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Abstract: The achievable bit error rate of a linear equalizer is crucially determined by the choice of a decision delay
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1 Introduction

Equalization techniques play an ever-increasing
role in combating distortion and interference in mod-
ern communication links[1,2]. It is well-known that
the choice of equalizer decision delay parameter crit-
ically determines achievable bit error rate (BER)
performance[3,4]. We present a simple and effective
method for determining an optimal decision delay pa-
rameter that results in the best bit error rate perfor-
mance for a linear equalizer. The proposed technique
computes a relative measure for each decision delay
value that characterizes the degree of linear separability
between the different signal classes for the given deci-
sion delay value. From the resulting set of measures,
for every decision delay value, it is straightforward to
choose the optimal decision delay that provides the best
achievable BER performance.

Consider the baseband digital communication sys-
tem depicted in Fig.1. The received signal, after the
communication channel, sampled at a symbol rate, is
modeled by[1,2]

x(k) =

M
∑

i=0

his(k − i) + n(k) (1)

where k denotes the symbol index, n(k) is white Gaus-
sian noise with variance σ2

n, hi are the taps of the chan-
nel impulse response (CIR) which has a memory M ,
and s(k) is a binary input drawn from the set {±1}with
equal probability. Although the analysis presented here
assumes binary phase shift keying (BPSK) modulation,
the results can be generalized.
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Fig.1 Baseband model of a communication system with a

linear equalizer

A linear equalizer with length N and decision delay
d uses a vector of noisy observations

x(k) = [x(k) x(k − 1) · · ·x(k − N + 1)]T (2)

to provide an estimate ŝ(k−d) of the transmitted sym-
bol s(k − d), and is specified by

yd(k) = wT
d x(k) =

N−1
∑

i=0

wdi
x(k − i) (3)

and
ŝ(k − d) = sgn(yd(k)) (4)

where sgn(•) denotes the sign function and

wd = [wd0
wd1

· · ·wdN−1
]T (5)

is an equalizer weight coefficient vector.
An equalizer input vector x(k) is given by

x(k) = H s(k) + n(k) = x̄(k) + n(k) (6)

where s(k) = [s(k) s(k − 1) · · · s(k − L + 1)]T is a
vector of L = M + N transmitted digital symbols,
n(k) = [n(k) n(k − 1) · · ·n(k − N + 1)]T is a noise
vector, x̄(k) is a vector of noise-free input signal called
the channel state, and H is a N×L channel convolution
matrix given by

H =










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0 h0 h1 · · · hM
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



. (7)
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It is obvious that x(k) depends only on L symbols in
s(k) and hence the valid range of decision delay is

d ∈ D = {0, 1, · · · , L − 1}. (8)

Given a decision delay d, various designs for the
equalizer weight vector wd can be considered. The
best known design is the minimum mean square er-
ror (MMSE) solution ŵd, which minimizes the mean
square error E[(s(k − d) − yd(k))2] and is given by[1,2]

ŵd =
(

HHT + σ2
nIN

)−1
hd (9)

where hd is the (d+1)th column of H and IN denotes
an N ×N identity matrix. Alternatively, the minimum
BER (MBER) solution w̃d is obtained by directly min-
imizing the BER PE(wd) of an equalizer with decision
delay d[5∼7]. The main purpose of this brief paper is
to determine the optimal decision delay for the given
weight vector design that achieves the smallest BER.

2 The bit error rate

By denoting Ns = 2L combinations of s(k) as si,
1 6 i 6 Ns, i.e.

s(k) ∈ S = {si, 1 6 i 6 Ns} (10)

then x̄(k) only takes values from the channel state set
defined by

x̄(k) ∈ X = {x̄i = H si, 1 6 i 6 Ns}. (11)

The set of channel states X can be divided into two
subsets conditioned on the value of s(k − d). Specifi-
cally, by denoting the dth element of si as sd,i. Then
sd,i specifies which class (+1 or −1) x̄i belongs to.

Given the equalizer’s weight vector wd for a fixed
decision delay d, by defining the normalized decision
variable for x̄i as

ζi(wd) =
wT

d x̄i

‖wd‖
(12)

where ‖w‖ =
√

wT w. Then x̄i is correctly classified
by wd if and only if

sgn(ζi(wd)) = sgn(sd,i). (13)

The BER of this equalizer is evaluated by[6,7]

PE(wd) =
1

Ns

Ns
∑

i=1

pe(ζi(wd)) (14)

where pe(ζi(wd)) denotes the probability of error due
to the received channel state being x̄i, and is evaluated
by

pe(ζi(wd))=







Q
(

|ζi(wd)|
σn

)

, x̄i is correctly classified

1 − Q
(

|ζi(wd)|
σn

)

, otherwise

(15)

where | • | denotes the absolute value and

Q(x) =
1√
2π

∫ ∞

x

exp

(

−v2

2

)

d v. (16)

Note that |ζi(wd)| is the distance of the channel
state x̄i to the decision boundary specified by wT

d x =
0. For wd to achieve the desired linear separability, all
x̄i must be correctly classified by wd, that is, condi-
tion (13) must hold for i = 1, 2, · · · , Ns. Since Q(•)
decays exponentially, BER PE(wd) is dominated by
the largest pe(ζi(wd)) when σn → 0. Thus an upper
bound of the BER is given by

PEUB
(wd) = max

16i6Ns

{pe(ζi(wd))}. (17)

3 Optimal decision delay

Optimal decision delay can in theory be defined by

dopt = arg min
d∈D

PEUB
(wd). (18)

From the definition of pe(•) in (15), it is obvious that
optimal decision delay can alternatively be determined
by

dopt = arg max
d∈D

{

min
16i6Ns

ζi(wd)

}

. (19)

To derive a computationally simpler way of evaluating
dopt, we can define

fd = [f0,d f1,d · · · fL−1,d]
T =

HT wd

‖wd‖
(20)

then

ζi(wd) =
wT

d Hsi

‖wd‖
= fT

d si (21)

or

ζi(wd) = fd,dsd,i +
∑

j 6=d

j=1,···,L

fj,dsj,i. (22)

Furthermore, fd,d is the main tap of the combined im-
pulse response of the channel h = [h0 h1 · · ·hM ]T and
the normalized equalizer weight vector wd/‖wd‖, and
fd,d > 0.

For the correct classification (13) to hold, (22)
shows that it is sufficient to have

fd,d +
∑

j 6= d

j = 1, · · · , L

fj,dsj,isd,i > 0. (23)
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Taking into account sj,i ∈ {±1}, for (13) to hold for all
x̄i, it is sufficient that

|fd,d| >
∑

j 6= d

j = 1, · · · , L

|fj,d|. (24)

In fact, the minimum of {ζi(wd)}Ns

i=1 for decision delay
d is evaluated as

λ(wd) = min
16i6Ns

ζi(wd) =






|fd,d| −

∑

j 6=d

j=1,···,L

|fj,d|






.

(25)

The minimum distance measure λ(wd) has a clear
geometric interpretation. A positive λ(wd) indicates
that wd achieves linear separability and a negative
value otherwise. Moreover, λ(wd) measures the rela-
tive degree of linear separability quantitatively. A neg-
ative λ(wd) with a larger magnitude means that non-
linear separability is more severe, and a larger positive
value of λ(wd) indicates that the channel states are lo-
cated further away from the linear decision boundary,
which implies a better BER performance. From (19),
optimal decision delay is determined as

dopt = argmax
d∈D

{λ(wd)}. (26)

4 Examples

Example 1. The transfer function of a CIR was
defined by H1(z) = 0.66 + 1.0z−1− 0.66z−2 and equal-
izer length given by N = 5. The range of decision
delays was therefore D = {0, 1, · · · , 6}. With a chan-
nel signal to noise ratio (SNR) of 25 dB, the MMSE
weight vectors ŵd (9) for each decision delay d ∈ D
were calculated and the corresponding minimum dis-
tance measures λ(ŵd) were evaluated using (25). The
computed λ(ŵd) for d = 0, 1, · · · , 6 were

−1.263, 0.338, 0.799, 0.879, 0.799, 0.338,−1.263.

The above results indicate that d = 0 or d = 6 re-
sults in a nonlinearly separable equalization problem
with the worst BER performance, while the best BER
performance is achieved with an optimal decision delay
d = 3. To verify these predictions, simulation was con-
ducted to evaluate the BERs of a linear MMSE equal-
izer ŵd with various decision delays d ∈ D. The results
depicted in Fig.2 agree with the predicted relative BER
performance using λ(ŵd).

Fig.2 Bit error rate performance as a function of decision

delay for the channel H1(z) = 0.66+1.0z
−1

− 0.66z
−2 with

an equalizer length N = 5. A MMSE design was employed

For the same SNR of 25 dB, the MBER weight
vectors w̃d for all d ∈ D were also calculated numeri-
cally using the MBER optimization algorithm given in
[8]. The related minimum distance measures λ(w̃d) for
d = 0, 1, · · · , 6 were

−1.117, 0.520, 0.899, 0.922, 0.899, 0.520,−1.117.

The BER performance of the linear MBER equalizer
w̃d with d ∈ D are illustrated in Fig.3. The results
shown in Fig.3 agree with the predictions using λ(w̃d).

Fig.3 Bit error rate performance as a function of decision

delay for the channel H1(z) = 0.66+1.0z
−1

− 0.66z
−2 with

an equalizer length N = 5. A MBER design was employed

Also λ(w̃1) and λ(w̃5) are significantly larger than
λ(ŵ1) and λ(ŵ5). Inspecting Figs.2 and 3, it can
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be seen that the corresponding MBER equalizers have
much better BER performance than the related MMSE
equalizers. This further confirms the usefulness of
λ(wd) as a relative BER performance indicator.

Example 2. The transfer function of a CIR was given
by H2(z) = 0.6996+0.6646z−1− 0.2623z−2 and equal-
izer length chosen as N = 6. The range of decision
delays was therefore D = {0, 1, · · · , 7}. Given a chan-
nel SNR of 24 dB, the MMSE weight vectors ŵd (9)
for each decision delay d ∈ D were calculated and the
corresponding minimum distance measures λ(ŵd) were
found to be

−0.457,−0.237, 0.037, 0.217, 0.315, 0.371, 0.141,−0.872.

It can be seen that for the MMSE design d = 0, 1, 7
result in nonlinear separable problems with the worst
BER performance given by d = 7. The optimal deci-
sion delay is d = 5, which has the smallest BER. These
predictions using λ(ŵd) are confirmed by the actual
BER performance depicted in Fig.4.

Fig.4 Bit error rate performance as a function of decision
delay for the channel H2(z)=0.6996+0.6646z

−1
−

0.2623z
−2 with an equalizer length N = 6. A MMSE

design was employed

The same process was repeated for the MBER de-
sign, and the corresponding minimum distance mea-
sures λ(w̃d) were found to be

−0.398, 0.136, 0.262, 0.328, 0.364, 0.401, 0.179,−1.097.

It can be seen that for the MBER design only d = 0, 7
result in nonlinear separable problems with the worst
BER performance given by d = 7. The optimal deci-
sion delay for the MBER design is also d = 5. Fig.5
illustrates the actual BER performance for the linear
MBER equalizers w̃d for d ∈ D.

Fig.5 Bit error rate performance as a function of decision
delay for the channel H2(z) = 0.6996 + 0.6646z

−1
−

0.2623z
−2 with an equalizer length N = 6. A MBER

design was employed

5 Extension to a general modulation
scheme

We now show how to extend the proposed method
to a general modulation scheme. First consider a G-
level pulse amplitude modulation (G-PAM) scheme,
where s(k) is drawn from the symbol set

{sl = 2l − 1 − G, 1 6 l 6 G}. (27)

Therefore

s(k) ∈ S = {si, 1 6 i 6 Ns} (28)

where Ns = GL, and

x̄(k) ∈ X = {x̄i = Hsi, 1 6 i 6 Ns}. (29)

The set X can be partitioned into G subsets relative to
the value of s(k − d)

Xl = {x̄i ∈ X : s(k − d) = sl}, 1 6 l 6 G. (30)

It can readily be proved that [9] for 1 6 l 6 G − 1,
Xl+1 is a shifted version of Xl by the amount 2hd. That
is,

Xl+1 = Xl + 2hd, 1 6 l 6 G − 1. (31)

This shift property enables us to use any two adjacent
subsets Xl and Xl+1 when considering the degree of
linear separability of the equalizer. Specifically, let us
choose l = G/2. Then sG/2 = −1 and s1+G/2 = +1. It
is clear that this is equivalent to the BPSK case pre-
sented in this paper.
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For a general complex-valued modulation scheme,
such as a quadrature amplitude modulation (QAM)
scheme, the extension is more involved, but the deriva-
tion can be carried out similarly.

6 Conclusions

A simple but computationally efficient method has
been presented to determine the optimal decision delay
parameter that achieves the smallest bit error rate for
a given linear equalizer design. The proposed method
calculates a minimum distance measure for each feasi-
ble decision delay value and chooses the decision delay
that achieves the maximum of this minimum distance
measure. The usefulness of this technique has been
demonstrated using two examples involving both min-
imum mean square error and minimum bit error rate
equalization designs.
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