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Abstract: This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for
solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic
algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for
the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization
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1 Introduction

Estimation of distribution algorithms (EDAs) have been
recognized as a major paradigm in evolutionary computa-
tion. There is no traditional crossover or mutation in EDAs.
Instead, they explicitly extract global statistical informa-
tion from the selected solutions (often called parents) and
build a posterior probability distribution model of promis-
ing solutions, based on the extracted information. New
solutions are sampled from the model thus built and fully
or in part replace the old population. Since the dependence
relationships in the distribution of the promising solutions
are highly relevant to the variable interactions in the prob-
lem, EDAs are promising methods for capturing the struc-
ture of variable interactions, identifying and manipulating
crucial building blocks, and hence efficiently solving hard
optimization and search problems with interactions among
the variables. Many EDA-like algorithms have been devel-
oped for various optimization and search problems in re-
cent years. Instances of EDAs include population-based in-
cremental learning (PBIL)[1], univariate marginal distribu-
tion algorithm (UMDA)[2], mutual information maximiza-
tion for input clustering (MIMIC)[3], combining optimizers
with mutual information trees (COMIT)[4], factorized dis-
tribution algorithm (FDA)[5], Bayesian optimization algo-
rithm (BOA)[6], Bayesian evolutionary algorithm (BEA)[7],
and global search based on reinforcement learning agents
(GSBRL)[8], to name a few.

We have been working on the theory and application of
EDAs since 2000. One of our main focuses is to hybridize
EDAs with other techniques and design efficient optimiza-
tion algorithms. The purpose of this paper is to summarize
some of our work on the design of practical EDAs. Section
2 describes a new offspring generator which can be regarded
as a combination of the conventional mutation operator and
the EDA offspring generating scheme. Section 3 describes
a hybrid algorithm with guided mutation for the maximum
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clique problem. Section 4 introduces our recent work on
refining a heuristic by using EDAs. Section 5 presents a
method for combining EDAs with local searches for global
continuous optimization. Section 6 concludes this paper.

2 Guided mutation

One of the key issues in the design of evolutionary algo-
rithms (EAs) is how to generate offspring. The proximate
optimality principle[9], an underlying assumption in most (if
not all) heuristics, assumes that good solutions have simi-
lar structure. This assumption is reasonable for most real-
world problems, e.g., the percentage of common edges in
any two locally optimal solutions of a traveling salesman
problem obtained by the Lin-Kernighan method is about
85% on average[10]. Based on this assumption, an ideal off-
spring generator should be able to produce a solution which
is close to the best solutions found so far. Suppose the
current population in an evolutionary algorithm with local
search consists of the best locally optimal solutions found so
far, a new solution generated by the conventional mutation
is close (similar) to its parent, but may be far away from
other better solutions since the mutation does not utilize
any global information extracted from the current popula-
tion. EDAs extract global statistical information from the
previous search and then represent it as a probability model,
which characterizes the distribution of promising solutions
in the search space. New solutions are generated by sam-
pling from this model. However, the location information
of the locally optimal solutions found so far has not been
directly used in EDAs, there is no mechanism to directly
control the similarity between new solutions and a given
solution. The idea behind the proposed operator which we
call guided mutation is to combine the global statistical in-
formation and location information of the solutions found
so far to overcome the shortcoming of GAs and EDAs. In
the following, we present a version of guided mutation for
the binary search space.

Let the search space be Ω = {0, 1}n, a probability
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vector p = (p1, · · · , pn) ∈ [0, 1]n is used to characterize
the distribution of promising solutions in the search
space, where pi is the probability that the value of the
i-th position of a promising solution is one. The guided
mutation operator uses a probability vector p ∈ [0, 1]n to
guide to mutate an x ∈ {0, 1}n in the following way:

Guided mutation Operator y = GM(p, x, β)
Input: p = (p1, · · · , pn) ∈ [0, 1]n, x = (x1, · · ·xn) ∈ {0, 1}n

and β ∈ [0, 1].
Output: y = (y1, · · · , yn) ∈ {0, 1}n.
For i := 1 to n do

Flip a coin with head probability β;
If the head turns up, with probability pi set yi = 1, oth-

erwise set yi = 0;
Otherwise, yi := xi.

End For

Remark 1. In the above guided mutation operator, yi

is directly copied from the parent x or randomly sampled
from the probability vector p. The larger β is, the more
elements of y are sampled from the probability vector p.
In other words, β, similar to the mutation rate in conven-
tional mutation, controls the similarity between offspring
and the parent, while the parent can be chosen from the
best solutions found so far.

Remark 2. In the correlated mutation[11] for real vec-
tors, the probability of generating an offspring in the steep-
est ascent direction is larger than in other directions. In
the conventional mutation for binary strings, the probabil-
ity of a vector y being generated from the parent vector x
is entirely determined by the Hamming distance between
x and y. The guided mutation operator can be regarded
as a discrete counterpart of the correlated mutation. The
probability vector p in the guided mutation can be learned
and updated at each generation for modeling the distribu-
tion of promising solutions. Since some elements of the off-
spring y are sampled from the probability vector p, it can
be expected that y should fall in or close to a promising
area. Meanwhile, this sampling also provides diversity for
the search afterwards.

Remark 3. Variable linkages are not taken into account
in the probability model in the above version of guided mu-
tation. It is trivial to use other complicated probability
models in guided mutation. However, we do not advocate
to do so. Our working experiences show that combinations
of several simple techniques often work better than a single
complicated one.

Remark 4. The above version is for the binary search
space. It is easy to generalize it to other search spaces such
as permutation spaces.

3 A hybrid algorithm with guided mu-
tation for the maximum clique prob-
lem

In this section, we briefly introduce our work on combi-
nation of guided mutation and local search for dealing with
the maximum clique problem.

3.1 Maximum clique problem and its so-
lution representation

3.1.1 Problem

A clique of a graph is a set of pairwise adjacent nodes.
A maximal clique is a clique which is not a proper subset
of any other clique. A maximum clique is a clique with
the maximum cardinality (which is called the maximum
clique number). A maximum clique is maximal but not
vice versa. Given a graph, the maximum clique problem
(MCP) is to find a maximum clique. The MCP is NP-
complete. Moreover, there is no polynomial-time algorithm
for approximating the maximum clique within a factor of
n1−ε unless P = NP [12], where n is the number of the
nodes of the graph. These facts indicate that the MCP is
very difficult to solve.

3.1.2 Representation and fitness

Given a graph G = (V, E) where V = {1, 2, · · · , n} is its
node set and E ⊂ V × V is its edge set. A set of nodes
U ⊂ V is encoded as a string x = (x1, x2, · · · , xn) ∈ {0, 1}n

where xi = 1 if and only if node i is in U . Therefore the
search space is Ω = {0, 1}n. The fitness of x is defined as its
cardinality if x represents a clique. Since every new solution
generated by the guided mutation will be repaired, there is
no need to define fitness values for infeasible solutions.

3.2 Algorithm

3.2.1 Partitioning of the search space

The search space, Ω = {0, 1}n for the MCP can be di-
vided into n + 1 subspaces as follows:

Ω = Ω0

[
Ω1 · · ·

[
Ωn

where Ωi = {x = (x1, x2, · · · , xn) :
nP

j=1

xj = i}. Obviously,

for any Ωi and Ωj , we have Ωi

T
Ωj = ∅. Any string in Ωi

represents a set of nodes with cardinality i.
The proposed algorithm explores different subspaces in

the search space during different search phases. At the be-
ginning, a lower bound low of the maximum clique number
is computed. The first search phase will be for the area
low+∆S

i=low+1

Ωi, where ∆ is a predefined integer number. If a

maximal clique with a larger cardinality s is found, then
the current search phase will end and the search area for

next phase will be
s+∆S

i=s+1

Ωi. In such a way, the search is

focused on these promising Ωi.

3.2.2 Repair heuristic

We can induce a set of nodes from any string in {0, 1}n.
This set of nodes, however, may not be a clique. To produce
a clique, we use Marchiori′s heuristic[13] to repair it.

3.2.3 Initialization and update of the probability
vector

The probability vector p for guided mutation needs to be
initialized and updated in the algorithm.

Suppose that the current population Pop(t) has N binary
strings xj = (xj

1, · · · , xj
n), j = 1, 2, · · · , N, p = (p1, · · · , pn)
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will be initialized as

pi =

NP
j=1

xj
i

N
. (1)

At each generation t in the algorithm, some binary strings
are selected from the current population Pop(t) to form
the parent set Parent(t), which is then used for updating
the probability vector p. Let Parent(t) contain M strings
yj = (yj

1, · · · , yj
n), j = 1, 2, · · · , M, the probability vector p

is updated in the same way as in the PBIL algorithm[1]:

pi := (1− λ)pi + λ

MP
j=1

yj
i

M
(2)

for i = 1, 2, · · · , n. λ ∈ (0, 1] is the learning rate.

3.2.4 The framework of the algorithm

EA/G works as follows:

Step 1 Set t := 0, randomly pick an x ∈ Ω and apply the
Repair Operator to x to obtain a maximal clique U.
Set low :=|U | .

Step 2 Randomly pick N strings from ∪low+∆
i=low+1Ωi and ap-

ply the Repair Operator to each of them, the N resul-
tant strings form Pop(t). Then initialize the probabil-
ity vector p by (1).

Step 3 Select the N/2 best strings from Pop(t) to form the
parent set Parent(t) and then update the probability
vector p by (2).

Step 4 Apply the Guided Mutation Operator to the fittest
string in Parent(t) N/2 times and then apply the
Repair Operator to the resultant strings to get N/2
cliques. Add these N/2 cliques to Parent(t) to form
Pop(t+1). If the stopping condition is met, return the
largest clique found so far.

Step 5 Set t := t+1. Let S be the largest clique in Pop(t).
If |S| > low, set low := |S| and go to Step 2.

Step 6 If all the strings in Pop(t) are identical, go to Step
2, else go to Step 3.

In Step 1, a lower bound low for the maximum clique
number is obtained. The population Pop(t) and the prob-
ability vector p are initialized in Step 2 for the search on
∪low+∆

i=low+1Ωi. Step 3 selects the fittest strings to become par-
ents and then update p. In Step 4, N/2 strings are gener-
ated by applying the guided mutation operator to the fittest
string in the current parent set. The mutated strings are
then repaired. These resultant strings join their parents
to form the population of the next generation. If a larger
clique is found (Step 5), the search will move to a new area
in the search space. If all the members in the current pop-
ulation are identical (Step 6), the search will be restarted
to diversify the population.

3.3 The experimental results

The experimental results in [14] show that our algorithm
outperforms hybrid genetic algorithm (HGA), the best GA
for the MCP, on the DIMACS benchmark problem. How-
ever, an issue naturally arises: Is guided mutation better
than other advanced EDA offspring generators in our algo-
rithm framework? To investigate this issue, we have com-
pared our algorithm with an algorithm, which is the same
as our algorithm, except it uses the MIMIC way to generate
new solutions. Some of the experimental results on 5 test
problems are given in Table 1.

Table 1 The comparison results between EA/MIMIC and

EA/G. Best : the size of the largest clique found, Avg: the

average size of the cliques found. std: The standard deviation

of the sizes of the cliques found

Graph EA/MIMIC EA/GuidedMutation

Avg(std) Best Avg(std) Best

brock200 4 16.3(0.9) 17 16.5(0.5) 17

brock400 2 22.1(0.3) 23 24.7(0.4) 25

brock400 4 22.7(0.9) 23 25.1(2.6) 33

brock800 2 18.5(0.5) 19 20.1(0.4) 21

brock800 4 18.4(0.5) 19 19.9(0.5) 21

Clearly, the performance of MIMIC is poorer than that
of guided mutation on these five test problems. It may be
due to the facts that a) unlike the guided mutation, MIMIC
cannot directly control the similarity between offspring and
the best solutions found so far. and b) only a very lim-
ited number of dependence relationships can be considered
in MIMIC, which is far away from enough for capturing
the variable linkage structure in a complicated optimiza-
tion problem. Other advanced EDAs may have the similar
shortcomings.

4 EA with guided mutation for refining
a heuristic

Suppose that we have a problem-specific construction
heuristic for an optimization problem. The heuristic has a
set of control parameters with relatively simple data struc-
tures. For any given parameter setting, the heuristic can
construct a solution to the problem, the quality of which en-
tirely depends on the parameter setting. An EA can be used
to tune these control parameters to find a nearly-optimal
parameter setting and thus generate a good solution to the
original problem. This approach can be regarded as an
instance of indirect encoding EAs since the actual search
space of the EA is the parameter space of the heuristic and
each parameter setting can be decoded (i.e., transformed)
to a solution to the original problem via the heuristic. If
solutions to the problem have a complex data structure and
a parameterized construction heuristic is relatively easy to
design, this approach could be a reasonable choice.

We have recently adopted this approach for solving sev-
eral complicated telecommunication network design prob-
lems. In the following, we present our work for designing
a network protection problem in wavelength-division mul-
tiplexing (WDM) networks.
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4.1 Problem

As a case study, we consider a shared-path protection
(SPP) problem with shared risk link group (SRLG) con-
straints. This problem can be modeled as an optimization
problem in a simple directed graph. Given:

• V : the set of nodes in the graph under consideration.

• E : the set of directed links (edges) in the graph.

• W : the number of wavelengths available on each link.
The wavelengths are numbered from 1 to W .

• R : the set of connection requests. M = |R|. The
requests are numbered from 1 to M . Each connection
request has a source node and a destination node1. It
requires a working lightpath and a backup lightpath
from the stated source to the stated destination.

• G : the set of SRLGs. Each SRLG contains a set of
links in E. Links in the same SRLG share the same
risk, i.e., these links may break at the same time due
to a destructive event. If two paths in the network
have links in the same SRLG, we say that they are
SRLG-joint. Otherwise, we call them SRLG-disjoint.

The goal is to determine a working lightpath and a
backup lightpath for each connection request in R. The
constraints are:

C1 The number of wavelengths used on each link cannot
not exceed W .

C2 The working lightpath and the backup lightpath, for
each connection request, must be SRLG-disjoint.

C3 Two working lightpaths cannot use the same wave-
length on the same link.

C4 A backup lightpath cannot share the same wavelength
on the same link with any working lightpath.

C5 If two working lightpaths are SRLG-joint, their backup
lightpaths cannot use the same wavelength on the same
link.

The objective is to minimize the cost
X
e∈E

(Fe + Se) (3)

where Fe is the number of wavelengths on link e used in
working lightpaths and Se the number of wavelengths on
link e used in backup lightpaths.

This problem has been studied and modeled as an inte-
ger linear programming (ILP) problem in [15]. It is a NP-
complete problem[16]. An ILP approach involves too many
constraints and variables, even for a small-sized network[17].
Therefore, dealing with any practical-sized networks needs
to resort to heuristics.

A solution to this problem consists of a set of working
paths, a set of protection paths and a wavelength assign-
ment scheme on these working and protection paths. De-
signing effective and efficient GA or EDA operators on these
solutions could be a very challenging task.

1Two different requests in C may have the same source and des-
tination.

4.2 Basic heuristics

The proposed basic heuristic consists of three phases. In
the first phase, a set of working working paths is routed.
The second phase computes computes protection paths for
all the working paths established in the first stage. In the
third phase, a wavelength is assigned to each path generated
in the first two phases. permutation π = (π1, π2, · · · , πM ),
permutation σ = (σ1, σ2, · · · , σM ) and a scalar parameter
c. The output is a working lightpath set WP , a backup
lightpath set BP and a wavelength assignment A : BP ∪
WP → {1, 2, · · · .}. It can be written as:

(BP, WP, A) = BH(π, σ, c).

The performance of this heuristic is determined by its con-
trol parameters. The details of this heuristic can be found
in [18].

4.3 Tuning control parameters

We used EA/G, an evolutionary algorithm in which a
guided mutation is used for generating new trial solutions
to tune π and σ. EA/G works with the permutation space.
c is tested on several selected values. The tuning procedure
work as follows:

Step 1. Tuning c

Step 1.1. Randomly generate 10 pairs of permu-
tations (π1, σ1), (π2, σ2), · · · , (π10, σ10). Let
ci = i

10
(i = 1, 2, · · · , 10).

Step 1.2. Compute

c? = arg min
c∈{c1,c2,··· ,c10}

1

10

10X
j=1

cost(πj , σj , c)

Step 2. Tuning π

Step 2.1. Randomly generate a permutation σ̃.

Step 2.2. Use EA/G to tune π where the cost of π is
set as cost(π, σ̃, c?). Set π? to be the best setting
of π found in EA/G (GA).

Step 3 Tuning σ

Use EA/G to tune σ where the cost of σ is set
as cost(π?, σ, c?). Set σ? to be the best setting
of σ found in EA/G (GA).

Then the best solution found to the RWAP is the solution
generated by BH with parameter setting (π?, σ?, c?).

We can iterate the above procedure many times in or-
der to lower the cost of the solution obtained as in the
alternating variables optimization method[19]. Taking the
computational overhead into consideration, we chose not to
perform iteration in our experimental study.

4.4 Experimental results

We have compared the our algorithm with HA, a heuristic
developed by H. Zang[17]. To investigate the performance
of guided mutation, we have also substituted EA/G by a
GA in our algorithm and compared it with our approach.
Table 2 gives some of experimental results:
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Table 2 The solution quality of HA, BH/GA and BH/EA/G

on test network instances

instances HA BH/GA BH/EA/G

cost best avg best avg

T1-1 478.0 369.0 381.5 365.0 372.50

T1-2 458.0 378.0 382.7 368.0 374.55

T1-3 487.0 370.0 381.4 364.0 368.70

T1-4 445.0 394.0 401.5 377.0 384.60

T1-5 492.0 393.0 410.3 384.0 390.75

T1-6 462.0 390.0 399.0 377.0 384.90

T1-7 451.0 383.0 386.4 384.0 403.10

T1-8 785.0 660.0 671.4 636.0 649.20

T1-9 1389.0 1257.0 1268.4 1221.0 1239.1

BH/EA/G is our proposed approach and BH/GA is the
same as BH/EA/G except that a GA is used for tuning π
and σ.

It can be observed from this table that both BH/EA/G
and BH/GA perform much better than HA, which im-
plies that our approach for combining problem-specifical
heuristic with evolutionary algorithm is effective. It is also
clear that BH/EA/G outperforms BH/GA. It indicates that
guided mutation does improve the performance of evolu-
tionary algorithms.

5 EDA+Two local search techniques
for continuous optimization

Combinations of evolutionary algorithms and local search
(Memetic algorithms[20]) have been proved to be very suc-
cessful in dealing with hard optimization problems. Most,
if not all, of memetic algorithms apply the same local search
to all the new solutions generated by EA operators. Since
the local search on most new solutions will produce local
optima, which are not desirable solutions. Therefore, most
computational costs are wasted. We have proposed EDA/L,
a combination of EDA and two different local search for con-
tinuous optimization problems, as an attempt to overcome
this shortcoming.

5.1 Problem

We are considering the following global optimization
problem:

minimize f(x)

subject to x ∈ D
(4)

where x = (x1, x2, · · · , xn) ∈ Rn, f : Rn → R is the objec-
tive function and D = {x | ai ≤ xi ≤ bi for i = 1, 2, · · · , n}
is the feasible region. This problem arises in almost every
field of science, engineering and business. Often, the objec-
tive function f(x) is non-convex and has many local minima
in the feasible region that are not the global minimum.

5.2 Algorithm

The framework of the proposed algorithm is as follows:

Step 1. Parameter Setting Population size: N , the
best solution value found so far: Fbest = ∞, the
number of new solutions sampled from the probability

model at each iteration: K, the maximal number of
function evaluations in the simplex method: S, and
the number of solutions undergoing UOBDQA at each
iteration: J . J < K.

Step 2. Initialization Generate N solutions ex1, ex2, · · · ,
exN from D, using the uniform design technique. Apply
the simplex method with at most S function evalua-
tions to each solution exi and obtain xi(1 ≤ i ≤ N).
Then let x1, x2, · · · , xN constitute the initial popula-
tion.

Step 3. Reproduction Build a probability model based
on the statistical information extracted from some se-
lected solutions in the current population. Sample
K new solutions exN+1, · · · exN+K from this model and
then apply the simplex method with at most S func-
tion evaluations to each solution exi and obtain xi

(N + 1 ≤ i ≤ N + K).

Step 4. Comparison Compare the function values of all
xi (1 ≤ i ≤ N + K), order and relabel them such that

f(x1) ≤ f(x2) ≤ · · · ≤ f(xN+K).

Step 5. Update of FFFbbbeeesssttt Apply UOBDQA to xi (1 ≤
i ≤ J) and obtain J local minima yi (1 ≤ i ≤ J). If
Fbest > min

1≤i≤J
f(yi), set Fbest = min

1≤i≤J
f(yi).

Step 6. Stopping Condition If the stopping condition
is met, stop.

Step 7. Update of the Population Let xJ+1, · · · , xJ+N

constitute new population. Go to Step 3.

Experimental design techniques[21] such as orthogonal
design and uniform design have been proposed to improve
the performance of genetic algorithms[22,23]. The total num-
ber of orthogonal design points is often much more than
2n while the number of uniform design points is relatively
smaller. This is the reason why we use the uniform design in
Initialization (Step 2). The probability model built in Re-
production (Step 3) step models the distribution of the best
solutions in the current population. Therefore, sampling so-
lutions from this model should fall in promising areas with
high probability. In Step 4, since all the solutions have
undergone the incomplete simplex method with at most S
function value evaluations, the best ones, i.e., x1, x2, · · · , xJ

in Step 5, should be more likely to be close to the global
optimum than other solutions. We apply UOBQDA only
to these best solutions in Step 5.
5.2.1 Reproduction and Sampling

Let x1, x2, · · · , xN be the current population, we select
the M best solutions from the current population. Without
loss of generality, we assume that the M selected solutions
are x1, x2, · · · , xM . To model the distribution of these M
best solutions by a fixed-width histogram distribution[24],
we divide the search space [ai, bi] of each variable xi into H
subintervals with the same length. The j-th subinterval is2

[ai +
j − 1

H
(bi − ai), ai +

j

H
(bi − ai)), (1 ≤ j ≤ H).

2Precisely, the H-th subinterval is [ai + H−1
H (bi − ai), bi].
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Then we count W (i, j), the number of the selected solu-
tions whose values of xi fall in the j-th subinterval. The
marginal probability density of xi is modeled by

pi(xi) =

8
>>>>>>><
>>>>>>>:

W (i,1)
M

H
bi−ai

ai ≤ xi < ai + 1
H

(bi − ai)
W (i,2)

M
H

bi−ai
ai + 1

H
(bi − ai) ≤ xi < ai+

2
H

(bi − ai)
...

...
W (i,H)

M
H

bi−ai
ai + H−1

H
(bi − ai) ≤ xi ≤ bi.

(5)
A new solution ex = (ex1, ex2, · · · , exn) is generated by sam-

pling the value of each xi from (5) independently. To gener-
ate exi, we first randomly select a subinterval [ai + j−1

H
(bi−

ai), ai + j
H

(bi − ai)) with probability W (i,j)
M

, and then pick
up a number from this subinterval with uniform distribu-
tion. In Reproduction, we generate K new solutions in this
way.

5.2.2 UOBDQA

Trust region methods using quadratic interpolation
model, developed by Powell[25], is a new class of derivative
free local optimization algorithms for finding a local mini-
mum of the objective function f(x). Such algorithms start
with an initial point v, ρbeg and ρend, the initial and final
values of a trust region radius ρ. The algorithms generate a
set of interpolation points (including v) in a neighborhood
of v. Then an initial quadratic model is formed by inter-
polating these points. The algorithm generate a new point,
either by minimizing the current quadratic model within a
trust region, or by a procedure that improves the accuracy
of the model. One of the interpolation points is replaced
by the resultant point. The typical distance between suc-
cessive points at which f is calculated are of magnitude of
the trust region radius ρ. The initial value of ρ is set to be
ρbeg. ρ will be reduced when the objective function stops
decreasing for such changes to the points. The algorithms
stop when ρ is smaller than ρend.

Several instances of the trust region methods have been
implemented by Powell[25]. Unconstrained optimization by
quadratic approximation (UOBYQA), as its name suggests,
builds a general quadratic model in a trust region. It needs
to maintain (n + 1)(n + 2)/2 interpolation points at each
iteration. The amount of routine work of an iteration takes
O(n4). Consequently, UOBYQA will be prohibitive for the
large value of n. To overcome this shortcoming, uncon-
strained optimization by diagonal quadratic approximation
(UOBDQA) was proposed, which chooses a quadratic of the
form:

Q(v∗ + d) = f(v∗) + gTd + dTDd

where v∗ is the point with the least objective function
among the current interpolation points. g is a vector and
D is a diagonal matrix of dimension n. Therefore, 2n + 1
interpolation points are needed to determine this quadratic
model. The amount of routine work of each iteration is
O(n2) instead of O(n4) in UOBYQA, which makes UOB-
DQA more useful than UOBYQA for solving large scale
optimization problems. For the detailed description of
UOBYQA and UOBDQA, please refer to [25].

5.3 Experimental results

5.3.1 Test suite

We have tested EDA/L on 10 widely-used test functions.
The following are 4 of these functions.

f1 =
nP

i=1

(−x1 sin(
p
|xi|)

where n = 30 and −500 ≤ xi ≤ 500 for all i = 1, . . . , 30.

f2 =
nP

i=1

(−x2
i − 10 cos(2πxi) + 10)

where n = 30 and −5.12 ≤ xi ≤ 5.12 for all i = 1, . . . , 30.

f3 = −20 exp(−0.2

s
1
n

nP
i=1

x2
i )− exp(

nP
i=1

cos(2πxi))

where n = 30 and −32 ≤ xi ≤ 32 for all i = 1, . . . , 30.

f4 = 1
4000

nP
i=1

(−x2
i −

nQ
i=1

cos( xi√
i
) + 1)

where n = 30 and −600 ≤ xi ≤ 600 for all i = 1, . . . , 30.
All these functions have many local minima.

5.3.2 Comparison with other algorithms

We have compared EDA/L with several algorithms, in-
cluding:

• Orthogonal genetic algorithm with quantization
(OGA/Q)[22]. This algorithm applies the orthogonal
design to improve the performance of the genetic algo-
rithm for global optimization.

• Fast evolution strategy (FSA)[26]. This algorithm uses
Cauchy mutation instead of Gaussian mutation in gen-
erating new test points.

• Particle swarm optimization (PSO)[27]. It is a algo-
rithm inspired by bird flocking.

Tables 3 compares the quality of the solutions found by
EDA/L with the above three algorithms, while Table 4 com-
pares the computational costs. The experimental results of
these three algorithms are from [11, 26, 27], respectively.

Table 3 Comparison of the mean of the smallest function

value found

functions EDA/L OGA/Q FSA PSO

f1 -12569.4811 -12569.4537 -12554.5 N/A

f2 0 0 4.6×10−2 46.4689

f3 4.141×10−15 4.440×10−16 1.8×10−2 N/A

f4 0 0 1.6×10−2 0.4498

Table 4 Comparison of the mean no of the function

evaluations

functions EDA/L OGA/Q FSA PSO

f1 52,216 302,166 900,030 N/A

f2 75,014 224,710 500,030 250,000

f3 106,061 114,421 150,030 N/A

f4 79,096 134,000 200,030 250,000

We can see that EDA/L can give better solutions than
other algorithms on all the test functions except f3 in which
the solution obtained by OGA/Q is slightly better than
EDA/L. We also see that the computational cost of our
algorithm is the smallest on all the test problems. These



Q. Zhang et al./ Combinations of Estimation of Distribution Algorithms and Other Techniques 279

results show that combinations of EA with two different
local search techniques is worthwhile investigating[28].

6 Conclusions

EDAs are a novel optimization tool. However, a sin-
gle technique is hard for solving complicated optimization
problems. Therefore, how to combine EDAs with other
techniques represents an important research direction. This
paper has summarized some of our efforts in hybridizing
EDAs with other techniques. We have proposed guided
mutation in which GA and EDA ideas are combined. We
have showed that an EA with guided mutation can effi-
ciently used for tackling with the maximum clique prob-
lem. We have also advocated using an evolutionary algo-
rithm with guided mutation for tuning control parameters
of a problem-specific heuristic for solving a hard optimiza-
tion problem. We have showed that a combination of an
EDA with two local search techniques works very well for
numerical global optimization.

Our work has shown that combinations of simple tech-
niques could be effective and efficient for solving hard prob-
lems. Encouraged by our success in scalar optimization, we
have recently made effort in combining traditional mathe-
matical programming methods, machine learning and evo-
lutionary algorithms for solving multi-objective optimiza-
tion problems[29,30].
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