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Randomized Lagrangian Stochastic Approximation for

Large-Scale Constrained Stochastic Nash Games

Zeinab Alizadeh∗ Afrooz Jalilzadeh∗ Farzad Yousefian†

Abstract

In this paper, we consider stochastic monotone Nash games where each player’s strategy set is
characterized by possibly a large number of explicit convex constraint inequalities. Notably, the
functional constraints of each player may depend on the strategies of other players, allowing for
capturing a subclass of generalized Nash equilibrium problems (GNEP). While there is limited
work that provide guarantees for this class of stochastic GNEPs, even when the functional
constraints of the players are independent of each other, the majority of the existing methods
rely on employing projected stochastic approximation (SA) methods. However, the projected SA
methods perform poorly when the constraint set is afflicted by the presence of a large number of
possibly nonlinear functional inequalities. Motivated by the absence of performance guarantees
for computing the Nash equilibrium in constrained stochastic monotone Nash games, we develop
a single timescale randomized Lagrangian multiplier stochastic approximation method where in
the primal space, we employ an SA scheme, and in the dual space, we employ a randomized block-
coordinate scheme where only a randomly selected Lagrangian multiplier is updated. We show

that our method achieves a convergence rate of O
(

log(k)
√

k

)

for suitably defined suboptimality

and infeasibility metrics in a mean sense.

1 Introduction

Noncooperative game theory provides a mathematical framework to study multi-agent decision mak-
ing problems that have emerged in a wide range of applications including electricity markets [19],
transportation networks [12], and signal processing [7], among many others. While the multidis-
ciplinary field of game theory finds its origin in the work by von Neumann and Morgenstern [44],
the notion of a Nash equilibrium (NE) was introduced and its existence was provably shown by
John Nash [36]. Noncooperative Nash game is a modeling framework where a finite collection of
selfish agents compete with each other and seek to optimize their own individual objectives. Such
a competition is often subject to limited resources characterized by functional constraints. In this
work, our primary focus lies in computing an NE for large-scale constrained Nash game formula-
tions afflicted by the presence of uncertainty in the objectives of the agents. More precisely, we
consider stochastic monotone Nash games with a large number of (possibly nonlinear) functional
constraints described as follows. Let N ≥ 1 denote the number of players. For all i = 1, . . . , N , the
ith player is associated with the following constrained stochastic optimization problem.
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min
xi∈Xi

Hi(x) , E[hi(xi, x−i, ξ)] (Pi(x−i))

where Xi , {xi ∈ Xi ⊆ R
ni | gi,ℓ(xi, x−i) ≤ 0, for all ℓ = 1, . . . , Ji}

where xi ∈ R
ni denotes the strategy of the ith player, x−i ∈ R

n−ni is the collection of the strategies
of the other players, n ,

∑N
i=1 ni, hi : Rn ×R

d → R denotes the stochastic cost function associated
with the ith player. The uncertainty in the game is characterized by the random variable ξ : Ω → R

d

associated with the probability space (Ω, F ,P). The constraint set of the ith player is expressed in
terms of explicit convex constraint inequalities in terms of the jointly convex functions gi,ℓ : Rn → R,
for all ℓ = 1, . . . , Ji. The ith player’s strategy is a subset of a nonempty convex set denoted by
Xi ⊆ R

ni . While we will provide the detailed description of our assumptions in subsequent sections,
it is worth emphasizing that throughout, we assume that all the aforementioned functions are merely
convex.

Problem (Pi(x−i)) is a subclass of the generalized Nash equilibrium problems (GNEP) that
have been extensively employed in the literature in formulating applications arising in economics
and operations research, among others [10, 31]. Recall that in GNEPs, players seek the NE by
simultaneously satisfying the constraints. This is different from other classes of games where players
make decisions in a specific order, e.g., in Stackelberg games.

Note that a popular subclass of the problem (Pi(x−i)) is the stochastic minimax problem.
Consider the following stochastic merely-convex-merely-concave minimax optimization problem
with possibly many functional constraints.

min
u∈U

max
v∈V

H(u, v) , E[h(u, v, ξ)] (1)

where U , {u ∈ U | g1,ℓ(u) ≤ 0, for all ℓ = 1, . . . , J1} and U ⊆ R
n1,

V , {v ∈ V | g2,ℓ(v) ≤ 0, for all ℓ = 1, . . . , J2} and V ⊆ R
n2.

Minimax optimization can indeed be viewed as a subclass of two-person zero-sum games. The
existence of equilibrium in such a game is established by the celebrated von Neumann’s minimax
theorem in 1928 [43] that appears amongst the most fundamental results in game theory. The
research on the development of gradient-type methods for solving minimax problems, also known
as the problem of finding saddle points, dates back to as early as 1970s, including the work by
Korpelevich [29] and Golshtein [14], followed by efforts on on the development gradient descent
ascent as well as primal-dual methods (e.g., see [6, 38, 37, 49, 16] and [11, Chp. 1]). More recently,
minimax problems have drawn an increasing attention in areas including adversarial learning [40,
15, 42], fairness in machine learning [48, 23], and distributionally robust federated learning [8], to
name a few.
Existing methods and research gap. In addressing deterministic games, iterative methods
for approximating an equilibrium find their origin in 1960s in the seminal work by Scarf [41]
(see [11, Chapter 12] for a detailed review of deterministic methods). The prior algorithmic efforts in
addressing stochastic Nash games, however, find their roots in the work by Jiang and Xu [22] in 2008,
where a stochastic approximation (SA) method was developed for addressing stochastic variational
inequality (VI) problems with strongly monotone and Lipschitzian mappings. Recall that given a
set X and a single-valued mapping F : Rn → R

n, vector x ∈ X solves VI(X , F ) if F (x)T (y −x) ≥ 0
for all y ∈ X . Under some mild convexity and differentiability assumptions, it can be shown that [11,
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Table 1: Solution methods with rate statements for variational inequality problems

Ref. Problem Rate Nonlinear const.

Proximal Extra-Gradient[33] VI O(1/ǫ) ✗

SMP[24] SVI O(1/ǫ2) ✗

DS-SA [21] SVI O(log(1/ǫ)/ǫ2) ✗

RLSA (This paper) SVI O(log(1/ǫ)/ǫ2) ✓

Table 2: A subset of methods with guarantees for saddle point problems

Ref. Stoch. Non-bilinear Convex Nonlinear const.

PDHG [5],Acc-SP-HPE[18] ✗ ✗ O(1/ǫ) ✗

Acc-HPE-type [28],SMP[24] ✗ ✓ O(1/ǫ) ✗

Acc- BD[17] ✓ ✗ O(1/ǫ) ✗

SAA[39],SADMM[50] ✓ ✓ O(1/ǫ2) ✗

RLSA(This paper) ✓ ✓ O(log(1/ǫ)/ǫ2) ✓

Chapter 1] the set of equilibria of the stochastic game (Pi(x−i)), for i = 1, . . . , N , is characterized by
the solution set of VI(X , F ) where X ,

∏N
i=1 Xi and F (x) , (∇x1E[h1(x, ξ)]; . . . ; ∇xN

E[hN (x, ξ)]).
In view of this result, seeking a Nash equilibrium of a stochastic game is equivalent to solving
the aforementioned stochastic VI. The convergence and rate analysis of SA schemes for solving
VIs under weaker monotonicity and smoothness assumptions were studied more recently in works
including [25, 30, 46]. Also, stochastic extragradient methods and their variance-reduced variants
were studied in [47, 32, 20]. Despite these advances, it is often assumed in the above-mentioned
methods that the sets Xi is easy-to-project on and accordingly, the algorithmic framework in these
works relies on projected schemes. However, in the following cases, Xi may become difficult-to-
project on: (i) When the dimensionality of the solution space, i.e., n, is large; (ii) When the
number of the constraints is large. For example, in the game setting

∑N
i=1 Ji could be large; (iii)

The constraint set may be characterized by nonlinear constraints. In fact, we are unaware of
any iterative methods with provable complexity guarantees for the resolution of even deterministic
variants of constrained monotone Nash games. Our research in this paper is precisely motivated
by this shortcoming in the literature.
Main contributions. In Table 1 and Table 2, we provide a summary of the main results in our
work and we compare them with some of the existing methods for addressing monotone VIs and
minimax problems. To highlight our contributions, we first provide a brief review of some of the
existing avenues for addressing monotone Nash games and VIs with explicit constraints. The duality
theory for VIs and the notion of the dual VI has been studied by Mosco [35] in 1972 which was later
improved in [13, 9]. Extending the duality framework devised in [1], Auslender and Teboulle [3]
developed a Lagrangian duality scheme for solving multi-valued variational inequality problems
with maximal monotone operators and explicit convex constraint inequalities. Leveraging entropic
proximal terms, interior proximal point methods were developed for solving constrained VIs in works
including [2, 4]. Although the aforementioned dual-based methods are endowed with asymptotic
convergence guarantees, convergence speed of Lagrangian dual methods for solving constrained
VIs is not known. In particular, we are interested in investigating whether it is possible to devise
suitable Lagrangian dual methods that can be guaranteed with convergence speeds of similar order
of magnitude to those of primal-dual methods developed for standard constrained optimization
methods [45]. We show that this is indeed possible. We summarize our main contributions in the
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following.
(i) A single timescale randomized primal-dual stochastic approximation method. Leveraging the
primal-dual framework for addressing constrained stochastic optimization problems, we devise a
randomized primal-dual stochastic approximation method for solving VIs with merely monotone
and stochastic mappings with explicit constraint inequalities. To capture large-scale constrained
stochastic Nash games, we employ a randomized block scheme for updating the Lagrange multipliers.
Importantly, this scheme is single timescale and efficient to implement.
(ii) New convergence rate statements. In contrast with standard optimization problems, one of the
main challenges in addressing VIs lies in the lack of availability of suitable error metrics that rely on
objective function values. In particular, this challenge introduces some difficulty in the convergence
rate analysis of monotone VIs, an issue that is exacerbated in the presence of explicit constraint
inequalities. Motivated by earlier efforts [46, 27], leveraging the notion of dual gap functions, we

analyze the convergence of the proposed method and derive convergence rates of O
(

log(k)√
k

)

for both

suboptimality and infeasibility metrics in a mean sense.
Outline of the paper. The remainder of the paper is organized as follows. In Section 2, we provide
the main assumptions and review some preliminary results that are employed in the analysis. In
Section 3, we present the outline of the proposed algorithm along with some definitions. In Section 4
we establish convergence properties of the method and derive explicit performance guarantees. We
present some concluding remarks in Section 5. Lastly, Section 6 includes the proofs for some of the
results in the paper.

2 Preliminaries

To address the stochastic game Pi(x−i) for i ∈ [N ], we consider the stochastic VI problem described
as follows.

Find x ∈ X such that E[F (x, ξ)]T (y − x) ≥ 0, for all y ∈ X (cSVI)

where X , {x ∈ X | fj(x) ≤ 0, for all j = 1, . . . , J} and X ,
∏N

i=1
Xi.

The details of our assumptions on the mapping F , functions fj, and sets Xi are provided as
follows.

Assumption 1 (Problem properties). Consider problem (cSVI). Let the following holds.
(i) Mapping F (•) : Rn → R

n is real-valued, continuous, and merely monotone on its domain, i.e.
〈F (x) − F (y), x − y〉 ≥ 0, for all x, y ∈ X.
(ii) Function fj(•) : Rn → R is real-valued, merely convex on its domain for all j = 1, . . . , J .

(iii) Set X ⊆ int
(

dom(F ) ∩ (∩J
j=1dom(fj))

)

is nonempty, compact, and convex.

(iv) The Slater condition holds, i.e., there exists x̂ ∈ X such that fj(x̂) < 0 for all j = 1, . . . , J .

Remark 1. Note that problem (cSVI) captures the stochastic game Pi(x−i). In fact, given the
objective functions hi(•, ξ) and constraint functions gi,ℓ in Pi(x−i), x is an NE if and only if x solves
(cSVI) where fj(x) , gi,ℓ(x) where j := ℓ +

∑i−1
t=1 Jt for ℓ ∈ [Ji].

4



Definition 1 (Augmented-Lagrangian function). Given x, y ∈ R
n, λ ∈ R

J , and ρ > 0, we define

Lρ(x, y, λ) , F (y)T (x − y) + Φρ(x, λ),

where Φρ(x, λ) , 1
J

J∑

j=1

φρ(fj(x), λ(j)) and φρ(u, v) ,







uv + ρ
2u2, if ρu + v ≥ 0,

− v2

2ρ , otherwise.

Similar to the traditional constrained optimization techniques, the nonlinear constrains in prob-
lem (cSVI) can be combined with the objective function using some multipliers. Using this tech-
nique we can characterize the optimality condition of problem (cSVI) in the following result.

Proposition 1 (Karush–Kuhn–Tucker (KKT) conditions). Consider problem (cSVI) and sup-
pose Assumption 1 holds. Let f(x) , (f1(x), . . . , fJ(x))T and the gradient matrix ∇f(x) ,

(∇f1(x), . . . , ∇fJ(x))T ∈ R
n×J . There exists x∗ ∈ R

n and λ∗ ∈ R
J satisfying the following KKT

conditions:
(i) 0 ∈ F (x∗) + J−1∇f(x∗)T λ∗ + NX(x∗).
(ii) 0 ≤ λ∗ ⊥ −f(x∗) ≥ 0.
(iii) x∗ ∈ X.

Proof. Note that any solution x of (cSVI) is also a solution of the following optimization problem:

min
y∈X

yT F (x) (2)

s.t. fj(y) ≤ 0 ∀j.

Since the Slater condition holds, the first-order KKT condition for (2) implies that there exists
x∗ ∈ R

n and λ∗ ∈ R
J satisfying conditions (i)-(iii).

We will utilize the following definition in the convergence and rate analysis.

Definition 2. Consider the VI(X , F ) where X is a closed convex set and F is a real-valued
monotone map. The dual gap function Gap∗ : X → R ∪ {+∞} is defined for any x ∈ R

n as

Gap∗(x) , sup
y∈X

F (y)T (x − y). (3)

Remark 2. Note that by the definition, Gap∗(x) ≥ 0 for all x ∈ X . Also, under some mild
conditions, Gap∗(x) = 0 implies that x is a solution to VI(X , F ). This is formally stated below.

Remark 3. Karamardian [26] showed that under continuity and pseudomonotonicity of the op-
erator F , solving (cSVI) problem is equivalent to solving Minty stochastic variational inequality
(MSVI) [34] problem. Such a problem requires an x∗ ∈ X such that

(x∗ − x)T F (x) ≤ 0, for all x ∈ X . (MSVI)

Therefore, to obtain the convergence rate we adopt the dual gap function. Note that Gap∗(•) is
well-defined when X is a compact set, that follows from Assumption 1 (iii).

By invoking Proposition 1 and Assumption 1, we can establish the following two results for
problem (cSVI). These results will be employed later to demonstrate the boundedness of dual
iterates and to obtain convergence rate results. We have provided the proofs of the following
lemmas in the appendix.
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Lemma 1. Consider problem (cSVI) under Assumption 1. Then for any primal-dual solution pair
(x∗, λ∗), the following holds

F (x∗)T (x − x∗) + J−1f(x)T λ∗ ≥ 0, for all x ∈ X.

Lemma 2. Consider problem (cSVI). Let Assumption 1 holds. Assume that for any x ∈ X and
λ ∈ R

J
+ we have

F (x)T (x̂ − x) + J−1f(x̂)T λ ≤ Φρ(x, λ̂) + C(x, λ), (4)

where x̂ ∈ X and λ̂ ∈ R
J
+ are arbitrary vectors. Then for any primal-dual solution pair (x∗, λ∗),

the following holds.
(i) J−11T [f(x̂)]+ ≤ C(x∗, λ̃), where for all j ∈ [J ] we define

λ̃j ,

{

1 + λ∗
j , if fj(x̂) > 0,

0, otherwise.

(ii) supx∈X {F (x)T (x̂ − x)} ≤ supx∈X {C(x, 0)}.

3 Algorithm outline

The outline of the proposed method is presented by Algorithm 1. The sequence of the primal
iterates is denoted by {xk} and the sequence of the dual iterates is denoted by {λk}. This is a
single timescale Lagrangian stochastic approximation scheme that includes two main steps. At
each iteration, in the dual step in equation (5), a randomly selected dual variable λ(j) is updated,
while in the primal step in equation (6), the primal variables are updated. The stepsize sequence is
denoted by {γk} and the penalty sequence is denoted by {ρk}. In addition to the primal and dual
variables that are updated at each iteration, both the stepsize and penalty parameter are updated
iteratively. Our goal in this work lies in proving that Algorithm 1 can be employed for solving
the stochastic VI problem (cSVI) where the constraint set is characterized by explicit functional
constraints. This result will be presented in the next section by Theorem 1 where we provide
specific update rules for both γk and ρk such that the convergence of the proposed method can
be guaranteed and non-asymptotic convergence rates can be derived. Before we proceed with the
analysis of the method, we provide some definitions that will be utilized.

Remark 4. Note that the Augmented Lagrangian function introduced in Definition 1 can be viewed
as a relaxed variant of the following standard Augmented Lagrangian function of the form

Lρ(x, λ) , sup
y∈X

Lρ(x, y, λ) = supy∈X {F (y)T (x − y)} + Φρ(x, λ)

= Gap∗(x) + Φρ(x, λ).

Indeed, one of the key challenges in employing the Augmented Lagrangian function Lρ(x, λ) is
the presence of the supremum and nondifferentiability of the dual gap function. Further, even
when the samples F (•, ξk) are unbiased, the standard Augmented Lagrangian function above may
be biased, due to the presence of the supremum which again, renders an issue in utilizing this
Augmented Lagrangian function. To circumvent these challenges, we employ the relaxed variant of
the Augmented Lagrangian function introduced in Definition 1. Importantly, as it will be shown in
Theorem 1, utilizing the relaxed variant of the Augmented Lagrangian function allows us to derive
the rate statements. This is indeed a key novelty in the design of the proposed method in this work.
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Algorithm 1 Randomized Lagrangian stochastic approximation method (RLSA)

1: input: Choose x0 ∈ X, λ0 := 0J , and ρ0 > 0
2: for k = 0, 1, 2, . . . do
3: Generate a random variable jk uniformly drawn from {1, . . . , J}
4: Generate a random realization of ξ denoted by ξk and evaluate F (xk, ξk)
5: Update the dual variable λk for all j = 1, . . . , J as follows.

λ
(j)
k+1 :=







[

ρkfj(xk) + λ
(j)
k

]

+
, if j = jk

λ
(j)
k , otherwise

(5)

6: Evaluate ∇̃fjk
(xk) ∈ ∂fjk

(xk)
7: Update the primal variable xk as follows.

xk+1 := ΠX

[

xk − γk

(

F (xk, ξk) + λ
(jk)
k+1∇̃fjk

(xk)
)]

(6)

8: end for

Throughout, we let the history of the method be denoted by Fk , ∪k−1
t=0 {ξt, jt} for any k ≥ 1,

and F0 , {ξ0, j0}.

Assumption 2 (Random samples). Let the following holds.
(i) Samples ξk are generated independently from the probability distribution of ξ for k ≥ 0.
(ii) Samples jk, for k ≥ 0, are generated independently from a uniform probability distribution such
that Prob(jk = j) = J−1 for all j = 1, . . . , J .
(iii) Samples ξk and jk are generated independently from each other.
(iv) E[F (x, ξk) − F (x) | x] = 0 for all x ∈ X and all k ≥ 0.
(v) There is some ν > 0 such that E[‖F (x, ξk) − F (x)‖2 | x] ≤ ν2 for all x ∈ X and all k ≥ 0.

Remark 5. In view of Assumption 1, the subdifferential set ∂fj(x) is nonempty for all x ∈
int(dom(fj)) and all j = 1, . . . , J . Also, fj has bounded subgradients over X. Throughout, we let
scalars DX and Df be defined as DX , supx∈X ‖x‖ and Df , maxj∈[J ] supx∈X |fj(x)|, respectively.

Also, we let CF > 0 and Cf > 0 be scalars such that ‖F (x)‖ ≤ CF and ‖∇̃fj(x)‖ ≤ Cf for all
∇̃fj(x) ∈ ∂fj(x), for all x ∈ X.

Definition 3 (Stochastic errors). Let us define the following stochastic terms for k ≥ 0.
(i) wk , F (xk, ξk) − F (xk).

(ii) δk ,
[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk) − 1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk).

In the next lemma, we show that the stochastic errors defined above are unbiased and have
bounded variance. The proof is provided in the appendix.

Lemma 3 (Properties of stochastic errors). Consider Definition 3. Let Assumption 2 holds. Then:
(i) E[wk | Fk] = 0 and E[‖wk‖2 | Fk] ≤ ν2.

(ii) E[δk | Fk] = 0 and E[‖δk‖2 | Fk] ≤ 2C2
f

(

ρ2
kD2

f + ‖λk‖2

J

)

.

7



Remark 6. Note that we have 1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk) ∈ ∂xΦρk

(xk, λk). Throughout,

we use the following notation

∇̃xΦρk
(xk, λk) , 1

J

J∑

j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk).

Therefore, one can conclude that

‖∇̃xΦρk
(xk, λk)‖2 ≤ 1

J

J∑

j=1

∥
∥
∥
∥

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

∥
∥
∥
∥

2

≤ 2ρk
2D2

f C2
f +

2C2
f

J ‖λk‖2.

4 Convergence and rate analysis

To obtain the main results of this paper, we use the following technical lemmas. All related proofs
are provided in the appendix.

Lemma 4. Given an arbitrary sequences {σk}k≥0 ⊂ R
n and {τk}k≥0 ⊂ R

++, let {vk}k≥0 be a
sequence such that v0 ∈ R

n and vk+1 = vk + τkσk. Then, for all k ≥ 0 and x ∈ R
n,

σT
k (x − vk) ≤ 1

2τk
‖x − vk‖2 − 1

2τk
‖x − vk+1‖ +

τk

2
‖σk‖2.

Lemma 5. Consider Algorithm 1. Let J+
k = {j ∈ [J ] | ρkfj(xk) + λ

(j)
k ≥ 0} and J−

k = [J ]\J+
k .

Then, for any λ∈ R
J
+, the following holds:

− Φρk
(xk, λk) +

1

J

J∑

j=1

λ(j)fj(xk) +
1

2ρk
‖λk+1 − λ‖2

≤ 1

2ρk
‖λk − λ‖2 + (λk − λ)T (Jejk

⊙ ∇λΦρk
(xk, λk) − ∇λΦρk

(xk, λk)) + ∆k,

where ∆k, − 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(λ
(j)
k

)2

2ρk
+ 1

2ρk
‖λk+1 − λk‖2.

Lemma 6. Suppose Assumption 1 holds. Then, the following holds:

(a) ‖Jejk
⊙ ∇λΦρk

(xk, λk)‖2 ≤ D2
f .

(b) Let σ̄k = Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk) and {v̄k}k≥0 be a sequence such that v̄0 ∈ R

n

and v̄k+1 = vk + τ̄kσ̄k for some {τ̄k}k≥0. Then, the following holds.

(λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk))

≤ (v̄k − λk)T σ̄k +
1

2τ̄k
‖λ − v̄k‖2 − 1

2τ̄k
‖λ − v̄k+1‖2 +

τ̄k‖σ̄k‖2

2
.

Next, using Lemma 5 and 6 we provide one-step analysis of our method by providing an upper
bound on the reduction of the gap function in terms of the consecutive iterates.
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Proposition 2. Consider Algorithm 1. Let Assumptions 1 and 2 hold. Then, for any x ∈ X and
λ ∈ R

J
+ the following inequality holds.

(xk − x)T F (x) + J−1f(xk)T λ − Φρk
(x, λk)

≤ 1
2γk

(

‖xk − x‖2 − ‖xk+1 − x‖2
)

+ 1
4γk

(

‖x − vk‖2 − ‖x − vk+1‖2
)

+ 1
2ρk

(

‖λk − λ‖2 − ‖λk+1 − λ‖2
)

+ 1
2τ̄k

(

‖λ − v̄k‖2 − ‖λ − v̄k+1‖2
)

+ 2γkC2
F

+ 4γkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ (vk − xk)T (wk + δk) + 2γk‖wk + δk‖2

+ (v̄k − λk)T σ̄k + τ̄k‖σ̄k‖2

2 − 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(λ
(j)
k

)2

2ρk
, (7)

where J+
k and J−

k are given by Lemma 5.

Proof. Let x ∈ X and λ ≥ 0 be arbitrary vectors. From (6) we have

(xk+1 − x)T
(

xk+1 − xk + γk

(

F (xk, ξk) +
[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk)

))

≤ 0. (8)

Using monotonicity of F (•) and Young’s inequality, one can obtain

(xk+1 − x)T F (xk, ξk)

= (xk+1 − xk)T F (xk) + (xk − x)T F (xk) + (xk+1 − x)T wk

≥ − 1
8γk

‖xk+1 − xk‖2 − 2γk‖F (xk)‖2 + (xk − x)T F (x) + (xk+1 − x)T wk

≥ − 1
8γk

‖xk+1 − xk‖2 − 2γkC2
F + (xk − x)T F (x) + (xk+1 − x)T wk. (9)

Similarly from Remark 6 and convexity of Φρk
(•, λk), then we have

(xk+1 − x)T
[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk)

= (xk+1 − xk)T ∇̃xΦρk
(xk, λk) + (xk − x)T ∇̃xΦρk

(xk, λk) + (xk+1 − x)T δk

≥ − 1
8γk

‖xk+1 − xk‖2 − 2γk‖∇̃xΦρk
(xk, λk)‖2 + Φρk

(xk, λk) − Φρk
(x, λk)

+ (xk+1 − x)T δk

≥ − 1
8γk

‖xk+1 − xk‖2 − 4γkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ Φρk
(xk, λk) − Φρk

(x, λk)

+ (xk+1 − x)T δk. (10)

We can also write

(xk+1 − x)T (xk+1 − xk) = 1
2

(

‖xk+1 − x‖2 − ‖xk − x‖2 + ‖xk+1 − xk‖2
)

. (11)

Using (9),(10) and (11) in (8), we have

(xk − x)T F (x) + Φρk
(xk, λk) − Φρk

(x, λk)

≤ 1
2γk

(

‖xk − x‖2 − ‖xk+1 − x‖2−1

2
‖xk+1 − xk‖2

)

+ 2γkC2
F

+ 4γkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ (x − xk+1)T (wk + δk)
︸ ︷︷ ︸

term (a)

. (12)

9



Now we obtain an upper bound for term (a) in (12).

(x − xk+1)T (wk + δk)

= (x − xk)T (wk + δk) + (xk − xk+1)T (wk + δk)

≤ (x − vk)T (wk + δk) + (vk − xk)T (wk + δk) +
1

4γk
‖xk − xk+1‖2 + γk‖wk + δk‖2.

From Lemma 4 we have that (x − vk)T (wk + δk) ≤ 1
4γk

‖x − vk‖2 − 1
4γk

‖x − vk+1‖2 + γk‖wk + δk‖2,
hence the above inequality can be written as

(x − xk+1)T (wk + δk) ≤ 1

4γk
‖x − vk‖2 − 1

4γk
‖x − vk+1‖2 +

1

4γk
‖xk − xk+1‖2

+ (vk − xk)T (wk + δk) + 2γk‖wk + δk‖2.

Using the above inequality in (12), we get

(xk − x)T F (x) + Φρk
(xk, λk) − Φρk

(x, λk) ≤ 1
2γk

(

‖xk − x‖2 − ‖xk+1 − x‖2
)

+ 2γkC2
F + 4γkC2

f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ 1
4γk

(

‖x − vk‖2 − ‖x − vk+1‖2
)

+ (vk − xk)T (wk + δk) + 2γk‖wk + δk‖2. (13)

Using Lemmas 5 and 6, we can bound the left hand side of (13) from below and one can obtain
the following.

(xk − x)T F (x) +
1

J

J∑

j=1

λ(j)fj(xk) − Φρk
(x, λk)

≤ 1
2γk

(

‖xk − x‖2 − ‖xk+1 − x‖2
)

+ 1
4γk

(

‖x − vk‖2 − ‖x − vk+1‖2
)

+ 1
2ρk

(

‖λk − λ‖2 − ‖λk+1 − λ‖2
)

+ 1
2τ̄k

(

‖λ − v̄k‖2 − ‖λ − v̄k+1‖2
)

+ 2γkC2
F

+ 4γkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ (vk − xk)T (wk + δk) + 2γk‖wk + δk‖2

+ (v̄k − λk)T σ̄k + τ̄k‖σ̄k‖2

2 + ∆k,

where ∆k is defined in Lemma 5.

Now we show that the sequence of dual iterates generated by the proposed method is bounded.

Lemma 7. Consider Algorithm 1. Let Assumptions 1 and 2 hold. Let ρk = ρ√
(k+1) log(k+1)

,

γk = γ√
(k+1) log(k+1)

, tk = τ̄k = 1√
(k+1) log(k+1)

for any k ≥ 1, where ργ ≤ 1
120ργC2

f
/J

. Moreover, we

define ρ0 = ρ, γ0 = γ and t0 = τ̄0 = 1. Then, there exists B ≥ 0 such that E[‖λK‖2] ≤ B for any
K ≥ 0.

Proof. From Lemma 1 we have (xk − x∗)T F (x∗) + J−1f(xk)T λ∗ ≥ 0. Also, since fj(x
∗) ≤ 0 for

all j ∈ J , we have Φρ(x∗, λk) ≤ 0. In view of these relations, from Proposition 2, for x := x∗ and

10



λ := λ∗ we obtain

0 ≤ 1
2γk

(

‖xk − x∗‖2 − ‖xk+1 − x∗‖2
)

+ 1
4γk

(

‖x∗ − vk‖2 − ‖x∗ − vk+1‖2
)

+ 1
2ρk

(

‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2
)

+ 1
2τ̄k

(

‖λ∗ − v̄k‖2 − ‖λ∗ − v̄k+1‖2
)

+ 2γkC2
F

+ 4γkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+ (vk − xk)T (wk + δk) + 2γk‖wk + δk‖2

+ (v̄k − λk)T σ̄k + τ̄k‖σ̄k‖2

2 − 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(λ
(j)
k

)2

2ρk
.

Multiplying both sides by tk and using the fact that tk

ρk
≥ tk+1

ρk+1
, tk

γk
≥ tk+1

γk+1
, tk ≥ tk+1, ρk ≥ ρk+1,

tk

τ̄k
≥ tk+1

τ̄k+1
, summing over k = 0, . . . , T , where T ≤ K, and from ‖λT +1‖2 ≤ 2‖λT +1 − λ∗‖2 + 2‖λ∗‖2

we obtain the following relation.

tT +1

4ρT +1
‖λT +1‖2

≤ t0
2γ0

‖x0 − x∗‖2 + t0
4γ0

‖x∗ − v0‖2 + 1
2ρ0

‖λ0 − λ∗‖2 + t0
2τ̄0

‖λ∗ − v̄0‖2 +
tT +1

2ρT +1
‖λ∗‖2

+
T∑

k=0

tkγk

(

2C2
F + 4C2

f

(

ρ2
kD2

f + 1
J ‖λk‖2

))

+
T∑

k=0

tk(vk − xk)T (wk + δk)

+ 2
T∑

k=0

tkγk‖wk + δk‖2 +
T∑

k=0

tk(v̄k − λk)T σ̄k +
T∑

k=0

tk
τ̄k‖σ̄k‖2

2 −
T∑

k=0

tk∆k.

Taking expectation on the both sides and using Assumption 2(iv-v), Lemma 3 and the fact that
E[(v̄k − λk)T σ̄k] = E[∆k] = 0, we get

tT +1

4ρT +1
E[‖λT +1‖2]

≤ t0
2γ0

‖x0 − x∗‖2 + t0
4γ0

‖x∗ − v0‖2 + 1
2ρ0

‖λ0 − λ∗‖2 + t0
2τ̄0

‖λ∗ − v̄0‖2 +
tT +1

2ρT +1
‖λ∗‖2

+
T∑

k=0

tkγk

(

2C2
F + 4C2

f

(

ρ2
kD2

f + 1
J E[‖λk‖2]

))

+ 2
T∑

k=0

tkγk(2ν2 + 4C2
f ρ2

kD2
f + 4C2

fE[‖λk‖2

J ]) +
T∑

k=0

tk
τ̄kD2

f

2 ,

where we used part (a) of Lemma (6) and the definition of σ̄k, i.e., E[‖σ̄k‖2] ≤ D2
f . Define A1 =

t0
2γ0

‖x0 − x∗‖2 + t0
4γ0

‖x∗ − v0‖2 + 1
2ρ0

‖λ0 − λ∗‖2 + t0
2τ̄0

‖λ∗ − v̄0‖2, A2 = 2C2
F + 4C2

f ρ2D2
f , A3 =

2ν2 + 4C2
f ρ2D2

f , then the above inequality can be written as follows, where we used the fact that
ρk = ρ

(k+1) log(k+1) ≤ ρ.

tT +1

4ρT +1
E[‖λT +1‖2] ≤ A1 +

tT +1

2ρT +1
‖λ∗‖2 +

T∑

k=0

tkγk

(

A2 + 4C2
f

1
J E[‖λk‖2]

)

+ 2
T∑

k=0

tkγk(A3 + 4
J C2

fE[‖λk‖2]) +
T∑

k=0

tk
τ̄kD2

f

2 . (14)

Letting T = −1, one can easily show that E[‖λ0‖2] ≤ B. Now suppose E[‖λT +1‖2] ≤ B holds for
all T ∈ {−1, 0, . . . , K − 2}. We show that E[‖λT +1‖2] ≤ B for T = K − 1. Multiplying both sides
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of (14) by 4ρT +1

tT +1
and letting T = K − 1, we get

E[‖λK‖2] ≤ 4ρK

tK
A1 + 2‖λ∗‖2 + 4ρK

tK

K−1∑

k=0

tkγk

(

A2 + 4C2
f B 1

J

)

+ 8ρK

tK

K−1∑

k=0

tkγk(A3 + 4
J C2

f B) + 4ρK

tK

K−1∑

k=0

tk
τ̄kD2

f

2 .

From the fact that ρk = ρ√
(k+1) log(k+1)

, γk = γ√
(k+1) log(k+1)

, tk = τ̄k = 1√
(k+1) log(k+1)

, one can

show that ρk

tk
= ρ and

∑K−1
k=0 tkγk ≤ 3γ. Therefore, we obtain

E[‖λK‖2] ≤ 4ρA1 + 2‖λ∗‖2 + 12ργ
(

A2 + 4C2
f B 1

J

)

+ 24ργ(A3 + 4
J C2

f B) + 12ρ
D2

f

2 ≤ B,

where in the last inequality we used the fact that B =

max

{

‖λ0‖2,
4ρA1+2‖λ∗‖2+12ργA2+24ργA3+12ρD2

f

1−144ργC2
f

/J

}

and ργ ≤ 1
144ργC2

f
/J

.

Now we are ready to state the convergence rates of Algorithm 1.

Theorem 1 (Convergence rate statements for Algorithm 1). Consider Algorithm 1. Let Assump-
tions 1 and 2 hold. Let ρk = ρ√

(k+1) log(k+1)
, γk = γ√

(k+1) log(k+1)
, tk = τ̄k = 1√

(k+1) log(k+1)
for all

k ≥ 1, where ργ ≤ 1
144ργC2

f
/J

. Moreover, we define ρ0 = ρ, γ0 = γ and t0 = τ̄0 = 1. Let us define

x̄K ,

∑K

k=0
tkxk

∑K

k=0
tk

for K ≥ 0. Then, for any K ≥ 0, we have

E

[

sup
x∈X

{F (x)T (x̄K − x)}
]

≤ O
(

log(K + 1)/
√

K + 2
)

E

[

J−11T [f(x̄K)]+
]

≤ O
(

log(K + 1)/
√

K + 2
)

.

Proof. Multiplying both sides of (7) by tk, using the fact that tk

ρk
≥ tk+1

ρk+1
, tk

γk
≥ tk+1

γk+1
, tk ≥ tk+1,

ρk ≥ ρk+1, tk

τ̄k
≥ tk+1

τ̄k+1
, and summing k = 0 to K, we get

K∑

k=0

tk



(xk − x)T F (x) +
1

J

J∑

j=1

λ(j)fj(xk) − Φρ(x, λk)





≤ t0
2γ0

‖x0 − x‖2 + t0
4γ0

‖v0 − x‖2 + t0
2ρ0

‖λ0 − λ‖2

+

term (a)
︷ ︸︸ ︷

t0
2τ̄0

+
K∑

k=0

2tkγkC2
F +

K∑

k=0

4tkγkC2
f

(

ρ2
kD2

f + 1
J ‖λk‖2

)

+
K∑

k=0

tk

(

(vk − xk)T (wk + δk) + 2γk‖wk + δk‖2 + (v̄k − λk)T σ̄k + τ̄k‖σ̄k‖2

2 + ∆k

)

︸ ︷︷ ︸

term (b)

. (15)

Let right-hand side of (15) denoted by C(x, λ). Dividing both sides of the above inequality by
∑K

k=0 tk and invoking the definition of x̄k, we get

(x̄K − x)T F (x) +
1

J

J∑

j=1

λ(j)fj(x̄K) − Φρ(x, λ̄k) ≤ 1
∑K

k=0 tk

C(x, λ),
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where in the left-hand side we used Jensen’s inequality and the fact that Φρ is concave with respect
to λ.

Since x̄K ∈ X, from Lemma 2 (i) we have J−11T [f(x̄K)]+ ≤ C(x∗, λ̃), where λ̃ is defined in
Lemma 2. taking expectation on both side and using definition of C(x, λ) in (15), Lemmas 3 7,
Assumption 2 (iv-v), the fact that E[(v̄k − λk)T σ̄k] = E[∆k] = 0 and E[‖σ̄k‖2] ≤ D2

f , we obtain

E

[

J−11T [f(x̄K)]+
]

≤ 1
∑K

k=0 tk

[
t0

2γ0
‖x0 − x∗‖2 + t0

4γ0
‖v0 − x∗‖2 + t0

2ρ0
‖λ0 − λ̃‖2

+ t0
2τ̄0

+
K∑

k=0

2tkγkC2
F +

K∑

k=0

4tkγkC2
f ρ2

kD2
f +

K∑

k=0

4tkγkC2
f

1
J B

+
K∑

k=0

tk

(

2γk(2ν2 + 4C2
f ρ2

kD2
f + 4

J C2
f B) +

τ̄kD2
f

2

) ]

. (16)

Moreover, from Lemma 2 (ii) we have supx∈X {F (x)T (x̄K − x)} ≤ supx∈X {C(x, 0)}. By taking
conditional expectation and then, unconditional expectation on both sides and using the fact that
term (a) and term (b) in the definition of C(x, λ) do not depend on x, we obtain

E

[

sup
x∈X

{F (x)T (x̄K − x)}
]

≤ 1
∑K

k=0 tk

[

sup
x∈X

{
t0

2γ0
‖x0 − x‖2 + t0

4γ0
‖v0 − x‖2 + t0

2ρ0
‖λ0‖2

}

+ t0
2τ̄0

+
K∑

k=0

2tkγkC2
F +

K∑

k=0

4tkγkC2
f ρ2

kD2
f +

K∑

k=0

4tkγkC2
f

1
J B

+
K∑

k=0

tk

(

2γk(2ν2 + 4C2
f ρ2

kD2
f + 4

J C2
f B) +

τ̄kD2
f

2

) ]

. (17)

From ρk = ρ√
(k+1) log(k+1)

, γk = γ√
(k+1) log(k+1)

, tk = τ̄k = 1√
(k+1) log(k+1)

, and the facts that

ρ0 = ρ, γ0 = γ, t0 = τ̄0 = 1, one can show that
∑K

k=0 tkγk ≤ 3γ and similarly
∑K

k=0 tkτ̄k ≤ 3, also
∑K

k=0 tk ≥ 1
log(K+1)

∫ K+1
1

1√
x+1

dx = 2(
√

K+2−
√

2)
log(K+1) . Therefore, we obtain that E

[

J−11T [f(x̄K)]+
]

≤
O(log(K + 1)/

√

(K + 2)) and similarly E

[

supx∈X {F (x)T (x̄K − x)}
]

≤ O(log(K + 1)/
√

(K + 2)).

Notably, the rate statements in Theorem 1 are in a mean sense, for both the dual gap function
and the infeasibility metric. The latter quantifies the violation of the explicit functional constraints.
A natural question is whether we can guarantee the convergence of the infeasibility metric to zero
in an almost sure sense. This is partially addressed in the following result.

Corollary 1. Consider Theorem 1. There exists a subsequence of {x̄k} along which, the infeasibility
metric 1T [f(x̄K)]+ converges to zero almost surely.

Proof. From Theorem 1, we have limK→∞ E

[

1T [f(x̄K)]+
]

= 0. Invoking Fatou’s lemma and noting

that 1T [f(x̄K)]+ ≥ 0, we obtain

lim inf
K→∞

1T [f(x̄K)]+ = 0 almost surely.
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Further, the sequence {x̄k} is bounded, due to the projection onto the compact set X in Algorithm 1.
From the continuity of f , it follows that one of the (random) accumulation points of {x̄k} must be
a feasible point with respect to the explicit functional constraints almost surely.

5 Conclusion

In this paper, we consider stochastic variational inequality (VI) problems with a monotone map-
ping and a set that is characterized in terms of explicit functional constraints. Motivated by the
absence of convergence rate statements for solving this class of problems, we develop a randomized
Lagrangian stochastic approximation method where at each iteration the primal and dual variables
are updated recursively. Our main contribution is to show that the existing convergence rates
for nonlinearly constrained stochastic optimization problems can be extended to the stochastic
VI regime. This is indeed promising and implies that the Lagrangian duality theory can be em-
ployed with provable guarantees for several important classes of problems that can be formulated
as a stochastic VI. In particular, this work provides convergence speed guarantees for computing
a Nash equilibrium in stochastic Nash games where each player may be associated with many
hard-to-project constraints.

6 Appendix

6.1 Proof of Lemma 1

Proof. Invoking Proposition 1 and taking into account that NX(x∗) = ∂IX(x∗), we have that

x∗ ∈ X solves the following augmented variational inequality problem VI
(

X, F + J−1∇fT λ∗
)

,

that is parameterized by J and λ∗. This implies that

(

F (x∗) + J−1∇f(x∗)T λ∗
)T

(x − x∗) ≥ 0, for all x ∈ X. (18)

From the convexity of function fj for all j ∈ [J ] and that λj ≥ 0, we have

λ∗
j (fj(x) − fj(x

∗)) ≥ λ∗
j ∇fj(x

∗)T (x − x∗).

Summing the preceding relation over j ∈ [J ] and recalling the definition of the mapping f(x),
we obtain

(f(x) − f(x∗))T λ∗ ≥
(

∇f(x∗)T λ∗
)T

(x − x∗).

Invoking Proposition 1 (ii) we obtain f(x)T λ∗ ≥
(

∇f(x∗)T λ∗
)T

(x − x∗). From the preceding

relation and (18) we obtain F (x∗)T (x − x∗) + J−1f(x)T λ∗ ≥ 0 for all x ∈ X.

6.2 Proof of Lemma 2

Proof. (i) Note that x∗ is a feasible point to problem (cSVI) with respect to the set X , i.e., x∗ ∈ X .
Also, note that λ̂ ≥ 0. From the definition of Φρ, we have that Φρ(x∗, λ̂) ≤ 0. Let x := x∗ in (4).
Then we have

F (x∗)T (x̂ − x∗) + J−1f(x̂)T λ ≤ C(x∗, λ). (19)
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Also, from Lemma 1 and that x̂ ∈ X we have

0 ≤ F (x∗)T (x̂ − x∗) + J−1f(x̂)T λ∗.

The preceding relation and that λ∗ ≥ 0 imply that

0 ≤ F (x∗)T (x̂ − x∗) + J−1[f(x̂)]T+λ∗.

Summing the preceding relation and (19) and rearranging the terms, we obtain

J−1f(x̂)T λ − J−1[f(x̂)]T+λ∗ ≤ C(x∗, λ). (20)

Let us choose λj := 1 + λ∗
j if fj(x̂) > 0, and λj := 0 otherwise for all j ∈ [J ]. Then, we obtain the

desired relation in (i).
(ii) Let λ = 0 in (4) and note that Φρ(x, λ̂) ≤ 0 for all x ∈ X . We have F (x)T (x̂ − x) ≤ C(x, 0) for
all x ∈ X . Taking supremum from the both sides, we obtain desired results in (ii).

6.3 Proof of Lemma 3

Proof. The relations in part (i) hold as a consequence of Assumption 2. To show E[δk | Fk] = 0,
we can write

E[δk | Fk] = E

[[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk) − 1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk) | Fk

]

= 1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk) − 1

J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk) = 0,

where the last inequality is implied from the assumption that jk is uniformly drawn from the set
[J ]. Next, we derive the bound on E[‖δk‖2 | Fk]. We have

E[‖δk‖2 | Fk] = E

[∥
∥
∥
∥

[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk)

∥
∥
∥
∥

2

| Fk

]

+

∥
∥
∥
∥

1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

∥
∥
∥
∥

2

− 2E

[[

ρkfjk
(xk) + λ

(jk)
k

]

+
∇̃fjk

(xk) | Fk

]T (

1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

)

= 1
J

∑J
j=1

∥
∥
∥
∥

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

∥
∥
∥
∥

2

−
∥
∥
∥
∥

1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

∥
∥
∥
∥

2

.

Dropping the non-negative term in the preceding relation and invoking Remark 5, we obtain

E[‖δk‖2 | Fk] ≤ 1
J

∑J
j=1

∥
∥
∥
∥

[

ρkfj(xk) + λ
(j)
k

]

+
∇̃fj(xk)

∥
∥
∥
∥

2

= 1
J

∑J
j=1

[

ρkfj(xk) + λ
(j)
k

]2

+

∥
∥
∥∇̃fj(xk)

∥
∥
∥

2

≤ C2
f

J

∑J
j=1

(

ρkfj(xk) + λ
(j)
k

)2
≤ 2C2

f

J

∑J
j=1

(

ρ2
kD2

f +
(

λ
(j)
k

)2
)

= 2C2
f

(

ρ2
kD2

f + ‖λk‖2

J

)

.

6.4 Proof of Lemma 4

Proof. From the update rule of vk+1, we know σk = 1
τk

(vk+1 − vk), hence we have that

σT
k (x − vk) = σT

k (x − vk+1) + σT
k (vk+1 − vk)

≤ 1

2τk
‖x − vk‖2 − 1

2τk
‖x − vk+1‖2 − 1

2τk
‖vk+1 − vk‖2 + σT

k (vk+1 − vk)

≤ 1

2τk
‖x − vk‖2 − 1

2τk
‖x − vk+1‖2 +

τk

2
‖σk‖2.

first inequality is obtain from three points inequality.
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6.5 Proof of Lemma 5

Proof. From the fact that λk+1 − λk = Jρkejk
⊙ ∇λΦρk

(xk, λk), one can get the following:

1
ρk

(λk − λ)T (λk+1 − λk) = (λk − λ)T (∇λΦρk
(xk, λk))

+ (λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk)).

also by knowing that 1
ρk

(λk − λ)T (λk+1 − λk) = 1
2ρk

(‖λk+1 − λ‖2 − ‖λk − λ‖2 − ‖λk+1 − λk‖2
)

and
using previous equality one can obtain:

1
2ρk

‖λk+1 − λ‖2 = 1
2ρk

‖λk − λ‖2 + 1
2ρk

‖λk+1 − λk‖2 + (λk − λ)T (∇λΦρk
(xk, λk))

+ (λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk)) (21)

Using (21), one can easily show that:

− Φρk
(xk, λk) +

1

J

J∑

j=1

λ(j)fj(xk) + 1
2ρk

‖λk+1 − λ‖2

= −Φρk
(xk, λk) +

1

J

J∑

j=1

λ(j)fj(xk) + 1
2ρk

‖λk − λ‖2 + 1
2ρk

‖λk+1 − λk‖2 + (λk − λ)T (∇λΦρk
(xk, λk))

+ (λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk)). (22)

From definition of Φρk
(xk, λk), J+

k and J−
k we have :

Φρk
(xk, λk) = 1

J

[ ∑

j∈J+
k

(ρk

2 (fj(xk))2 + λ
(j)
k fj(xk)) −

∑

j∈J−

k

(λ
(j)
k

)2

2ρk

]

. (23)

Using (22), (23) and the fact that ∇λΦρ(x, λ) = 1
J

[

max(−λ(j)

ρ , fj(x))
]J

j=1
, the following holds:

− Φρk
(xk, λk) +

1

J

J∑

j=1

λ(j)fj(xk) + 1
2ρk

‖λk+1 − λ‖2

= − 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 + 1
J

∑

j∈J−

k

[
(λ

(j)
k

)2

2ρk
+ λ(j)fj(xk) + (λ

(j)
k − λ(j))(

−λ
(j)
k

ρk
)
]

+ 1
2ρk

‖λk − λ‖2 + 1
2ρk

‖λk+1 − λk‖2 + (λk − λ)T (∇λΦρk
(xk, λk))

+ (λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk))

= − 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(
(λ

(j)
k

)2

2ρk
− λ(j)(fj(xk) +

λ
(j)
k

ρk
)) (24)

+ 1
2ρk

‖λk − λ‖2 + 1
2ρk

‖λk+1 − λk‖2 + (λk − λ)T (Jejk
⊙ ∇λΦρk

(xk, λk) − ∇λΦρk
(xk, λk)).

Note that λ ≥ 0 and by definition J−
k it holds that λ(j)(fj(xk) +

λ
(j)
k

ρk
) ≤ 0, so we conclude that

− 1
J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(
(λ

(j)
k

)2

2ρk
− λ(j)(fj(xk) +

λ
(j)
k

ρk
)) ≤ − 1

J

∑

j∈J+
k

ρk

2 (fj(xk))2 − 1
J

∑

j∈J−

k

(λ
(j)
k

)2

2ρk
.

(25)

Hence we have the desired result by putting (25) in (24).
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6.6 Proof of lemma 6

Proof. (a) From definition of ∇λΦρk
, using Assumption 1 (ii) and the fact that λ

(jk)
k ≥ 0 for all k

and j, we have that ‖Jejk
⊙ ∇λΦρk

(xk, λk)‖2 =

∣
∣
∣
∣max

(
−λ

(jk)

k

ρk
, fjk

(xk)

)∣
∣
∣
∣

2

≤ D2
f .

(b) By definition of σ̄k and v̄k and using Lemma 4, one can obtain the following.

(λ − λk ± v̄k)T (∇λΦρk
(xk, λk) − Jejk

⊙ ∇λΦρk
(xk, λk))

= (v̄k − λk)T σ̄k + (λ − v̄k)T σ̄k ≤ (v̄k − λk)T σ̄k +
1

2τ̄k
‖λ − v̄k‖2 − 1

2τ̄k
‖λ − v̄k+1‖ +

τ̄k

2
‖σ̄k‖2.

7 Acknowledgments

This work is supported in part by the National Science Foundation under CAREER Grant ECCS-
1944500 and Grant ECCS-2231863, the Office of Naval Research under Grant N00014-22-1-2757,
the University of Arizona Research, Innovation & Impact (RII) Funding, and the Arizona Tech-
nology and Research Initiative Fund (TRIF) for Innovative Technologies for the Fourth Industrial
Revolution initiatives.

References

[1] A. Auslender, Optimisation, Méthodes numériques, (1976).

[2] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained
problems and its extension to variational inequalities, Mathematical Programming, 71 (1995),
pp. 77–100.

[3] A. Auslender and M. Teboulle, Lagrangian duality and related multiplier methods for
variational inequality problems, SIAM Journal on Optimization, 10 (2000), pp. 1097–1115.

[4] R. S. Burachik and A. N. Iusem, A generalized proximal point algorithm for the variational
inequality problem in a hilbert space, SIAM journal on Optimization, 8 (1998), pp. 197–216.

[5] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal–dual
algorithm, Mathematical Programming, 159 (2016), pp. 253–287.

[6] G. H.-G. Chen and R. T. Rockafellar, Convergence rates in forward–backward splitting,
SIAM Journal on Optimization, 7 (1997), pp. 421–444.

[7] A. Deligiannis, A. Panoui, S. Lambotharan, and J. A. Chambers, Game-theoretic
power allocation and the nash equilibrium analysis for a multistatic mimo radar network, IEEE
Transactions on Signal Processing, 65 (2017), pp. 6397–6408.

[8] Y. Deng, M. M. Kamani, and M. Mahdavi, Distributionally robust federated averaging,
Advances in Neural Information Processing Systems, 33 (2020).

[9] J. Eckstein and M. C. Ferris, Smooth methods of multipliers for complementarity problems,
Mathematical Programming, 86 (1999), pp. 65–90.

17



[10] F. Facchinei and C. Kanzow, Generalized nash equilibrium problems, Annals of Operations
Research, 175 (2010), pp. 177–211.

[11] F. Facchinei and J.-S. Pang, Finite-dimensional Variational Inequalities and Complemen-
tarity Problems. Vols. I,II, Springer Series in Operations Research, Springer-Verlag, New York,
2003.

[12] M. C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity
problems, Siam Review, 39 (1997), pp. 669–713.

[13] D. Gabay, Applications of the method of multipliers to variational inequalities, vol. 15, Else-
vier, 1983, ch. ix. In: Studies in mathematics and its applications, pp. 299–331.

[14] E. Golshtein, Generalized gradient method for finding saddlepoints, Matekon, 10 (1974),
pp. 36–52.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, Generative adversarial nets, Advances in Neural Information
Processing Systems, 27 (2014).

[16] E. Y. Hamedani and N. S. Aybat, A primal-dual algorithm with line search for general
convex-concave saddle point problems, SIAM Journal on Optimization, 31 (2021), pp. 1299–
1329.

[17] Y. He and R. D. Monteiro, Accelerating block-decomposition first-order methods for solving
composite saddle-point and two-player nash equilibrium problems, SIAM Journal on Optimiza-
tion, 25 (2015), pp. 2182–2211.

[18] , An accelerated hpe-type algorithm for a class of composite convex-concave saddle-point
problems, SIAM Journal on Optimization, 26 (2016), pp. 29–56.

[19] X. Hu and D. Ralph, Using epecs to model bilevel games in restructured electricity markets
with locational prices, Operations research, 55 (2007), pp. 809–827.

[20] A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson, Extragradient method with
variance reduction for stochastic variational inequalities, SIAM Journal on Optimization, 27
(2017), pp. 686–724.

[21] A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson, Variance-based extragradient
methods with line search for stochastic variational inequalities, SIAM Journal on Optimization,
29 (2019), pp. 175–206.

[22] H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational in-
equality problem, IEEE Transactions on Automatic Control, 53 (2008), pp. 1462–1475.

[23] Y. Jin, A. Sidford, and K. Tian, Sharper rates for separable minimax and finite sum
optimization via primal-dual extragradient methods, in Conference on Learning Theory, PMLR,
2022, pp. 4362–4415.

[24] A. Juditsky, A. Nemirovski, and C. Tauvel, Solving variational inequalities with stochas-
tic mirror-prox algorithm, Stochastic Systems, 1 (2011), pp. 17–58.

18



[25] A. Kannan and U. V. Shanbhag, Distributed computation of equilibria in monotone
Nash games via iterative regularization techniques, SIAM Journal on Optimization, 22 (2012),
pp. 1177–1205.

[26] S. Karamardian, An existence theorem for the complementarity problem, Journal of Opti-
mization Theory and Applications, 19 (1976), pp. 227–232.

[27] H. D. Kaushik and F. Yousefian, A method with convergence rates for optimization
problems with variational inequality constraints, SIAM Journal on Optimization, 31 (2021),
pp. 2171–2198.

[28] O. Kolossoski and R. D. Monteiro, An accelerated non-euclidean hybrid proximal
extragradient-type algorithm for convex–concave saddle-point problems, Optimization Methods
and Software, 32 (2017), pp. 1244–1272.

[29] G. M. Korpelevich, An extragradient method for finding saddle points and for other prob-
lems, Eknomika i Matematicheskie Metody, 12 (1976), pp. 747—-756.

[30] J. Koshal, A. Nedić, and U. V. Shanbhag, Regularized iterative stochastic approxima-
tion methods for stochastic variational inequality problems, IEEE Transactions on Automatic
Control, 58 (2013), pp. 594–609.

[31] S. Krilašević and S. Grammatico, Learning generalized nash equilibria in monotone
games: A hybrid adaptive extremum seeking control approach, Automatica, 151 (2023),
p. 110931.

[32] X.-J. Long and Y.-H. He, A fast stochastic approximation-based subgradient extragradient
algorithm with variance reduction for solving stochastic variational inequality problems, Journal
of Computational and Applied Mathematics, 420 (2023), p. 114786.

[33] Y. Malitsky, Proximal extrapolated gradient methods for variational inequalities, Optimiza-
tion Methods and Software, 33 (2018), pp. 140–164. PMID: 29348705.

[34] G. J. Minty et al., Monotone (nonlinear) operators in hilbert space, Duke Mathematical
Journal, 29 (1962), pp. 341–346.

[35] U. Mosco, Dual variational inequalities, Journal of Mathematical Analysis and Applications,
40 (1972), pp. 202–206.

[36] J. Nash, Non-cooperative games, Annals of mathematics, (1951), pp. 286–295.

[37] A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, Journal of
Optimization Theory and Applications, 142 (2009), pp. 205–228.

[38] A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems,
SIAM Journal on Optimization, 15 (2004), pp. 229–251.

[39] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation
approach to stochastic programming, SIAM Journal on optimization, 19 (2009), pp. 1574–1609.

[40] M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee, On the convergence and robustness of
training gans with regularized optimal transport, Advances in Neural Information Processing
Systems, 31 (2018).

19



[41] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM Journal on
Applied Mathematics, 15 (1967), pp. 1328–1343.

[42] A. Sinha, H. Namkoong, and J. Duchi, Certifiable distributional robustness with principled
adversarial training, in International Conference on Learning Representations, 2018.

[43] v. Neumann, Zur theorie der gesellschaftsspiele, Mathematische Annalens, 19 (1928), pp. 295–
320.

[44] J. Von Neumann and O. Morgenstern, Theory of games and economic behavior, 2nd rev,
(1947).

[45] Y. Xu, Primal-dual stochastic gradient method for convex programs with many functional
constraints, SIAM Journal on Optimization, 30 (2020), pp. 1664–1692.

[46] F. Yousefian, A. Nedić, and U. V. Shanbhag, On smoothing, regularization, and averag-
ing in stochastic approximation methods for stochastic variational inequality problems, Mathe-
matical Programming, 165 (2017), pp. 391–431.

[47] , On stochastic mirror-prox algorithms for stochastic Cartesian variational inequalities:
Randomized block coordinate and optimal averaging schemes, Set-Valued and Variational Anal-
ysis, 26 (2018), pp. 789–819.

[48] L. Zhang, D. Xu, S. Yuan, and X. Wu, FairGAN: Fairness-aware generative adversarial
networks, in CoRR, 2018.

[49] R. Zhao, Accelerated stochastic algorithms for convex-concave saddle-point problems, Mathe-
matics of Operations Research, 47 (2022), pp. 1443–1473.

[50] R. Zhao, W. B. Haskell, and V. Y. Tan, An optimal algorithm for stochastic three-
composite optimization, in The 22nd International Conference on Artificial Intelligence and
Statistics, PMLR, 2019, pp. 428–437.

20


	Introduction
	Preliminaries
	Algorithm outline
	Convergence and rate analysis
	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of lemma 6

	Acknowledgments

