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Abstract
For a random variable, superdistribution has emerged as a valuable probability con-
cept. Similar to cumulative distribution function (CDF), it uniquely defines the ran-
dom variable and can be evaluated with a simple one-dimensional minimization for-
mula. This work leverages the structure of that formula to introduce buffered CDF 
(bCDF) and reduced CDF (rCDF) for random vectors. bCDF and rCDF are shown 
to be the minimal Schur-convex upper bound and the maximal Schur-concave lower 
bound of the multivariate CDF, respectively. Special structure of bCDF and rCDF 
is used to construct an algorithm for solving optimization problems with bCDF and 
rCDF in objective or constraints. The efficiency of the algorithm is demonstrated in 
a case study on optimization of a collateralized debt obligation with bCDF functions 
in constraints.

Keywords Probability of exceedance · Buffered probability of exceedance · BPOE · 
Conditional value-at-risk · Cumulative distribution function · CDF

1 Introduction

The cumulative distribution function (CDF) of a random variable (r.v.) is a 
fundamental notion in probability theory and plays a central role in stochas-
tic optimization, risk management, statistics, reliability theory and various 

 * Bogdan Grechuk 
 bg83@leicester.ac.uk

1 School of Computing and Mathematic Sciences, University of Leicester, Leicester LE1 7RH, 
UK

2 Departement of Mathematical Sciences, Stevens Institute of Technology, Castle Point on 
Hudson, Hoboken, NJ, USA

3 Independent researcher, Memphis, TN, USA
4 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 

USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02045-1&domain=pdf
http://orcid.org/0000-0002-2624-5765


404 B. Grechuk et al.

1 3

applications. For instance, engineered systems, e.g., electrical grids and gas/
oil pipelines, must be designed to comply with various safety and reliability 
regulations formulated in terms of the probability of failure calculated with 
CDFs. Also, smart electrical grids should be robust to rare events including 
power station faults and electromagnetic pulses, whereas gas pipeline opera-
tions should meet the consumer demand while being resilient to unforeseen 
production disruptions. Design of engineered structures and industrial systems 
involve multiple uncertain characteristics that are difficult to combine into a 
single loss function. For example, each watertight compartment of a subma-
rine should be designed to maximize its survivability in case of an accident. 
Suppose that a submarine has eight compartments. Chances of failure of all 
compartments because of high outside pressure can be described by an eight-
dimensional CDF accounting for failures of individual compartments (which 
are not independent because of common-cause factors: similar compartment 
design, outside water pressure, etc.). Another example is to ensure an unin-
terrupted power supply from a system of redundant emergency generators in 
case of a natural disaster. All generators may be impacted by the same factors 
and failures of individual generators are not independent. Yet another exam-
ple is to evaluate the probability that several escape roads will be blocked 
simultaneously because of common factors such as a hurricane. In all of these 
examples, the probability of an event should be assessed for a random vector 
rather than an r.v. From optimization perspective, one of the technical difficul-
ties that engineers face when using a multivariate CDF is that for any fixed 
x ∈ ℝn , the CDF FX(x) of a random vector X  is not a convex function of X . 
Moreover, CDFs based on observations (i.e., discrete distributions) are discon-
tinuous piecewise constant functions of x . In this case, stochastic optimization 
problems result in mixed-integer optimization problems, which are notoriously 
hard to solve for a large number of scenarios. Also, the use of CDF in deci-
sion problems has two conceptual shortcomings. First one is that at any fixed 
point x, the CDF of an r.v. X does not “capture” the extent of X below x, even 
if a tail has a small weight, the average value of X in the tail could be quite 
significant. As a result, reliance just on CDF may yield solutions with unde-
sirable tail outcomes occurring with small probabilities. The other conceptual 
shortcoming is that in general, a safety first principle based on the CDF of X 
does not agree with a common perception that aggregation reduces volatility.1 
This perception can be “captured”  by the notion of convex order. Informally, 
an r.v. X dominates an r.v. Y  in convex order, and we write X ≥cx Y  , if the dis-
tribution of Y  can be obtained from the distribution of X by aggregation. A 
formal definition is that X ≥cx Y  if �[g(X)] ≥ �[g(Y)] for any convex function 
g ∶ ℝ → ℝ . X ≥cx Y  implies that �[X] = �[Y] and �(X) ≥ �(Y) , where �(X) is 
standard deviation,—this supports the perception that Y, being aggregated from 

1 Here, “safety first principle based on the CDF” means that for a given threshold x ∈ ℝ , an r.v. X is 
preferred to an r.v. Y, if and only if F

X
(x) = ℙ[X ⩽ x] does not exceed F

Y
(x) = ℙ[Y ⩽ x] . For example, 

let ℙ[X = −1] = 1∕2 and ℙ[X = 1] = 1∕2 . Then for x = 0 , ℙ[X ⩽ 0] = ℙ[−X ⩽ 0] = 1∕2 , whereas 
ℙ[(X + (−X))∕2 ⩽ 0] = ℙ[0 ⩽ 0] = 1 > 1∕2 . Consequently, both X and −X are (strictly) preferred to 
(X + (−X))∕2 , contrary to the perception that aggregation reduces risk.
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X and having same expected value as X, is less volatile than X. A functional 
f is called Schur-convex if X ⩾cx Y  implies that f (X) ⩾ f (Y) . In other words, a 
Schur-convex functional does not increase after data aggregation. Examples of 
such functionals include f (X) = �(X) and f (X) = −�[u(X)] for a concave func-
tion u. However, f (X) = FX(x) = ℙ[X ⩽ x] with fixed x is not Schur-convex. As 
a result, if X∗ ∈ argminX∈X FX(x) for a feasible set X  and x ∈ ℝ , there can exist 
Y ∈ X  such that X∗ ⩾cx Y  and FX∗ (x) < FY (x) . In this case, �[Y] = �[X∗] and 
�(Y) ⩽ �(X∗) , but Y is “less safe” than X∗.

In the one dimensional case, i.e., for an r.v. X, all these CDF deficiencies were 
addressed with the functions of superquantile and buffered probability of exceedance 
(bPOE) [6]. Superquantile, which is also known as expected shortfall and conditional 
value-at-risk (CVaR) [14, 15] of X with confidence level � , is the expectation of the 
right (1 − �)—tail of the distribution of X, i.e., it is the average of the largest outcomes 
with total probability 1 − � . Superquantile can be defined as follows

where qX(s) = inf{x ∈ ℝ |FX(x) > s} is the quantile function and z+ denotes 
max{0, z} . bPOE is an extension of the buffered probability of failure [13] and is 
equal to 1 minus the inverse of superquantile, see [6],

It can also be evaluated by

see [6, 7]. Considered as a function of r.v. X for fixed x, bPOE is the minimal quasi-
concave upper bound (see [6]) of probability of exceedance (POE),

Superquantile and bPOE constraints are equivalent, see [6]:

The aim of this work is to construct extensions of multivariate CDF, defined for the 
lower tail rather than the upper tail. The analogue of superquantile for the lower tail 
will be called subquantile:

To define an analog of bPOE for the lower tail, let an r.v. X with the CDF 
FX ∶ ℝ → [0, 1] represent a reward of some kind, e.g., money, energy, satisfied 
demand, etc. Then for a threshold � ∈ (0, 1] , buffered CDF (bCDF) is defined as an 
inverse of subquantile, i.e., FX(x) = � , where � is a solution of the equation 
x = q

X
(�) . In other words,

qX(�) =
1

1 − � �
1

�

qX(s)ds ≡ min
c∈ℝ

(
c +

1

1 − �
𝔼[X − c]+

)
, � ∈ [0, 1),

pX(x) = 1 − q
−1

X
(x) for x ≠ supX.

(1)pX(x) = min
a⩾0

𝔼[a(X − x) + 1]+ for x ≠ supX,

pX(x) = ℙ[X ⩾ x] for x ≠ supX.

(2)pX(x) ⩽ 1 − � ⟺ qX(�) ⩽ x for x ≠ supX, � ∈ [0, 1).

(3)q
X
(�) =

1

� �
�

0

qX(s)ds ≡ max
c∈ℝ

(
c −

1

�
𝔼[c − X]+

)
, � ∈ (0, 1].
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For every fixed x, bCDF FX(x) is a quasi-convex function of r.v. X and is the mini-
mal quasi-convex upper bound of FX(x) . This follows from the fact that bPOE is the 
minimal quasi-convex upper bound of POE [6]; see also [18, Eq’s (3.2.6)–(3.2.8)] 
and [2, Eq (30)]. bCDF admits a representation similar to (1):

Similar to the constraint equivalence (2) for the upper tail, (4) yields constraint 
equivalence for the lower tail:

Under certain conditions, the maximum in the last constraint can be dropped, and 
the constraint takes the form c − �−1𝔼[c − X]+ ⩾ x , which can be reformulated as 
linear constraints for discrete distributions. However, the main advantage of bCDF 
compared to CDF is that bCDF describes the distribution tails. For instance, when 
r.v. X represents a portfolio value and depends on the portfolio weights (decision 
variables), minimization of FX(x) yields an optimal solution X∗ with FX∗ (x) = �∗ 
such that the average value of X∗ in �∗

⋅ 100% of the worst outcomes is at least 
x. Under some mild conditions, optimization of one-dimensional bCDF can be 
reduced to convex and linear programming (for discrete distributions). For exam-
ple, let X = (X1,… ,Xm) be a known random vector, x ∈ ℝ a given threshold, 
w = (w1,… ,wm) ∈ ℝm an unknown vector, and X = w⊤X = w1X1 +⋯ + wmXm . 
Then, the problem of minimizing FX(x) with respect to w can be formulated with 
(5) as

where c = aw is a new decision vector. The last optimization problem can be 
reduced to convex and linear programming for a discrete distribution as in [6]. This 
also follows from a simple observation that

Rockafellar and Royset [12] introduced super CDF (sCDF) as the inverse of super-
quantile, i.e., F

X
(x) = q

−1

X
(x) = 1 − pX(x) , which can be shown to be the maximal 

quasi-concave lower bound of CDF. It follows from (1) that

We will call super CDF by reduced CDF (rCDF) to emphasize that this function is a 
lower bound of CDF, versus buffered CDF which is an upper bound of CDF.

(4)FX(x) = � ⟺ x = q
X
(�) for x ≠ infX, � ∈ (0, 1].

(5)FX(x) = p−X(−x) = min
a⩾0

𝔼[a(x − X) + 1]+.

F
X
(x) ⩽ � ⟺ q

X
(�) ⩾ x

⟺ max
c∈ℝ

(
c −

1

�
𝔼[c − X]+

)
⩾ x for x ≠ infX, � ∈ (0, 1].

min
w

FX(x) = min
w

min
a⩾0

𝔼[a(x − w⊤X) + 1]+ = min
c, a⩾0

𝔼[a x − c⊤X + 1]+,

(6)FX(x) = px−w⊤X(0).

(7)F
X
(x) = 1 − pX(x) = 1 −min

a⩾0
𝔼[a(X − x) + 1]+ = max

a⩾0
𝔼[min{a(x − X), 1}].
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It follows from (5) and (7) that bCDF and rCDF are related by

Generalizing bCDF and rCDF for random vectors is not straightforward. The dif-
ficulty is that in the multivariate case, the notions of quantile and its inverse are not 
well-defined. A potential insight can be offered through exploring the properties of 
(5) and (7). This work generalizes bCDF and rCDF given by (5) and (7) to random 
vectors. In contrast to the one-dimensional case, the multivariate bCDF and rCDF 
are not quasi-convex and quasi-concave functions of a random vector. We show that 
they are the minimal Schur-convex upper bound and the maximal Schur-concave 
lower bound of the multivariate CDF, respectively, and that their special structure 
allows us constructing an algorithm, which can quickly find their local extrema. We 
demonstrate efficiency of the algorithm in a case study on optimization of a collater-
alized debt obligation with bCDF functions in constraints.

The paper is organized into five sections and  five appendices. Section  2 intro-
duces bCDF and rCDF and shows that they are upper and lower bounds for a mul-
tivariate CDF. Section 3 considers bCDF and rCDF in optimization problems. Sec-
tion 4 presents applications of bCDF and rCDF. Section 5 discusses the case study. 
Appendices A, B and C present proofs of three propositions and Appendices D and 
E  summarize algorithms for solving optimization problems with bCDF and rCDF 
in objective function and constraints.

2  The lower and upper bounds for multivariate CDF

Let (Ω,F,ℙ) be a probability space, where Ω is an arbitrary non-empty set, F  is the 
�-algebra of subsets of Ω , and ℙ is a probability measure on (Ω,F) . Sets in F  are 
called events. A probability space (Ω,F,ℙ) is called atomless if there exists an r.v. 
on it with a continuous CDF.

An n-dimensional random vector X = (X1,… ,Xn) is a function X ∶ Ω → ℝn such 
that for every x ∈ ℝn set {� ∈ Ω |X(�) ⩽ x} is an event,2 and X1,… ,Xn are called 
r.v.’s. On an atomless probability space, there exists a collection of random vectors 
with any given joint distribution. Let L1,n(Ω) and L∞,n(Ω) denote the sets of n-dimen-
sional random vectors X for which 𝔼[X] = ∫

Ω
X(�)dℙ and max

i
sup |Xi| exist and are 

finite, respectively.

Definition 1 A random vector X ∈ L1,n(Ω) dominates random vector Y ∈ L1,n(Ω) in 
convex order, and we write X ⩾cx Y , if 𝔼[g(X)] ⩾ 𝔼[g(Y)] for any convex function 
g ∶ ℝn

→ ℝ.

The convexity of g implies existence of a ∈ ℝn and b ∈ ℝ such that 
g(x) ⩾ a⊤x + b for all x ∈ ℝn , so that 𝔼[g(X)] ⩾ 𝔼[a⊤X + b] = a⊤𝔼[X] + b > −∞ is 
well-defined for every X ∈ L1,n(Ω) , although it can be +∞.

(8)F
X
(x) = 1 − F−X(−x), FX(x) = 1 − F

−X
(−x).

2 Inequalities between vectors hold component-wise.
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Definition 2 A function f ∶ L1,n(Ω) → ℝ is Schur-convex if X ⩾cx Y implies 
f (X) ⩾ f (Y) . A function f is Schur-concave if −f  is Schur-convex.

Definition 2 implies that any function in the form f (X) = �[g(X)] is Schur-con-
vex and Schur-concave if g is convex and concave, respectively. Any function f has 
the unique minimal Schur-convex upper bound given by

see [6], as well as the the unique maximal Schur-concave lower bound

Let

denote multivariate CDF of X.

Definition 3 For any X ∈ L1,n(Ω) , buffered CDF (bCDF) and reduced CDF (rCDF) 
are defined by

respectively, where a = (a1,… , an) , a⊤X =
∑n

i=1
aiXi , and ℝn

+
= {a ∈ ℝn, a ⩾ 0}.

Remark With an auxiliary variable a0 ⩾ 0 and the following set (simplex)

bCDF and rCDF, defined by (9) and (10), respectively, can be recast as

provided that infimums in (12) and (13) with respect to a0 ⩾ 0 are attained. Rep-
resentations (12) and (13) show that bCDF and rCDF of a random vector X are, in 

fu(X) = sup
Y⩽cxX

f (Y),

fl(X) = inf
Y⩽cxX

f (Y).

FX(x) = ℙ[X ⩽ x]

(9)FX(x) = inf
a∈ℝn

+

𝔼
[
a⊤(x − X) + 1

]+
,

(10)F
X
(x) = sup

a∈ℝn
+

𝔼[min{1, a1(x1 − X1),… , an(xn − Xn)}],

(11)A =

{
a ∈ ℝ

n
+

|||||

n∑

i=1

ai = n

}
,

(12)FX(x) = inf
a∈A, a0∈ℝ+

𝔼
[
a0 a

⊤(x − X) + 1
]+

= inf
a∈A

pa⊤(x−X)(0),

(13)

F
X
(x) = 1 − inf

a∈ℝn
+

𝔼
[
1 +max{a1(X1 − x1),… , an(Xn − xn)}

]+

= 1 − inf
a0⩾0

inf
a∈A

𝔼
[
1 + a0 max{a1(X1 − x1),… , an(Xn − xn)}

]+

= 1 − inf
a∈A

pmax{a1(X1−x1),…,an(Xn−xn)}
(0),
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fact, bPOE of corresponding r.v.’s and minimized with respect to the vector a over 
the simplex A . These representations are important in devising efficient algorithms 
for solving optimization problems with bCDF and rCDF. If X depends on decision 
variables, optimal decision problems involving bCDF and rCDF in either objective 
function or constraints are bilevel optimization, see Sect. 3.

First we show that bCDF and rCDF are the upper and lower bounds for CDF, 
respectively.

Proposition 2.1 For any X ∈ L1,n(Ω) and any x ∈ ℝn,

Proof Let a ∈ ℝn
+
 be arbitrary, and let

be the event that X(𝜔) < x . Then for any � ∉ A we have Xi(�) ⩾ xi for some i, so 
that

where IA is the indicator indicator function3 of the event A. Also, for � ∈ A,

and consequently,

Since a ∈ ℝn
+
 is arbitrary, the last inequality and (10) yield the first inequality in 

(14). Similarly, if

is the event that X(�) ⩽ x , then for any � ∈ B,

and for any � ∉ B,

so that

which along with (9) yields the last inequality in (14).   ◻

(14)F
X
(x) ⩽ ℙ[X < x] ⩽ ℙ[X ⩽ x] = FX(x) ⩽ FX(x).

A = {w ∈ Ω ∶ X(𝜔) < x}

min{1, a1(x1 − X1(�)),… , an(xn − Xn(�))} ⩽ ai(xi − Xi(�)) ⩽ 0 = IA(�),

min{1, a1(x1 − X1(�)),… , an(xn − Xn(�))} ⩽ 1 = IA(�),

𝔼[min{1, a1(x1 − X1),… , an(xn − Xn)}] ⩽ 𝔼[IA] = ℙ[A] = ℙ[X < x].

B = {w ∈ Ω ∶ X(�) ⩽ x}

[a⊤(x − X(𝜔)) + 1]+ ⩾ [0 + 1]+ = 1 = IB(𝜔),

[a⊤(x − X(𝜔)) + 1]+ ⩾ 0 = IB(𝜔),

𝔼[a⊤(x − X) + 1]+ ⩾ E[IB] = ℙ[B] = ℙ[X ⩽ x] = FX(x),

3 As usual, the indicator function of the event A is the random variable I
A
 such that I

A
(w) = 1 for w ∈ A 

and I
A
(w) = 0 for w ∉ A.
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It will be shown later that bCDF and rCDF are the minimal Schur-convex 
upper bounds of FX(x) and the maximal Schur-concave lower bounds of ℙ[X < x] , 
respectively.

For an r.v. X,

where pX(x) is the (one-dimensional) bPOE defined in (1).
Also, note that 

Note that FX(x) can be represented by

where “ W ∈ {0, 1} ” indicates that the supremum is over all random variables such 
that W(�) ∈ {0, 1} for every � ∈ Ω , while the constraint XiW ⩽ xiW means that 
Xi(�)W(�) ⩽ xiW(�) for all � ∈ Ω . The supremum in (16) is attained when W is the 
indicator function of the event X ⩽ x . Similarly, bCDF has the following interpreta-
tion through dual characterization.

Proposition 2.2 For any X ∈ L1,n(Ω) and any x ∈ ℝn,

where W ∈ [0, 1] means that 0 ⩽ W(�) ⩽ 1 for all � ∈ Ω.

Proof See Appendix A.   ◻

Proposition 2.3 If the underlying probability space (Ω,F,ℙ) is atomless, then FX(x) 
is the minimal Schur-convex upper bound for FX(x).

Proof See Appendix B.   ◻

When n = 1 , FX(x) is also a unique minimal quasi-convex upper bound for FX(x) , 
see [6]. This is not true when n ⩾ 2.

FX(x) = p−X(−x) and F
X
(x) = 1 − pX(x),

(15a)1 − F
X
(x) = 1 − sup

a∈ℝn
+

𝔼[min{1, a1(x1 − X1),… , an(xn − Xn)}]

(15b)= inf
a∈ℝn

+

𝔼[max{a1(X1 − x1),… , an(Xn − xn)} + 1]+

(15c)⩽ inf
a0⩾0

𝔼[a0 max{X1 − x1,… ,Xn − xn} + 1]+

(15d)= pmax{X1−x1,…,Xn−xn}
(0).

(16)

FX(x) = ℙ[X ⩽ x] = sup
W∈{0,1}

𝔼[W] subject to XiW ⩽ xiW, i = 1,… , n,

FX(x) = sup
W∈L1(Ω)

𝔼[W] subject to 𝔼[XiW] ⩽ xi 𝔼[W], i = 1,… , n, W ∈ [0, 1],
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Proposition 2.4 In general (when n ⩾ 2 ), FX(x) is not quasi-convex in X.

Proof Let n ⩾ 2 , 0 = (0, 0,… , 0) , x0 = (1,−1, 0,… , 0) ∈ ℝn and X be such that 
ℙ[X = x0] = 1 . Then F

X
(0) = min

a∈ℝn

+
𝔼[a⊤(0 − X) + 1]+ = min

a∈ℝn

+
[−a⊤x0 + 1]+ = 0 , 

where the last equality follows from [−a⊤x0 + 1]+ ⩾ 0 and that [−a⊤x0 + 1]+ = 0 for 
a = (1, 0,… , 0) . Similarly, for a = (0, 1, 0… , 0) , it is valid [a⊤x0 + 1]+ = 0 , which 
yields F−X(0) = 0 . However, F(X+(−X))∕2(0) = F0(0) = 1 > 0 . Consequently, FX(x) 
is not quasi-convex.   ◻

Remark The proof of Proposition 2.4 uses constant random vectors. Suppose that 
n = 2 and that X is a constant r.v., i.e., ℙ[X = (x1, x2)] = 1 . Let

If x1 ⩽ 0 and x2 ⩽ 0 , then a1(−x1) + a2(−x2) + 1 ⩾ 1 , so that g(x1, x2) = 1 . If x1 > 0 
then for a1 = 1∕x1 and a2 = 0 , we have a1(−x1) + a2(−x2) + 1 = 0 , and conse-
quently, g(x1, x2) = 0 . Similarly, if x2 > 0 then g(x1, x2) = 0 . Thus, g(x1, x2) = 1 
when x1 ⩽ 0 and x2 ⩽ 0 , and g(x1, x2) = 0 otherwise. This function is not quasi-
convex and cannot be made quasi-convex by altering it values at a finite number of 
points.

Now let I = {(a�
1
, a�

2
)
|||a

�
1
⩾ 0, a�

2
⩾ 0, a�

1
+ a�

2
= 1} be the interval with endpoints 

(1, 0) and (0, 1). Then g(x1, x2) can be represented as

where

Observe that ha�
1
,a�

2
(x1, x2) = 1 when a�

1
x1 + a�

2
x2 ⩽ 0 and ha�

1
,a�

2
(x1, x2) = 0 otherwise, 

and that ha�
1
,a�

2
(x1, x2) is quasi-convex. However, the infimum of such functions over 

(a�
1
, a�

2
) ∈ I is not quasi-convex. As (a�

1
, a�

2
) moves along I from (1, 0) to (0, 1), the 

line a�
1
x1 + a�

2
x2 rotates from the x-axis to the y-axis. As a result, g(x1, x2) = 1 if and 

only if the point (x1, x2) remains “under” the rotating line, which occurs if and only 
if x1 ⩽ 0 and x2 ⩽ 0.

Note that g(x1, x2) is the infimum of quasi-convex functions ha�
1
,a�

2
(x1, x2) , but 

g(x1, x2) is not “closely approximated” by any of these functions. Also, every func-
tion ha�

1
,a�

2
(x1, x2) is a quasi-convex upper bound for g(x1, x2) . However, none of these 

quasi-convex upper bounds is “best” or “minimal”. So, g(x1, x2) has many quasi-
convex upper bounds, but the unique “minimal” quasi-convex upper bound does not 
exist.

g(x1, x2) = F
X
(0) = inf

(a1,a2)∈ℝ
2
+

𝔼[(a1, a2)
⊤(−X) + 1]+

= inf
(a1,a2)∈ℝ

2
+

[a1(−x1) + a2(−x2) + 1]+.

g(x1, x2) = inf
(a�

1
,a�

2
)∈I

inf
a0⩾0

[a0(−a
�
1
x1 − a�

2
x2) + 1]+ = inf

(a�
1
,a�

2
)∈I

ha�
1
,a�

2
(x1, x2),

ha�
1
,a�

2
(x1, x2) = inf

a0⩾0
[a0(−a

�
1
x1 − a�

2
x2) + 1]+.
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In fact, F
X
(x) is also not quasi-concave in X , even for n = 2 , see [9]. It can be 

interpreted through dual characterization in a way similar to that of bCDF. Indeed,

Proposition 2.5 Define

Also, let

be the the maximal Schur-concave lower bound for ℙ[X < x] . Then on an atomless 
probability space,

Proof See Appendix C.   ◻

For illustration of these results, let r.v.’s X1 and X2 model profits from two dif-
ferent investments and let an investor evaluate the probability of both X1 and X2 
to be non-positive. Let X = (X1,X2) , 0 = (0, 0) , and let FX(0) = ℙ[X ⩽ 0] . Let X 
assume values (−1,−1) , (1, 1) with probabilities 1/3 and 2/3, respectively. Then 
FX(0) = 1∕3 . Suppose X takes values (−1,−1) , (1, 1), and (1, 1) in the events �1 , 
�2 and �3 with probabilities ℙ[�1] = ℙ[�2] = ℙ[�3] = 1∕3 . Let F = {A,B} be a 
partition of the probability space by the events A = {�1,�2} and B = {�3} . Then 
Y = �[X|F] is a random vector equal to (0,  0) and (1,  1) with probabilities 2/3 
and 1/3, respectively. Note that Y is “averaged” version of X. However, we have 
FY(0) = 2∕3 > 1∕3 = FY(0) . This means that FX(0) is not Schur-convex as a func-
tion of X . Instead, we suggest to use its Schur-convex upper bound given in Propo-
sition 2.5—such bound decreases when X is replaced by its average-out version.

This example also demonstrates convenience of modeling the probability space 
as atomless even for discrete random variables. If the original random vector X 
were defined on a discrete probability space Ω = {�1,�2} with ℙ[�1] = 1∕3 and 
ℙ[�2] = 2∕3 , the “averaged-out” version Y of X would not exist. For this Ω,

(17)

1 − FX(x) = ℙ[X1 > x1 or … or Xn > xn]

= sup
Wi∈{0,1}

n∑

i=1

𝔼[Wi] subject to XiWi > xiWi, i = 1,… , n,

n∑

i=1

Wi ⩽ 1.

FD
X
(x) = inf

W∈L∞,n(Ω)

(
1 −

n∑

i=1

𝔼[Wi]

)

subject to 𝔼[XiWi] ⩾ xi 𝔼[Wi], Wi ∈ [0, 1], i = 1,… , n,

n∑

i=1

Wi ∈ [0, 1].

FL
X
(x) = inf

Y⩽cxX
ℙ[X < x]

F
X
(x) = FD

X
(x) = FL

X
(x).

sup
Y⩽cxX

FY(0) =
1

3
≠ 2

3
,
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which illustrates that Proposition 2.3 fails on discrete probability spaces.

3  Buffered and reduced CDFs in optimization problems

Let X be a random vector, x ∈ ℝn , and let f(w;X) = (f1(w;X),… , fn(w;X)) be a vec-
tor of concave functions of w and h(w;X) = (h1(w;X),… , hn(w;X)) be a vector of 
convex functions of w , defined on a convex set W ⊆ ℝk . Let also �[|fi(w;X)|] < ∞ , 
�[|hi(w;X)|] < ∞ for all w ∈ W and i ∈ {1,… , n}.

If all fi in the definition of f(w;X) are convex, and W = W1 ×⋯ ×Wn with all 
W1,… ,Wn being convex, then the problem min

�∈W F
� (�;�)(x) is convex.

3.1  bCDF and rCDFs in objective

This section considers the following two optimization problems

and

With functions GF(a,w) and GH(a,w) defined by

and

bCDF and rCDF can be recast as

and

It is assumed that in (20) and (21), the infimum and supremum with respect to a can 
be replaced by the minimum and maximum, respectively.4 With this assumption, 
optimization problems (18) and (19) along with (20) and (21) take the form

(18)min
w∈W

Ff(w;X)(x)

(19)max
w∈W

F
h(w;X)

(x).

GF(a,w) = �[a⊤(x − f(w;X)) + 1]+

GH(a,w) = −�[min{1, a1(x1 − h1(w;X)),… , an(xn − hn(w;X))}],

(20)Ff(w;X)(x) = inf
a∈ℝn

+

GF(a,w)

(21)F
h(w;X)

(x) = sup
a∈ℝn

+

−GH(a,w).

(22)min
w∈W

Ff(w;X)(x) = min
a∈ℝn

+, w∈W
GF(a,w)

4 See, e.g., [11, Theorem 27.1] for sufficient conditions for a convex function to attain its minimum.
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and

respectively, and (22) and (23) can be written as

Further, with an auxiliary variable a0 ⩾ 0 and with the set A defined by (11), prob-
lem (24) can be equivalently reformulated in the form

The idea is to solve (25) iteratively by alternating variables (a0,w) and a : solve (25) 
with respect to (a0,w) , then with respect to a , and again with respect to (a0,w) , and 
then again with respect to a , and so on. This method is known as coordinate descent, 
or, more generally, Block Coordinate Descent (BCD), in which variables are divided 
into m blocks, and optimization is done iteratively for one block at a time. BCD may 
not converge to stationary points of a non-convex objective function, which is con-
vex in each block coordinate [10]. However, global convergence was studied under 
additional assumptions: two-block ( m = 2 ) or strict quasiconvexity for m − 2 blocks 
[3, 4] and uniqueness of minimizer per block [1, Sect. 2.7]. See also [5] for conver-
gence of BCD for nonconvex problems and for relevant references.

Note that in our case the optimization problems

are convex with respect to a , since the objective is the maximum of linear func-
tions with respect to components of the vector a . On the other hand, the optimiza-
tion problems

can be reduced to convex programming in w , since they are bPOE minimization 
problems. Indeed,

Since all components of the vector function f(w;X) are concave in w , the function 
a⊤(x − f(w;X)) is convex in w . Consequently, minimization of bPOE with respect to 
w for this function can be reduced to convex programming, see [6]. Also, (15a) and 
(15b) imply that

(23)max
w∈W

F
h(w;X)

(x) = max
a∈ℝn

+, w∈W
−GH(a,w) = − min

a∈ℝn
+, w∈W

GH(a,w),

(24)min
a∈ℝn

+, w∈W
GI(a,w), I ∈ {F,H}.

(25)min
a∈A, a0∈ℝ+, w∈W

GI(a0 a,w), I ∈ {F,H}.

min
a∈A

GI(a0 a,w), I ∈ {F,H},

min
a0∈ℝ, w∈W

GI(a0 a,w) = min
w∈W

min
a0∈ℝ

GI(a0 a,w), I ∈ {F,H},

(26)

min
a0∈ℝ, w∈W

GF(a0 a,w) = min
w∈W

min
a0∈ℝ

GF(a0 a,w) =min
w∈W

min
a0∈ℝ

𝔼[a0 a
⊤(x − f(w;X)) + 1]+

=min
w∈W

pa⊤(x−f(w;X))(0).
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Since all components of the vector function h(w;X) are convex in w , and compo-
nents of the vector a are nonnegative, the function

is convex in w . Consequently, minimization of bPOE for this function can be 
reduced to convex programming, see [6]. Finally, with bPOE functions, problem 
(25) can be formulated as follows

where

The algorithm for solving problem (28) is summarized in Appendix D.

3.2  bCDF and rCDF in constraints

This section considers minimization of an objective function V(w) with respect to 
variables w ∈ ℝk:

subject to constraints on buffered and reduced CDFs:

With the functions GF(aF aF,w) and GH(aH aH ,w) introduced in Sect. 3.1 and under 
the assumption that in (20) and (21), the infimum and supremum with respect to a 
can be replaced by the minimum and maximum, respectively, problem (29)–(31) can 
be reformulated as follows

(27)

min
a0∈ℝ, w∈W

GH(a0 a,w)

= min
w∈W

min
a0∈ℝ

−𝔼[min{1, a0a1(x1 − h1(w;X)),… , a0an(xn − hn(w;X))}]

= min
w∈W

(
−max

a0∈ℝ
𝔼[min{1, a0a1(x1 − h1(w;X)),… , a0an(xn − hn(w;X))}]

)

= min
w∈W

(
min
a0∈ℝ

𝔼[max{a0a1(h1(w;X) − x1),… , a0an(hn(w;X) − xn)} + 1]+ − 1

)

= −1 + min
w∈W

pmax{a1(h1(w;X)−x1),…,an(hn(w;X)−xn)}
(0).

max{a1(h1(w;X) − x1),… , an(hn(w;X) − xn)}

(28)min
a∈A, w∈W

pgI (a,w)(0), I ∈ {F,H},

gF(a,w) = a⊤(x − f(w;X)),

gH(a,w) = max{a1(h1(w;X) − x1),… , an(hn(w;X) − xn)}.

(29)min
w∈W

V(w)

(30)Ff(w;X)(x) ⩽ � ,

(31)F
h(w;X)

(x) ⩾ � .
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subject to

Relationship (26) implies that the constraint (33) with respect to variables (aF, aF,w) 
can be replaced by

with respect to variables (aF,w) . By (2), the last constraint is equivalent to the super-
quantile constraint:

Similarly, (27) implies that the constraint (34) with respect to variables (aH , aH ,w) 
can be replaced by

with respect to variables (aH ,w) . By (2), the last constraint is equivalent to the 
superquantile constraint

Finally, problem (32)–(34) can be recast in the form

Problem (37) can be solved iteratively as follows: solve (37) with respect to vari-
ables w with fixed aF and aH , then minimize the subquantile functions in (35) and 
(36) with respect to aF and aH , respectively, i.e., solve

then solve (37) again with respect to w with previously found aF and aH , then solve 
(38) and (39), and so on.

The described algorithm for solving problem (37) is summarized in Appendix E.

(32)min
w∈W, aI∈ℝ+, aI∈A, I∈{F,H}

V(w)

(33)GF(aF aF,w) ⩽ � ,

(34)GH(aH aH ,w) ⩽ −� .

pa⊤
F
(x−f(w;X))(0) ⩽ 𝛾

(35)qa⊤
F
(x−f(w;X))(1 − 𝛾) ⩽ 0.

−1 + pmax{aH1(h1(w;X)−x1),…,aHn(hn(w;X)−xn)}
(0) ⩽ −�

(36)qmax{aH1(h1(w;X)−x1),…,aHn(hn(w;X)−xn)
(�) ⩽ 0.

(37)min
w∈W, aF∈A, aH∈A

V(w) subject to (35) and (36).

(38)min
aF∈A

qa⊤
F
(x−f(w;X))(1 − 𝛾),

(39)min
aH∈A

qmax{aH1(h1(w;X)−x1),…,aHn(hn(w;X)−xn)
(�),
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4  Applications

4.1  Two‑asset option

A two-asset option is an exotic option whose payoff depends on prices pA(t) and 
pB(t) of assets A and B at time t. For example, it may have nonzero payoff if pA(T) 
and pB(T) simultaneously exceed some strike prices CA and CB , respectively, at some 
future time T. In this case, if pA(T) and pB(T) are assumed to be random variables, 
the option pays with the probability

Since in general, pA(T) and pB(T) are not independent random variables, 
ℙ[pA(T) ⩾ CA, pB(T) ⩾ CB] ≠ ℙ[pA(T) ⩾ CA] ⋅ ℙ[pB(T) ⩾ CB] . If pA(0) and 
pB(0) are (known) prices of assets A and B at the current time t = 0 , then (40) 
can be recast in terms of adjusted rates of returns rA = (pA(T) − CA)∕pA(0) and 
rB = (pB(T) − CB)∕pB(0):

The joint distribution of rA and rB can be estimated from the historical data. Let rA,i 
and rB,i , i = 1,… , T  , be the adjusted rates of return of assets A and B over the last T 
periods. Then p can be estimated as the number of times (rA,i, rB,i) ⩾ 0 divided by T. 
However, this estimate is sensitive to small perturbations in the data. Alternatively, 
we can define X = (−rA,−rB) and estimate the smallest Schur-convex upper bound 
(9) for p:

which is a linear program.

4.2  Credit rating

Optimizing a portfolio of credit default swaps (CDSs) with constraints on the default 
probabilities of tranches [8] is a non-convex optimization problem. Let M be the num-
ber of tranches, T the number of time periods, and xt

m
 , m = 1,… ,M , t = 1,… , T , the 

attachment point of tranche m at time t. Also, suppose there are K available CDSs. Let 
�t
k
 be the cumulative loss of k-th CDS at time t, and let yk be the weight of the k-th asset 

in the asset pool. Then the total loss of the CDS pool at time t is L(�t, y) =
∑K

k=1
�t
k
yk , 

(40)p = ℙ[pA(T) ⩾ CA, pB(T) ⩾ CB].

p = ℙ
[
rA ⩾ 0, rB ⩾ 0

]
.

F−X(0) = inf
a⩾0, b⩾0

𝔼[a rA + b rB + 1]+

= inf
a⩾0, b⩾0

1

T

T∑

i=1

[a rA,i + b rB,i + 1]+,

= min
a⩾0,b⩾0,

z1,…,zT

1

T

T∑

i=1

zi

subject to zi ⩾ a rA,i + b rB,i + 1, zi ⩾ 0, i = 1,… , T ,
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where �t = (�t
1
,… , �t

K
) and y = (y1,… , yK) . Consider constraints on the default prob-

abilities of tranches [8]:

With Xt = L(�t, y) − xt
m
 , t = 1,… , T  , (41) can be recast as

Each constraint in (42) is non-convex and can be approximated by

where pm is some scaled bound on probability; see [8]. Also, (15b)–(15d) imply that

where F
X
(x) is defined in (10). Consequently, 1 − F

X
(0) is a better upper bound for 

ℙ[max(X1,… ,XT ) ⩾ 0] than pmax{X1,…,XT}
(0) , and (43) can be replaced by

In fact, 1 − F
X
(0) is the best Schur convex upper bound on this probability for an 

atomless probability space; see Proposition 2.5. The optimization problem consid-
ered in [8] is formulated by 

where x = {xt
m
}t=1,…,T

m=2,…,M
 , r is the interest rate, Δsm = sm − sm−1 , sm is the spread pay-

ment for each tranche m = 1,… ,M , ck is the annual income spread payment of the 
k-th CDS, k = 1,… ,K , and � is a real-valued parameter. After replacing constraints 
(41) by (44), the optimization problem (45) takes the form 

(41)1 − ℙ
[
L(�t, y) ⩽ x1

m
,… , L(�t, y) ⩽ xT

m

]
⩽ pm, m = 2,… ,M.

(42)ℙ
[
max{X1,… ,XT} ⩾ 0

]
⩽ pm, m = 2,… ,M.

(43)pmax{X1,…,XT}
(0) ⩽ pm,

1 − F
X
(0) ⩽ pmax{X1,…,XT}

(0),

(44)1 − F
X
(0) ⩽ pm.

(45)

min
x,y

T∑

i=1

1

(1 + r)t

M∑

m=1

Δsm𝔼[[x
t
m+1

− L(�t, y)]+]

subject to 1 − ℙ
[
L(�t, y) ⩽ x1

m
,… , L(�t, y) ⩽ xT

m

]
⩽ pm, m = 2,… ,M,

K∑

k=1

ckyk ⩾ �,

K∑

k=1

yk = 1, yk ⩾ 0, k = 1,… ,K,

xt
m
⩾ xt

m−1
, m = 1,… ,M, t = 1,… , T ,

0 ⩽ xt
m
⩽ 1,m = 2,… ,M, t = 1,… , T ,
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 where a = {at
m
}t=1,…,T

m=2,…,M
.

5  Case study

Veremyev et al. [17] solved the CDS portfolio problem (45) and found an optimal 
portfolio of CDSs along with optimal attachment/detachment points over a multi-
period horizon. Pertaia et  al. [8] replaced multivariate POE constraints in (45) by 
one-dimensional bPOE constraints (43) and solved the corresponding optimization 
problem.5

Here we use Algorithm 2 to solve problem (46a)–(46e) for 53 CDSs over 5 time 
periods with 5 tranches for 300,000 simulated scenarios and for � = 120 and � = 80 
in (46d).6 The experiments were run on an Intel i7-2.6Ghz processor with 32GB 
DDR4-3200Mhz RAM and used Portfolio Safeguard (PSG),7 which has precoded 
superquantile (CVaR) function as well as many other popular risk functions.

Table 1 presents objective value in Step 2 or 4, running time in Step 2 or 4, 
and subquantile sub-problem running time in Step 3 or 5 for each iteration in 
Algorithm 2 with � = 120 and � = 10−7 . It shows that no improvements are made 
after the second iteration (Algorithm 2 stops after the third iteration, but Table 1 
shows one more iteration to demonstrate that there are no further improvements 
in the objective value). Constraint (36) in problem (37), which is solved in Steps 
2 and 4, is equivalent to constraints (46b) with m = 2 , 3, 4, 5. Table 2 reports 
slack in constraints (46b) for m = 2 , 3, 4, 5 as percentage of the constraint right-
hand side, i.e.,

min
x,y,a

T∑

i=1

1

(1 + r)t

M∑

m=1

Δsm𝔼[[x
t
m+1

− L(�t, y)]+] (46a)

subject to 𝔼[max{am
1
(L(�1, y) − x1

m
),… , am

T
(L(�T, y) − xT

m
)} + 1]+ ⩽ pm,

m = 2,… ,M, (46b)

am
t
⩾ 0, m = 2,… ,M, t = 1,… , T , (46c)

K∑

k=1

ckyk ⩾ �,

K∑

k=1

yk = 1, yk ⩾ 0, k = 1,… ,K, (46d)

xt
m
⩾ xt

m−1
, m = 1,… ,M, t = 1,… , T ,

0 ⩽ xt
m
⩽ 1,m = 2,… ,M, t = 1,… , T , (46e)

5 Solution of problem (45) and of the one with bPOE constraints are available at http:// uryas ev. ams. 
stony brook. edu/ index. php/ resea rch/ testp roble ms/ finan cial_ engin eering/ struc turing- step- up- cdo/
6 The codes and solutions of this problem are available at http:// uryas ev. ams. stony brook. edu/ index. php/ 
resea rch/ testp roble ms/ finan cial_ engin eering/ struc turing- step- up- cdo/.
7 Portfolio Safeguard software is a product of American Optimal Decisions, Inc. (http:// aorda. com). 
To optimize convex nonsmooth functions, PSG solves a sequence of linear or quadratic programming 
problems. For large-scale optimization problems, PSG can call GUROBI solver (Gurobi Optimization, 
https:// www. gurobi. com/).

http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/structuring-step-up-cdo/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/structuring-step-up-cdo/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/structuring-step-up-cdo/
http://uryasev.ams.stonybrook.edu/index.php/research/testproblems/financial_engineering/structuring-step-up-cdo/
http://aorda.com
https://www.gurobi.com/
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At Step 2 in the first iteration, constraints (46b) for m = 3 , 4, 5 are active and after 
that, all constraints in (46b) become inactive till the algorithm stops after the third 
iteration. Since problem (46a)–(46e) without constraints (46b) is convex and none of 
constraints (46b) is active at optimality, the found solution is globally optimal. Note 
that one-dimensional bPOE constraints (43) are active, as we see from Step 2 in the 
first iteration.

Tables 3 and 4 present results similar to those in Tables 1 and 2 but for � = 80 . This 
time, the objective value stops improving after the second iteration even if constraints 
(46b) for m = 3 , 4, 5 remain active in all iterations.

(47)�m = 100% ⋅

pm − �[max{am
1
(L(�1, y) − x1

m
),… , am

T
(L(�T, y) − xT

m
)} + 1]+

pm
.

Table 1  Objective value in Step 
2 or 4, running time in Step 2 or 
4, and subquantile sub-problem 
running time in Step 3 or 5 for 
each iteration in Algorithm 2 for 
� = 120 in constraint (46d)

Iteration Objective value Main problem 
running time (s)

Subquantile sub-
problem running 
time (s)

1 590.24 376.74 –
2 577.83 433.05 1.27
3 577.83 368.86 1.02
4 577.83 286.11 1.07

Table 2  Slack, �
m
 (defined by 

(47)), in constraints (46b) for 
m = 2 , 3, 4, 5, in Algorithm 2 
for � = 120 in constraint (46d)

Iteration Step �
2
 , % �

3
 , % �

4
 , % �

5
 , %

1 2 3.24 0.00 0.00 0.00
1 3 14.23 10.91 8.78 5.08
2 4 3.84 0.050 0.057 0.097
2 5 4.52 1.37 1.32 0.80
3 4 4.67 1.36 1.32 0.80
3 5 4.52 1.37 1.32 0.80
4 4 4.67 1.36 1.32 0.80
4 5 4.52 1.37 1.32 0.80

Table 3  Objective value in Step 
2 or 4, running time in Step 2 or 
4, and subquantile sub-problem 
running time in Step 3 or 5 for 
each iteration in Algorithm 2 for 
� = 80 in constraint (46d)

Iteration Objective value Main problem 
running time (s)

Subquantile sub-
problem running 
time (s)

1 545.22 363.62 –
2 544.41 419.76 3.63
3 544.41 291.45 3.19
4 544.41 273.03 3.26
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The case study shows that optimization problems with bCDF functions can be effi-
ciently optimized (even for large-scale optimization problems with 300,000 scenarios).

Appendix

A. Proof of proposition 2.2

With notation

Proposition 2.2 can be reformulated as follows.

Proposition A.1 For any X ∈ L1,n(Ω),

Proof Let p�(X) be the right-hand side of (49). We first prove that p�(X) ⩽ p(X) . Let 
W be the feasible set in (49). For every W ∈ W , and every a ∈ ℝn

+
,

Since the second and the third terms in the right-hand side are non-negative,

and since W ∈ W and a ∈ ℝn
+
 are arbitrary, p�(X) ⩽ p(X) follows.

We next prove p�(X) ⩾ p(X) . For n = 1 , X is a random variable and p�(X) ⩾ p(X) 
was claimed in the proof of Proposition 2.5 in [6] (however, the proof was incom-
plete). In this case, let q

X
(�) be defined by (3) and let q−1

X
(x) be the inverse function 

for q
X
(�) , which is properly defined on x ∈ [�X, supX) , see [6].

(48)p(X) = F−X(0) = inf
a∈ℝn

+

𝔼[a⊤X + 1]+

(49)

p(X) = sup
W∈L1(Ω)

𝔼[W] subject to 𝔼[XiW] ⩾ 0, i = 1,… , n, W ∈ [0, 1].

𝔼[W] ⩽ 𝔼[W] + a⊤𝔼[XiW] + 𝔼[(1 −W)[a⊤X + 1]+].

𝔼[W] ⩽ 𝔼[W(1 + a⊤X − [a⊤X + 1]+)] + 𝔼[a⊤X + 1]+ ⩽ 𝔼[a⊤X + 1]+,

Table 4  Slack, �
m
 (defined by 

(47)), in constraints (46b) for 
m = 2 , 3, 4, 5, in Algorithm 2 
for � = 120 in constraint (46d)

Iteration Step �
2
 , % �

3
 , % �

4
 , % �

5
 , %

1 2 3.24 0.00 0.00 0.00
1 3 3.66 0.83 1.00 1.11
2 4 2.95 0 0 0
2 5 2.86 0 0 0
3 4 2.95 0 0 0
3 5 2.86 0 0 0
4 4 2.95 0 0 0
4 5 2.86 0 0 0
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Then consider the following cases:

• If supX < 0 , then W = {0} and p�(X) = �[0] = 0.
• If supX = 0 , then I{X=0} ∈ W , hence p�(X) ⩾ 𝔼[I{X=0}] = ℙ[X = 0] = ℙ[X = supX].
• If �[X] < 0 < supX , then let t = qX(q

−1

X
(0)) and let A−,A0,A+ be the events 

X < t , X = t , and X > t , respectively. The definition of t implies that 

 By definition of q−1
X
(0) , 

where r =
1−ℙ[A+]−q−1

X
(0)

ℙ[A0]
 if ℙ[A0] > 0 and r = 0 if ℙ[A0] = 0 . Note that 0 ⩽ r ⩽ 1 

by (50).
  Now, let W be an r.v. assuming values of 0, r, and 1 on A− , A0 , and A+ , respec-

tively. Then 

 hence W ∈ W . Thus, 

• If 0 ⩽ 𝔼[X] then W ≡ 1 ∈ W , hence p�(X) = �[1] = 1.

In summary, p�(X) ⩾ p
+

X
(0) , where p+

X
(x) is defined in Definition 3.9 of [6]. By 

Proposition 3.10 in [6], p+
X
(0) = mina∈ℝn

+
𝔼[a⊤X + 1]+ , which finishes the proof of 

p
�
(X) ⩾ p(X) for n = 1.
Now let n be an arbitrary positive integer. By contradiction, suppose that 

p
�
(X) < p(X) and choose any k ∈ (p

�
(X), p(X)) . Let

Then K is a convex set, and p�(X) < k implies that ℝn
+
∩ K = � . By separation hyper-

plane theorem, this implies that there exists a vector c ∈ ℝn and constant b such 
that (i) c⊤y ⩾ b for all y ∈ ℝn

+
 but (ii) c⊤y < b for all y ∈ K . Condition (i) implies 

that c ⩾ 0 and b ⩽ 0 . Then (ii) implies that for every W satisfying 0 ⩽ W ⩽ 1 and 
𝔼[W] ⩾ k , we have 0 ⩾ b > c⊤𝔼[XW] = 𝔼[YW] , where Y = c⊤X . But this implies 
that p�(Y) < k . On the other hand,

(50)1 − ℙ[A+] − ℙ[A0] ⩽ q−1
X
(0) ⩽ 1 − ℙ[A+].

0 = ∫
1

q−1
X
(0)

HX(�)d� = ∫
1−ℙ[A+]

q−1
X
(0)

td� + ∫
1

1−ℙ[A+]

HX(�)d�

= t
(
1 − ℙ[A+] − q−1

X
(0)

)
+ ∫A+

X(�)dℙ = rtℙ[A0] + ∫A+

X(�)dℙ,

𝔼[XW] = 0 + r ∫A0

X(�)dℙ + ∫A+

X(�)dℙ = rtℙ[A0] + ∫A+

X(�)dℙ = 0,

p
�
(X) ⩾ 𝔼[W] = rℙ[A0] + ℙ[A+] = 1 − q−1

X
(0).

K = {y ∈ ℝ
n|y = 𝔼[XW] for some W ∈ [0, 1] with 𝔼[W] ⩾ k}.
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Since Y is a one-dimensional random variable, this contradicts to p�(X) ⩾ p(X) for 
the case n = 1 proved above.   ◻

B. Proof of proposition 2.3

With notation (48), Proposition 2.3 can be reformulated as

Proposition B.1 On an atomless probability space Ω , p(X) is the minimal Schur-
convex upper bound for p(X) = ℙ[X ⩾ 0].

Proof For any a ∈ ℝn
+
 , function g(x) = [a⊤x + 1]+ is a convex function of x , 

hence X ⩾cx Y implies that 𝔼[a⊤X + 1]+ ⩾ 𝔼[a⊤Y + 1]+ . Taking infimum 
over all a ∈ ℝn

+
 , we obtain p(X) ⩾ p(Y) , and consequently, the function p(X) 

is Schur-convex. Also, for any a ∈ ℝn
+
 , we have [a⊤X + 1]+ ⩾ I{X⩾0} , so that 

p(X) ⩾ 𝔼[I{X⩾0}] = ℙ[X ⩾ 0) = p(X) is indeed an upper bound for p(X) . It is left 
to prove that this upper bound is minimal, i.e., for every X ∈ L1,n(Ω) , there exist a 
Y ∈ L1,n(Ω) such that X ⩾cx Y and ℙ[Y ⩾ 0] ⩾ p(X).

Let W be a feasible set in (49). Consider probability space Ω� = Ω × [0, 1] , where 
[0,  1] is the unit interval with Lebesgue measure. Write elements of Ω� as (�, t) , 
where � ∈ Ω and t ∈ [0, 1] . Let A = {(�, t) ∈ Ω� ∶ W(�) ⩽ t} for arbitrary W ∈ W . 
Then ℙ�(A) = 𝔼[W] , where ℙ′ is the probability measure on Ω� . For any X ∈ L1,n(Ω) , 
let X� ∈ L1,n(Ω�) be the random vector defined by X�(�, t) = X(�) . Then random vec-
tors X and X′ have the same distribution. Let Y� = �[X�|IA] , where IA is the indicator 
function of an event A. Then W ∈ W implies that 𝔼[XiW] ⩾ 0 , i = 1,… , n , which 
in turn implies that 𝔼[X�

i
|IA = 1] ⩾ 0 for each component X′

i
 of X′ , or, equivalently, 

that Y�(�, t) ⩾ 0 whenever (�, t) ∈ A . Consequently, ℙ�[Y�
⩾ 0] ⩾ ℙ�(A) = 𝔼[W] . If 

there exists Y ⩽cx X such that ℙ[Y ⩾ 0] = ℙ�[Y�
⩾ 0] , then, since W ∈ W is arbi-

trary, this would imply that supY⩽cxX
ℙ[Y ⩾ 0] ⩾ supW∈W 𝔼[W] = p(X) , where the 

last equality is (49). Indeed, Y� = �[X�|IA] implies that X′
⩾cx Y

′ . Since Ω is atom-
less, there exists a pair of random vectors X�� ∈ L1,n(Ω) and Y ∈ L1,n(Ω) with the 
same joint distribution as X′ and Y′ . Then ℙ[Y ⩾ 0] = ℙ�[Y�

⩾ 0] and X′′
⩾cx Y . 

Since X and X′′ have the same distribution, X ⩾cx Y , as required.   ◻

C. Proof of proposition 2.5

Proposition 2.5 can be reformulated as follows.

Proposition C.1 Let

p(Y) = inf
a∈ℝ+

𝔼[aY + 1]+ = inf
a∈ℝ+

𝔼[a c⊤X + 1]+ ⩾ inf
a∈ℝn

+

𝔼[a⊤X + 1]+ = p(X) > k.

(51)F1(X) = 1 − F
X
(0) = inf

a∈ℝn
+

𝔼[max{a1X1,… , anXn} + 1]+,
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Also, let

Then on an atomless probability space,

Proof First, let us show that (51) is a dual problem to (52): introduce dual variables 
ai ⩾ 0 and 0 ⩽ M ∈ L1(Ω) for constraints 𝔼[XiWi] ⩾ 0 and 

∑n

i=1
Wi ⩽ 1 , respectively. 

Minimization of the Lagrangian for (52) with respect to a = (a1,… , an) and M yields

where the last equality follows from comparing M to 
m = max{a1X1 + 1,… , anXn + 1} . Indeed, if m < 0 then the subdifferen-
tial �(M +

∑n

i=1
[1 + aiXi −M]+) = 1 for M ⩾ 0 , so M = 0 is optimal; other-

wise, at M = m , the subdifferential is 1 + k ⋅ [−1, 0] + (n − k) ⋅ 0 ∋ 0 , for some 
k ∈ {1,… , n} , so M = m is optimal.

Now, let Y ⩽cx X and a ∈ ℝn
+
 be arbitrary. The function 

u(X) = [max{a1X1,… , anXn} + 1]+ is the maximum of linear functions and there-
fore is convex. Consequently,

This implies that

We next adapt the proof of Proposition 2.3 to prove that

Indeed, take any W1,… ,Wn in the feasible set of (52). Consider probability 
space Ω� = Ω × [0, 1] , where [0,  1] is the unit interval with Lebesgue meas-
ure. Write elements of Ω� as (�, t) , where � ∈ Ω and t ∈ [0, 1] . For every 
j = 1,… , n , let Aj = {(𝜔, t) ∈ Ω� ∶

∑j−1

i=1
Wi(𝜔) < t ⩽

∑j

i=1
Wi(𝜔)} . Also, let 

(52)

F2(X) = sup
w∈L∞,n(Ω)

n∑

i=1

𝔼[Wi]

subject to 𝔼[XiWi] ⩾ 0, Wi ∈ [0, 1], I = 1,… , n,

n∑

i=1

Wi ∈ [0, 1].

F3(X) = sup
Y⩽cxX

ℙ[max{Y1,… , Yn} ⩾ 0].

F1(X) = F2(X) = F3(X).

inf
a∈ℝn

+,0⩽M∈L1(Ω)
𝔼[M] + sup

w∈L∞,d , w∈[0,1]

n∑

i=1

𝔼[Wi(1 + aiXi −M)]

= inf
a∈ℝn

+,0⩽M∈L1(Ω)
𝔼

[
M +

n∑

i=1

[1 + aiXi −M]+

]

= inf
a∈ℝn

+

𝔼
[
max{a1X1 + 1,… , anXn + 1}

]+
,

E[u(X)] ⩾ E[u(Y)] ⩾ E[I{max{Y1,…,Yn}⩾0}
] = ℙ[max{Y1,… , Yn} ⩾ 0].

F1(X) ⩾ F3(X).

F3(X) ⩾ F2(X).
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A = {(𝜔, t) ∈ Ω� ∶
∑n

i=1
Wi(𝜔) < t} . Then sets A1,… ,An,A form a partition of 

Ω� , which we denote F′ . Note that 1 − ℙ�(A) = 𝔼[e⊤W] , where ℙ′ is the probabil-
ity measure on Ω� and e⊤W =

∑n

i=1
Wi . For any X ∈ L1,n(Ω) , let X� ∈ L1,n(Ω�) be 

the random vector defined by X�(�, t) = X(�) . Then random vectors X and X′ have 
the same distribution. Let Y� = �[X�|F�] . Since W1,… ,Wn are in the feasible set of 
(52), we have 𝔼[XiWi] ⩾ 0 , i = 1,… , n , which in turn implies that 𝔼[X�

i
|IAi

= 1] ⩾ 0 
for each component X′

i
 of X′ , or, equivalently, that maxi Y

�
i
(�, t) ⩾ 0 whenever 

(�, t) ∉ A . Consequently, ℙ�[max{Y �
1
,… , Y �

n
} ⩾ 0] ⩾ 1 − ℙ�[A] = 𝔼[e⊤w] . If there 

exists Y ⩽cx X such that ℙ[max{Y1,… , Yn} ⩾ 0] = ℙ�[max{Y �
1
,… , Y �

n
} ⩾ 0] , then, 

since W1,… ,Wn in the feasible set of (52) are arbitrary, this would imply that 
F3(X) = supY⩽cxX

ℙ[max{Y1,… , Yn} ⩾ 0] ⩾ supW∈W 𝔼[e⊤w] = F2(X) . Indeed, 
Y� = �[X�|F�] implies that X′

⩾cx Y
′ . Since Ω is atomless, there exists a pair of ran-

dom vectors X�� ∈ L1,n(Ω) and Y ∈ L1,n(Ω) with the same joint distribution as X′ 
and Y′ . Then ℙ[max{Y1,… , Yn} ⩾ 0] = ℙ�[max{Y �

1
,… , Y �

n
} ⩾ 0] and X′′

⩾cx Y . 
Since X and X′′ have the same distribution, X ⩾cx Y , as required.

Finally, F2(X) ⩾ F1(X) follows from the fact that  (51) is the problem dual to 
(52).   ◻

D. The algorithm for solving problem (28)

Algorithm 1 (bCDF and rCDF in objective).

Step 1. Set a = (1, …1), � = small number, I = F or H.
Step 2. Solve min

�∈� p
g1(�,�)(0) ∶ let �̃ be its optimal solution.

Step 3. Solve min
�∈� p

g1(�,�̃)(0) ∶ let �̃ be its optimal solution. Set p̃ = p
g1(�̃,�̃)(0).

Step 4. Use �̃ as an initial approximation to solve min
�∈� p

g1(�̃,�)(0) ∶ let w* be its optimal solution.
Step 5. Use �̃ as an initial approximation to solve min

�∈� p
g1(�,�∗)(0) ∶ let a* be its optimal solution. Set 

p
∗ = p

g1(�∗ ,�∗)(0).

Step 6. If �p − p
∗ < 𝜖, then Stop, otherwise set �̃ = �∗

, �̃ = �∗, ��� p̃ = p
∗ , and go to Step 4.

E. The algorithm for solving problem (37)

Algorithm 2 (bCDF and rCDF in constraint).

Step 1. Set a = (1, …1), � = small number.
Step 2. Solve (37) with respect to w: let �̃ be its optimal solution. Set ṽ = V(�̃).

Step 3. Solve (38) and (39) with w= �̃:let �̃
F
 and �̃

H
 be optimal solutions of (38) and (39), respectively.

Step 4. Use �̃ as an initial approximation to solve (37) with respect to w with �
F
 = �̃

F
 and �

H
 = �̃

H
 : let 

w* be its optimal solution. Set v∗ = V(w*).
Step 5. Use �̃ as an initial approximation to solve (38) and (39) with w = w*: let �∗

F
  and �∗

H
 be optimal 

solutions of (38) and (39), respectively.
Step 6. If �v − v

∗ < 𝜖, then Stop, otherwise set �̃ = �∗, �̃
F
= �

∗
F
, and �̃

H
= �

∗
H
and ṽ = v

∗ , and go to Step 4.
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