For example, on Elephant, mi-SVM is the winner and then 
it has rank 1, MI-SVM has rank 2, mi-KSPSVM has rank 3, while both MICA 
and MICbundle , which present the same performance, have rank 4. The Friedman 
test provides in output the so-called p-value, which, in case it assumes small val-
ues (generally less than or equal to 0.05), suggests to reject the null hypothesis, 
implying that there is a significant difference among the algorithms.

We have applied the Friedman test to the following comparisons, on the basis 
of the accuracy and the CPU time results reported in Tables 2 and 4:

Table 4   mi-KSPSVM vs mi-SVM [2], MI-SVM [2], MICA [21], MICbundle [8] and MI-Kernel [19]: aver-
age testing correctness (accuracy)

Data set mi-KSPSVM 
(%)

mi-SVM (%) MI-SVM (%) MICA (%) MICbundle (%) MI-Kernel (%)

Elephant 81.00 82.20 81.40 80.50 80.50 –
Fox 63.00 58.20 59.40 58.70 58.30 –
Tiger 83.00 78.90 84.00 82.60 79.10 –
TST1 95.25 93.60 93.90 94.50 – –
TST2 81.25 78.20 84.50 85.00 – –
TST3 88.50 87.00 85.10 86.00 – –
TST4 85.75 82.80 82.90 87.70 – –
TST7 83.25 81.30 78.70 78.90 – –
TST9 70.75 67.50 63.70 61.40 – –
TST10 83.50 79.60 81.00 82.30 – –
Musk-1 86.67 87.40 77.90 84.40 84.10 86.40
Musk-2 79.00 83.60 84.30 90.50 85.20 88.00
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•	 The comparison of mi-SPSVM against mi-KSPSVM in terms of average test-
ing correctness and average CPU time has provided p-values equal to 0.0005 
and 0.5637, respectively.

•	 The comparison among mi-KSPSVM, mi-SVM, MI-SVM, MICA and MICbundle 
on the image recognition problems (Elephant, Fox and Tiger) has furnished a 
p-value equal to 0.2069.

•	 The comparison among mi-KSPSVM, mi-SVM, MI-SVM and MICA on the 
TST problems has given a p-value equal to 0.0370.

•	 The comparison among all the algorithms (mi-KSPSVM, mi-SVM, MI-SVM, 
MICA, MICbundle and MI-Kernel) on the two musk problems has output a p-value 
equal to 0.7220.

The above p-values confirm the following observations:

•	 The linear and the nonlinear versions of the semiproximal SVM approach are 
comparable in terms of CPU time, but not in terms of accuracy (in fact mi-
KSPSVM always significantly overcomes mi-SPSVM).

•	 On the image recognition problems all the approaches present a comparable 
behaviour.

•	 On the TST problems, there is a significant difference among the classifiers (in 
fact mi-KSPSVM wins on 5 data sets out of 7).

•	 All the classifiers are comparable on the two musk data sets.

We conclude the section by highlighting that the numerical results presented in [7] 
have already shown that the main advantage of the semiproximal technique resides 
in the computational efficiency of the approach, without sacrificing the accuracy 
performance. Here we have shown that the kernelized version improves significantly 
the average testing correctness with respect to the linear one, maintaining the same 
computational advantage in terms of CPU time.

5 � Conclusions

In this paper we have presented the kernelized version of the semipromixal SVM 
technique proposed in [7]. The numerical results, performed on a set of benchmark 
problems and supported by the statistical Friedman test, have shown that embedding 
the kernel trick into the semiproximal framework greatly improves the accuracy of 
the classifier, still preserving the good performance in term of computational effort.

Future research could be devoted to extend the kernel trick to other types of MIL 
classifiers, such as to the spherical separation approach adopted in [3], as done in [6] 
for the supervised case.
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