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Abstract—This paper reposts the results of an on-going 

project and investigates modelling and remote control issues 

of an industry excavator. The details of modelling, 

communication and control of a remotely controllable 

excavator are studied. The paper mainly focuses on 

trajectory tracking control of the excavator base and robust 

control of the excavator arm. These will provide the 

fundamental base for our next research step. In addition, 

extensive simulation results for trajectory tracking of the 

excavator base and robust control of the excavator arm are 

given. Finally, conclusions and further work have been 

identified. 
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I.  INTRODUCTION 

Remote control of an excavator plays a significant role 
in real-life applications, such as nuclear decommissioning, 
building demolition, military operations and rescue 
missions, etc. The advantage of remote control is that it 
allows the operator to control the machine in a remote safe 
environment via the wired/wireless network. In order to 
carry out a specific task, there are two subtasks for an 
excavator. Firstly, the excavator has to find a feasible path 
from its initial location to the destination. Secondly, a 
robust control approach has to be designed to execute the 
desired excavation tasks. According to these requirements, 
we proposed a framework of remote control of an 
excavator in [1].  This paper further expands the work 
conducted in [1] in the following aspects: 1) modelling of 
the excavator base; 2) control of the excavator base; 3) 
robust control of the excavator arm; 4) remote control of 
the excavator base. 

Based on the earlier work, implementation of a 
remote-control excavator mainly focused on modelling 
and control of the machine. The modelling work includes 
kinematic [2] and dynamic [3] modelling, modelling of 
interaction between the machine and the environment [4] 
and parameter identification [5][6][7]. The key reason for 
modelling and parameter identification during the digging 
operation is to provide online parameters for the real-time 
monitoring and remote control. In [5], a novel approach 
for experimental determination of the joint parameters and 
friction coefficients was developed on the excavator arm. 
Zweiri et al. [6] presented another robust, fast, and simple 
technique for the experimental identification of the joint 
parameters and friction coefficients of a full-scale 
excavator arm. Furthermore, an online soil parameter 
estimation scheme was proposed in [7]. During the earlier 
stage of excavation control, impedance control was 
considered as a prevalent robust control approach to 
achieve compliant motion in contact tasks. In [8], a 
position-based impedance controller was presented on 
various contact experiments by using an instrumented 

mini-excavator. Details of robust impedance control for a 
hydraulic excavator have been presented in [9][10].  

In contrast to control of the excavator arm, motion 
control and path planning for the excavator base have also 
been studied in a number of research papers [11][12]. In 
[13], a vision-based control system for a tracked excavator 
was presented. The system includes several controllers 
that collaborate to move the excavator from a starting 
position to a goal position. Furthermore, a number of 
researchers have investigated the feasibility of remote-
control excavation. Many of these studies have addressed 
the possible use of the remote control approach on the 
excavator [1][8]. However, in a remote-control excavator 
system, if the operator cannot sense the condition of 
contact, the work efficiency will decrease in comparison 
to direct control by the human operator. So, design of the 
joystick with proper force feedback [14][15] is key to 
controlling an excavator remotely.  The joystick can make 
skilful operators adapt their operation to the excavating 
environment based on their empirical knowledge, and can 
further realize efficient excavation. Moreover, in contrast 
to controlling a real hydraulic excavator, there are many 
studies which implement their work on the virtual 
excavator [16][17].  The virtual excavator system appears 
to be a low-cost, safe, and reliable system that can be used 
to test both the system and the control strategy in a virtual 
environment. 

As discussed above, many research studies have 
focused on the modelling and controller development 
stages, but there is less literature studying the remote 
operation from a network communication point of view. 
Furthermore, it is found that efficiency of excavation by a 
human operator  [18] is a notable issue that has potential 
commercial value. On the other hand, a remote-control 
excavator has been the wish of both industry and 
manufacturing over the past two decades. Much of the 
work on terrestrial excavation has focused on tele-
operation, rather than on the system requirements for 
autonomous operation. However, although remarkable 
and valuable progress has been made on automated 
excavation, remote control of a full-scale excavator has 
not been commercially demonstrated. 

In this paper, we will report the further development 
based on the work in [1] and will focus on the work from 
the following two aspects: 1) trajectory tracking control of 
the excavator base and 2) robust control of the excavator 
arm. Section II studies the models of the excavator base 
and the excavator arm. Those models will provide the 
basis for the system design, development of the 
controllers, task/path planning, simulation, and validation, 
etc. Section III investigates the control approaches for 
controlling the excavator base and the excavator arm. 
Section IV proposes a wireless networked control scheme 



for the excavator base. Finally, the conclusions and future 
work are given in section V. 

II. MODELLING OF AN EXCAVATOR 

A. Modelling of the excavator base 

The excavator base model is taken from [19] and [20]. 
It has two driving wheels and a free rotating front wheel. 
Two wheels are independently driven by actuators to 
produce transition and orientation. The excavator base 
model is shown in Figure 1, and the parameters are given 
in Appendix. The centre of mass and the centre of the 
excavator base gear are represented by points C and A, 
respectively. 
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Figure 1 The excavator base model for position control given in [19] 
and [20]. 

The kinematic model of the excavator base is 
presented as below. 
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The dynamic model of the excavator base is expressed 
as follows.  
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and K=A/2.   

B. Modelling of the excavator arm 

The dynamic model of the excavator can be expressed 
concisely using the form of the well-known rigid-link 
manipulator equations of motion [21]: 
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where  T4321    is the vector of measured 

joint angles as defined in Figure 2; Da(θ) represents 

inertia; ),(  
aC  represents Coriolis and centripetal effects; 

Ga(θ) represents gravity forces; )(aB  represents frictions; 

Γ is the corresponding input matrix; vector τa=[τ1 τ2 τ3 τ4]
T
 

specifies the torques acting on the joint shafts; FL 
represents the interactive torques between the bucket and 
the environment during the digging operation. 

 

Figure 2 Schematic diagram of an excavator [4] 

According to [4], Da(θ), ),(  
aC , Ga(θ), Γ, and FL are 

given by the following expression: 
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The interaction between the excavator bucket and the 
environment is presented in Figure 3. 

 

Figure 3 The interaction between the excavator bucket and the 

environment [4] 

According to [22], Ft and Fn are the tangential and 
normal components of the soil reaction force at the 

bucket, respectively. The tangential component can be 
calculated as 

 bhkFt 1  (11) 

where k1 is the specific digging force in N/m
2
, and h and b 

are the thickness and width of the cut slice of soil. The 
normal component Fn is calculated as 

 
tn FF   (12) 

where =0.1–0.45 is a dimensionless factor that depends 
on the digging angle, digging conditions, and the wear of 
the cutting edge. 

So according to Figure 3, the loading torque is given 
as below: 
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Since this paper is mainly on the motion control, the 
elements D1i, Di1, C1i, Ci1, Γ1i, Γi1 (i=1, 2, 3, and 4), G1, 
Bba, τ1 and τb are not used in the proposed control law. 
However, those parameters are important in the forced 
control and will be investigated in the future work. 

III. CONTROL OF AN EXCAVATOR 

A. Control of the excavator base 

Two PD controllers have been implemented and tuned 
as suggested in [19] and [20]. Equations (14) to (19) are 
applied to control the right and left wheel actuator torques. 
The gains of the applied PD controllers are given in Table 
1. 
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Parameter Description Value 

Kpv The proportional component for the forward 

speed control 

6.48 

Kiv The integral component for the forward speed 
control 

56.9098 

Kpω The proportional component for the turning 

speed control 

2.05 

Kiω The integral component for the turning speed 
control 

8.4803 

Table 1 Parameters of PD controllers for wheel torque control of the 

excavator base model given in [19] and [20]. 

The extended backstepping position controller which 
is proposed in paper [20] is used in the outer loop for 
position control. The position controller outputs are 



defined by (20) to (22) where the parameter values are 
given in Table 2.  

Parameter Value 

k1 18.2620 

k2 18.75 

k3 9.8229 

k4 26.5370 

k5 1.0164 

k6 k6=2.0028 

Table 2 Parameters of the backstepping position control of the excavator 

base model given in [20]. 
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B.  Robust control of the excavator arm 

Usually, the excavator is required to carry out tasks 
involving contact with its environment, such as levelling 
and digging. In moving towards autonomous excavation, 
it is necessary to develop a controller that is robust to 
uncertainties associated with such tasks. 

Although there are some pronounced differences 
between the classical robot manipulator and robotic 
excavation, there are also some parallels. Therefore, there 
are many control approaches which have been developed 
for the robot manipulator that can be adopted by the 
robotic excavation. In this section, we will firstly study 
control of the excavator using the conventional computed 
torque control which has been developed on the fully-
actuated robot manipulator. Then, we will develop a 
robust control approach which is effective to reject 
external disturbance during excavation. After that, 
extensive simulation results will be compared. 

Using the dynamic model of the excavator arm in (5), 
the computed torque control (CTC) law is given as below: 

 )(ˆ)(ˆ),(ˆ)(ˆ  
aaavaa BGCDU   (23) 

where apavdv ekek    , dae   , kv and kp are 

linear gains to be designed, )(ˆ aD is the estimated inertia; 

),(ˆ  
aC  is the estimated Coriolis and centripetal effects; 

)(ˆ aG  is the estimated gravity forces; )(ˆ aB  is the 

estimated friction effects, Ua is the computed torques 

applied to the system, ddd   ,,  are the desired joint link 

angle, angular velocity, and angular acceleration, 
respectively. 

It is found that the CTC approach is specified by the 
inverse dynamics of the excavator (5). The controller (23) 
generates the generalized torques to be applied to the 
excavator producing the desired motion. The simulation is 

carried out in two cases: 1) tracking the desired motion 
without payload and 2) tracking the desired motion with 
payload (Mload=500kg) but it is assumed to be unknown. 
The parameters of the excavator arm are given in 
Appendix. For both cases, the linear gains kv=100 and 
kp=150 are used.  
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Figure 4 The bucket (O3) trajectory under the CTC law without payload 
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Figure 5 The bucket (O3) tracking errors (solid line: without payload; 

dash line: with unknown payload) 
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Figure 6 The bucket head (O4) tracking errors (solid line: without 

payload; dash line: with unknown payload) 



The simulation results are presented as follows. In 
Figure 4, the actual bucket motion under the CTC law 
without payload is shown. To analyze the performance of 
the CTC law, Figure 5 and Figure 6 present the tracking 
errors of the bucket and the bucket head, respectively. The 
tracking error is the absolute distance from the actual 
trajectory to the desired trajectory. From Figure 5, it can 
be seen that the case with unknown payload gives a 
maximal tracking error which is about 0.056m, and the 
average tracking error with payload is apparently larger 
than the case without payload. Also, in Figure 6, the 
tracking performance is not as good as desired when the 
system is loaded with unknown payload. In Figure 7, the 
control inputs by using the CTC law with payload are 
given. 
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Figure 7 The control torques under the CTC law with unknown payload 

From the simulation results above, it can be found that 
the CTC law cannot give a desired tracking performance 
under the case with unknown payload. So, a robust control 
approach is required to adapt to an uncertain circumstance. 
According to the dynamic model in (5), the robust control 
(RC) law [21] is introduced as below 
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where ePv d 12 , Θ is a vector containing the unknown 

excavator and load parameters, which are known to lie in 

a bounded set:  piii ,...,2,1,|   , Θv(t) is a 

switching-function vector, Pcc, Γ, PllR
nxn

 are symmetric 
positive definite matrices, P12=Pcc

-1
Γ, P1=[Inxn P12].  

In the simulation, the coefficients are chosen as 

Pcc=100I3x3, Pll=80I3x3, P12=40I3x3 and =3.5. The resulting 
linear feedback control law is 

 )(3200)(5.82(t)Tl tete    (32) 

The payload in the bucket is assumed unknown, but 
with known bounds 0≤Mload≤Mmax, where Mmax=Vb∙ρ is 
the maximal weight that the excavator can load, Vb is the 
volume of the bucket, ρ is the soil density. In the 
simulation Mload=500kg and Mmax=1114.6kg. According 
to (28)-(31), the RC law is given as below: 
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Figure 8 The bucket (O3) tracking errors with unknown payload (solid 
line: the CTC law; dash line: the RC law) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

O
4
 t

ra
c
k
in

g
 e

rr
o
r 

(m
)

Time (sec.)
 

Figure 9 The bucket head (O4) tracking errors with unknown payload 
(solid line: the CTC law; dash line: the RC law) 

The comparison between the CTC law and the RC law 
is made by using the simulation results as follows. The 
tracking results of the desired bucket motion by using both 
control laws are presented in Figure 8. For both 
simulations, the mass of the payload is assumed unknown 
for the controller design. As shown in Figure 8, it can be 



seen that the CTC law gives a maximal tracking error 
which is about 0.056m, while the RC law gives a better 
tracking performance, i.e. the average tracking errors 
given by the RC law is obviously less than the average 
tracking errors given by the CTC law. In Figure 9, it can 
be found that the tracking results are consistent with the 
results shown in Figure 8. Although the RC law gives a 
large tracking error at the beginning, but the error 
becomes smaller finally. Therefore, the comparison can 
validate that the RC law is more effective and more robust 
to uncertain circumstance. Furthermore, the control 
torques by using the CTC law and the RC law are 
compared in Figure 10. From the figure, it can be found 
that the control inputs of the RC law are much larger than 
the control inputs of the CTC law. It gives a reasonable 
result that the RC law effectively reduces the tracking 
error during the excavation, and gives a better tracking 
performance. 
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Figure 10 The control torques with unknown payload (solid line: the 

CTC law; dash line: the RC law) 

IV. REMOTE CONTROL OF THE EXCAVATOR BASE 

The co-simulation framework [23][24] that utilizes 
MATLAB-SIMULINK to model the plant-controller and 
OPNET to simulate the network has been used to 
implement the position control of the excavator base and 
is shown in Figure 11. The co-simulation parameters are 
given in Table 3. 

 

Figure 11 Interactive SIMULINK-OPNET co-simulation  

The motive of position control is to control x and y 
coordinates as well as the orientation. The desired x and y 
coordinate profiles and the orientation or direction are 
taken from [19] and are shown in Figure 12(a), Figure 

12(b) and Figure 12(c), respectively. The desired 
trajectory on x-y plane with time of the excavator base is 
depicted in Figure 12(d). 

Parameter Value 

Simulation area 174metre × 174metre 

Number of nodes 13 

Wireless 

communication 
standard 

The IEEE 802.11b (Direct Sequence)  

Signal propagation 

model 

The pass loss and the fading [25][26] 

MANET routing 
protocol 

The DSR protocol [27][28] 

MAC protocol The Carrier Sense Multiple Access with 

Collision Avoidance (the CSMA/CA) [29] 

Packet size 98 bytes 

Data rate 11 Mbps [30] 

Wireless card The Lucent ORINOCO wireless network 

card [30] 

Wireless card output 
power 

15 dBm [30] 

Wireless card 

reception sensitivity 

-82 dBm (11 Mbps) [30] 

Connection protocol The User Datagram Protocol (UDP) 
[31][32][33][34] 

Node movement 

model 

The random way-point model [35][36] 

Sampling mechanism Clock driven [37][38][39][34][40] 

Control mechanism Event driven (upon the arrival of the state 

packet) [37][38][39][34][40] 

Actuation mechanism Event driven (upon the arrival of the control 

packet) [37][38][39][34][40] 

Desired output The reference x, y coordinates and 

orientation with time, Figure 12 

Sampling period 0.05s [29][41][42] 

Table 3 Parameters of SIMULINK-OPNET co-simulation for the 

excavator base position control given in [19] and [20]. 

 
(a) Desired x coordinates 

 
(b) Desired y coordinates 



 
(c) Desired orientation 

 
(d) Desired trajectory of the excavator base on x-y plane with time 

Figure 12 The desired x, y coordinates, orientation and trajectory with 
time [19]. 

The excavator model sends the x coordinate x, y 
coordinate y and the orientation theta to the backstepping 
controller over the OPNET MANET model. The 
controller compares the x, y and theta values with the 
reference x_ref, y_ref and theta_ref and sends the required 
input u1 and u2 to the velocity controller at the excavator 
site. The trajectory of the excavator base at the data rate of 
11 Mbps is shown in Figure 13. The control torques for 
the excavator right and left wheels are shown in Figure 14 
and Figure 15, respectively. 

 

Figure 13 Actual trajectories of the excavator base under various data 

rates. 

 

Figure 14 The control torque of the excavator right wheel 

 

Figure 15 The control torque of the excavator left wheel 

V. CONCLUSIONS AND FURTURE WORK 

This paper has reported the work conducted in an on-
going project. The key issues in remotely controllable 
excavators have been identified. An overall architecture 
has been proposed and functions of each block of the 
architecture have been discussed. Some simulation work 
has been conducted to demonstrate the proposed system.  

We will conduct further simulation on the whole 
system. The experimental study will also be investigated. 
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APPENDIX 

Parameters of the excavator base model: 

M=10kg: mass of the entire base 

IA=1.0kg∙m
2
: moment of inertia of the entire base 

considering point A 

I0=0.001kg∙m
2
: moment of inertia of the wheel complex 

L=0.35m: width of the base 

r=0.035m: radius of the wheels 

d=0.05m: distance between point A and C 

θc: angle representing the orientation of the base 

θR: angle position of the right wheel 

θL: angle position of the left wheel 

τR: actuation torque of the right wheel 



τL: actuation torque of the left wheel 

Parameters of the excavator arm model: 

Mbo=1566 kg: mass of boom 

Mst=735 kg: mass of stick 

Mbu=432 kg: mass of bucket 

Mload=500kg: mass of load 

Vb=0.58m
3
: volume of bucket 

ρ=1921.8kg/m
3
: soil density 

Mmax=Vb∙ρ: maximal load weight  

Ibo=14250.6 kg∙m
2
: moment of inertia of boom 

Ist=727.7 kg∙m
2
: moment of inertia of stick 

Ibu=224.6 kg∙m
2
: moment of inertia of bucket 

θ1: angle of base 

θ2: angle of boom 

θ3: angle of stick 

θ4: angle of bucket 

θb: angle between bucket bottom and X4-axis 

θdg: angle between bucket edge and horizontal line 

a1=0.05 m: O0O1 

a2=5.16 m: O1O2 

a3=2.59 m: O2O3 

a4=1.33 m: O3O4 

r2=2.71 m: O1G2 

r3=0.64 m: O2G3 

r4=0.65 m: O3G4 

α2=0.2566 rad: G2O1O2 

α3=0.3316 rad: G3O2O3 

α4=0.3944 rad: G4O3O4 

Bbo: viscous friction coefficient of boom 

Bst: viscous friction coefficient of stick 

Bbu: viscous friction coefficient of bucket 

g=9.81 N/kg: acceleration due to gravity 

Ts=10 ms: sampling time 
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