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Abstract: The problem of stability for singular systems with two additive time-varying delay components is investigated. By
constructing a simple type of Lyapunov-Krasovskii functional and utilizing free matrix variables in approximating certain integral
quadratic terms, a delay-dependent stability criterion is established for the considered systems to be regular, impulse free, and stable
in terms of linear matrix inequalities (LMIs). Based on this criterion, some new stability conditions for singular systems with a single
delay in a range and regular systems with two additive time-varying delay components are proposed. These developed results have
advantages over some previous ones in that they have fewer matrix variables yet less conservatism. Finally, two numerical examples
are employed to illustrate the effectiveness of the obtained theoretical results.
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1 Introduction

Time delays frequently appear in many practical systems,
such as biological systems, chemical systems, electronic sys-
tems, network control systems, etc. The time delays are
regarded as the major source of instability and poor per-
formance. During the last two decades, the problem of sta-
bility of linear time-delay systems has been a subject of
considerable research efforts. A great number of research
results have been reported in [1–3]. The most commonly
and frequently used state-space model of linear time-delay
systems is

ẋ(t) = Ax(t) + Bx(t− τ(t)) (1)

where τ(t) is the time-delay in the state x(t), which is often
assumed to be constant or time-varying satisfying certain
conditions, e.g., 0 6 τ(t) 6 τ, τ̇(t) 6 d, τ and d are positive
constants. In the above mathematical model (1), the delay
τ(t) in the state x(t) appears in a single form. However,
in some practical situations, multiple delay components in
the state should be considered, which can be found in the
networked control systems. Thus, a new model for linear
time-delay systems is proposed as

ẋ(t) = Ax(t) + Bx(t−
n∑

i=2

τi(t)). (2)

Lam et al.[4] exposed the new model and gave a prelimi-
nary result on its stability analysis with two additive time-
varying delay components. The introduction of model (2)
is motivated by the observation that in some practical situ-
ations, signals transmitted from one point to another may
experience new network segments, which can induce succes-
sive delays with different properties due to variable network
transmission conditions, and this problem has been clearly
justified by a state feedback remote control problem. An
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improved stability criterion was proposed by exploiting new
Lyapunov-Krasovskii functional[5]. By taking more infor-
mation of the time-varying delay in Lyapunov-Krasovskii
functional into account and by utilizing free matrix vari-
ables in approximating certain integral terms, a new robust
stability criterion for uncertain linear systems with two ad-
ditive time-varying components was given[6]. Very recently,
by using a delay decomposition method, a delay-dependent
absolute stability condition for a class of nonlinear sys-
tems with two additive time-varying delay components is
presented[7]. By constructing new Lyapunov-Krasovskii
functionals and employing novel approaches to estimate
the upper bound on the time derivative of the Lyapunov-
Krasovskii functionals, some new delay-dependent stability
criteria for linear systems and neural network with two ad-
ditive time-varying components are derived[8−10].

On the other hand, during the past years, singular sys-
tems have attracted a lot of researchers from mathematics
and control communities due to the fact that singular sys-
tems can describe the behavior of some physical systems
better than regular systems. A great number of results
based on the theory of regular systems have been extended
to the area of singular systems[11]. Recently, much atten-
tion has been paid to singular systems with delay. It should
be pointed that the stability problem for singular systems
is much more complicated than that for regular systems be-
cause not only stability but also regularity and absence of
impulses (for continuous singular systems)[12−17] or causal-
ity (for discrete singular systems)[18] should be considered.
Note that the stability results mentioned in [12–18] can only
provide stability conditions for singular systems with a sin-
gle delay in state. However, to the best of our knowledge,
stability conditions for singular systems with multiple de-
lay components are few even non-existing in the published
works, which has motivated this paper.

In this paper, we will propose a simple type of Lyapunov-
Krasovskii functional and use the method inspired by [8, 9]
to analyze the stability of singular systems with multiple
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delay components. A stability condition is established for
the considered singular systems to be regular, impulse free,
and stable. Based on this criterion, some new stability con-
ditions for singular systems with a single delay in a range
and regular systems with two additive time-varying delay
components are also proposed. The main contribution of
this paper is in three aspects. The first is to give a prelimi-
nary stability result for singular systems with two additive
time-varying delay components. Second, the corollaries cre-
ated by the result will involve fewer decision variables than
existing ones, hence they are mathematically less complex
and more computationally efficient. Third, the corollaries
created by the result will be less conservative than some ex-
isting ones, which will be demonstrated by some numerical
examples. As mentioned in [4, 5], we still consider the case
where only two additive time-varying components appear in
the system state, and the idea in this paper can be extended
to singular systems with multiple delay components.

Notations. Throughout this paper, Rn denotes the n-
dimensional Euclidean space, while Rm×n refers to the set
of all real matrices with m rows and n columns. AT rep-
resents the transpose of the matrix A, while A−1 denotes
the inverse of A. For real symmetric matrices X and Y ,
the notation X > Y (respectively, X > Y ) means ma-
trix X − Y is positive-semidefinite (respectively, positive-
definite). I is the identity matrix with appropriate dimen-
sions. ‖ x ‖ refers to the Euclidean norm of the vector x,
i.e., ‖ x ‖=

√
xTx. * denotes the matrix entries implied by

symmetry.

2 Problem statement

Consider the singular system with two additive time-
varying delay components described by

{
Eẋ(t) = Ax(t) + Bx(t− τ1(t)− τ2(t))

x(t) = ϕ(t), t ∈ [−τ, 0]
(3)

where x(t) ∈ Rn is the state vector, and ϕ(t) ∈ Rn denotes
an initial function. The matrix E ∈ Rn×n may be singular,
and it is assumed that rank (E) = r 6 n, A, B ∈ Rn×n are
the known matrices. τ1(t) and τ2(t) represent the two delay
components in the state, it is assumed that

0 6 τi(t) 6 τi

τ̇i(t) 6 di < ∞ (i = 1, 2) (4)

and

τ(t) = τ1(t) + τ2(t)

τ = τ1 + τ2

d = d1 + d2

where τi, di(i = 1, 2) are positive constants.
To this end, the following definitions and lemmas are re-

called which will help in the discussion of our main results.
Definition 1[11]. The pair (E, A) is said to be regular if

det(sE −A) is not identically zero. The pair (E, A) is said
to be impulse free if deg(det(sE −A)) = rank(E).

Definition 2[12,13]. The singular time-delay system (3)
is said to be regular and impulse free if the pair (E, A) is
regular and impulse free.

Definition 3[14,16,17]. The singular time-delay system
(3) is said to be stable if for any ε > 0, there exists a scalar
δ(ε) > 0 such that, for any compatible initial conditions
ϕ(t) satisfying sup−τ6t60 ‖ ϕ(t) ‖6 δ(ε), the solution x(t)
of system (3) satisfies ‖ x(t) ‖6 ε for any t > 0, moreover,
limt→∞ x(t) = 0.

Lemma 1[19]. For any x, y ∈ Rn and any symmetric
positive definite matrix R ∈ Rn×n, the following inequality
holds:

−2xTy 6 xTR−1x + yTRy.

Lemma 2[20](Schur complement). For a given sym-

metric matrix S = ST =

[
S11 S12

∗ S22

]
, where

S11 ∈Rr×r, the following conditions are equivalent:

1) S < 0;

2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

3) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

3 Main results

We provide a delay-dependent stability criterion guar-
anteeing the singular time-delay system (3) to be regular,
impulse free and stable.

Theorem 1. Given scalars τi > 0, di > 0 (i = 1, 2),
for any delays τ1(t) and τ2(t) satisfying (4), the singular
time-delay system (3) is regular, impulse free and stable, if
there exist matrices P > 0, Qj > 0 (j = 1, 2, 3), R > 0 and
Xk, Yk, Zk, Mk (k = 1, 2), such that linear matrix inequali-
ties (LMIs) (5)−(8) hold.

[
Ξ τX

∗ −τR

]
< 0 (5)




Ξ τ1X τ2Y

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (6)




Ξ τ1Z τ2X

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (7)




Ξ τ1Z τ2Y

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (8)

where

X = [XT
1 XT

2 0 0]T

Y = [Y T
1 Y T

2 0 0]T

Z = [ZT
1 ZT

2 0 0]T

Ξ =




Ξ11 Ξ12 Y1E − Z1E −X1E

∗ Ξ22 Y2E − Z2E −X2E

∗ ∗ −(1− d1)Q2 0

∗ ∗ ∗ −Q3




with

Ξ11 =ETPA + ATPE + Q1 + Q2 + Q3 + τATRA + Z1E+

ETZT
1 + ATΨMT

1 + M1Ψ
TA
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Ξ12 =ETPB+τATRB+X1E−Y1E + ETZT
2 +ATΨMT

2 +

M1Ψ
TB

Ξ22 =− (1− d)Q1 + τBTRB + X2E + ETXT
2 − Y2E−

ETY T
2 + BTΨMT

2 + M2Ψ
TB

and Ψ ∈ Rn×(n−r) is any full-column rank matrix satisfying
ETΨ = 0.

Proof. We first show that the singular time-delay sys-
tem (3) is regular and impulse free for any delays τ1(t), τ2(t)
satisfying (4). From LMIs (5)−(8), it is easy to see that

ETPA + ATPE + Z1E + ETZT
1 + ATΨMT

1 + M1Ψ
TA < 0.

(9)
Since rank(E) = r 6 n, there exist two nonsingular matri-
ces G and H such that

GEH =

[
Ir 0

0 0

]
.

Set

GAH =

[
A11 A12

A21 A22

]

G−TΨ =

[
0

Ψ̃

]

HTM1 =

[
M̃11

M̃12

]

where Ψ̃ ∈ R(n−r)×(n−r) is a nonsingular matrix. Pre-
multiplying and post-multiplying (9) by HT and H, respec-
tively, and by some simple manipulations, we have

[
# #

# AT
22Ψ̃M̃T

12 + M̃12Ψ̃
TA22

]
< 0 (10)

where “#” represents matrices that are not relevant in the
following discussion. From (10), we have

AT
22Ψ̃M̃T

12 + M̃12Ψ̃
TA22 < 0

which implies matrix A22 is nonsingular. Thus, the pair
(E, A) is regular and impulse free. Hence, according to
Definition 2, singular time-delay system (3) is regular and
impulse free for any delays τ1(t) and τ2(t) satisfying (4).

Next, we will show that singular time-delay system (3)
is stable. Choose the following Lyapunov-Karsovskii func-
tional candidate

V (t) = V1(t) + V2(t) + V3(t) (11)

where

V1(t) =xT(t)ETPEx(t)

V2(t) =

∫ t

t−τ(t)

xT(s)Q1x(s)ds +

∫ t

t−τ1(t)

xT(s)Q2x(s)ds+

∫ t

t−τ

xT(s)Q3x(s)ds

V3(t) =

∫ t

t−τ

∫ t

θ

ẋT(s)ETREẋ(s)dsdθ

with matrixes P, Qj (i = 1, 2, 3), R given in Theorem 1 sat-
isfying LMIs (5)−(8).

Calculating the time derivatives of Vi(t) (i = 1, 2, 3) along
the trajectory of system (3) yields

V̇1(t) = 2xT(t)ETP (Ax(t)+Bx(t−τ(t))) (12)

V̇2(t) = xT(t)(Q1 + Q2 + Q3)x(t)−
(1− τ̇(t))xT(t− τ(t))Q1x(t− τ(t))−
(1− τ̇1(t))x

T(t− τ1(t))Q2x(t− τ1(t))−
xT(t− τ)Q3x(t− τ) 6
xT(t)(Q1 + Q2 + Q3)x(t)−
(1− d)xT(t− τ(t))Q1x(t− τ(t))−
(1− d1)x

T(t− τ1(t))Q2x(t− τ1(t))−
xT(t− τ)Q3x(t− τ) (13)

V̇3(t) = τ ẋT(t)ETREẋ(t)−
∫ t

t−τ

ẋT(s)ETREẋ(s)ds =

τ ẋT(t)ETREẋ(t)−
∫ t−τ(t)

t−τ

ẋT(s)ETREẋ(s)ds−
∫ t−τ1(t)

t−τ(t)

ẋT(s)ETREẋ(s)ds−
∫ t

t−τ1(t)

ẋT(s)ETREẋ(s)ds. (14)

Define ξ(t) = [xT(t) xT(t−τ(t)) xT(t−τ1(t)) xT(t−τ)]T,
from Lemma 1, the following inequalities (15)−(17) hold for
matrices X = [XT

1 XT
2 0 0]T, Y = [Y T

1 Y T
2 0 0]T and

Z = [ZT
1 ZT

2 0 0]T with appropriate dimensions.

−
∫ t−τ(t)

t−τ

ẋT(s)ETREẋ(s)ds 6

(τ − τ(t))ξT(t)XR−1XTξ(t)+

2ξT(t)XE(x(t− τ(t))− x(t− τ)) (15)

−
∫ t−τ1(t)

t−τ(t)

ẋT(s)ETREẋ(s)ds 6

τ2(t)ξ
T(t)Y R−1Y Tξ(t)+

2ξT(t)Y E(x(t− τ1(t))− x(t− τ(t))) (16)

−
∫ t

t−τ1(t)

ẋT(s)ETREẋ(s)ds 6

τ1(t)ξ
T(t)ZR−1ZTξ(t)+

2ξT(t)ZE(x(t)− x(t− τ1(t))). (17)

It then follows from (14)−(17) that

V̇3(t) 6τ(Ax(t)+Bx(t− τ(t)))TR(Ax(t)+Bx(t− τ(t)))+

ξT(t)((τ1 − τ1(t))XR−1XT + τ1(t)ZR−1ZT+

(τ2 − τ2(t))XR−1
1 XT + τ2(t)Y R−1Y T)ξ(t)+

2ξT(t)(XE(x(t− τ(t))− x(t− τ))+

Y E(x(t− τ1(t))− x(t− τ(t)))+

ZE(x(t)− x(t− τ1(t)))). (18)
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On the other hand, for matrix M = [MT
1 MT

2 0 0]T

with appropriate dimensions, the following equation is true:

2ξT(t)MΨT(Ax(t) + Bx(t− τ(t))) = 0. (19)

Combining (12), (13), (18) and (19), we can get

V̇ (t) 6ξT(t)(Ξ + (τ1 − τ1(t))XR−1XT + τ1(t)ZR−1ZT+

(τ2 − τ2(t))XR−1XT + τ2(t)Y R−1Y T)ξ(t). (20)

Using the similar methods of [8, 9], (20) can be written as

V̇ (t) 6ξT(t)(
τ1 − τ1(t)

τ1

τ2 − τ2(t)

τ2
(Ξ + τXR−1XT)+

τ1 − τ1(t)

τ1

τ2(t)

τ2
(Ξ + τ1XR−1XT + τ2Y R−1Y T)+

τ1(t)

τ1

τ2 − τ2(t)

τ2
(Ξ + τ1ZR−1ZT + τ2XR−1XT)+

τ1(t)

τ1

τ2(t)

τ2
(Ξ + τ1ZR−1ZT + τ2Y R−1Y T))ξ(t)

using Lemma 2. From LMIs (5)−(8), it is easy to see that
V̇ (t) < 0 for any x(t) 6= 0. Hence, there exists a sufficiently
small scalar ε > 0, such that

V̇ (t) 6 −ε ‖ x(t) ‖2

which implies that singular time-delay system (3) is
stable[16,17]. ¤

Remark 1. If we combine time-delays τ1(t) and τ2(t)
into one delay τ(t), the stability of singular time-delay sys-
tem (3) can be readily checked by using some existing con-
ditions, such as [14, 16, 17]. However, as discussed in [4, 5],
this approach would be inevitably conservative for some sit-
uations as it does not make full use of the information of
τ1(t) and τ2(t).

Remark 2. Though we only consider systems with two
additive delay components, Theorem 1 can be readily ex-
tended to singular systems with multiple additive delay
components, i.e.,

Eẋ(t) = Ax(t) + Bx(t−
n∑

i=3

τi(t)).

When τ1(t) ≡ τ1, i.e., τ1(t) is a constant delay, choosing

Z = [− 1

τ1
RE 0

1

τ1
RE 0]T

in (17), we can obtain the following delay-dependent stabil-
ity criterion from the procedure for the proof of Theorem
1.

Corollary 1. Given scalars τ1 > 0, τ2 > 0, d2 > 0, for
any delay τ2(t) satisfying 0 6 τ2(t) 6 τ2 and τ̇2(t) 6 d2,
the singular time-delay system (3) with τ1(t) ≡ τ1 is regu-
lar, impulse free and stable, if there exist matrices P > 0,
Qj > 0 (j = 1, 2, 3), R > 0 and Xk, Yk, Mk (k = 1, 2, 3),
such that the following LMIs (21)−(22) hold:

[
Υ τ2X

∗ −τ2R

]
< 0 (21)

[
Υ τ2Y

∗ −τ2R

]
< 0 (22)

where

X = [XT
1 XT

2 0 0]T

Y = [Y T
1 Y T

2 0 0]T

Υ =




Υ11 Υ12 Y1E +
1

τ1
ETRE −X1E

∗ Υ22 Y2E −X2E

∗ ∗ −Q2 − 1

τ1
ETRE 0

∗ ∗ ∗ −Q3




with

Υ11 =ETPA + ATPE + Q1 + Q2 + Q3 + τATRA−
1

τ1
ETRE + ATΨMT

1 + M1Ψ
TA

Υ12 =ETPB + τATRB + X1E − Y1E + ATΨMT
2 +

M1Ψ
TB

Υ22 =− (1− d2)Q1 + τBTRB + X2E + ETXT
2 − Y2E−

ETY T
2 + BTΨMT

2 + M2Ψ
TB

and Ψ ∈Rn×(n−r) is any full-column rank matrix satisfying
ETΨ = 0.

Remark 3. Note that when τ1(t) ≡ τ1 is a constant
delay, system (3) can be regarded as a class of singular sys-
tems with a single delay in a range[16,17]: τ1 6 τ(t) 6 τ .
Corollary 1 provide a new delay-dependent stability crite-
rion for this class of singular time-delay systems.

If matrix E is nonsingular, then the stability problem
of system (3) is reduced to analyzing the stability of the
regular system

{
ẋ(t) = Ax(t) + Bx(t− τ1(t)− τ2(t))

x(t) = ϕ(t), t ∈ [−τ, 0].
(23)

This problem has been widely studied in the recent
literatures[4−8]. For the system (23), we choose the fol-
lowing Lyapunov-Krasovskii functional:

V (t) =xT(t)Px(t) +

∫ t

t−τ(t)

xT(s)Q1x(s)ds+

∫ t

t−τ1(t)

xT(s)Q2x(s)ds +

∫ t

t−τ

xT(s)Q3x(s)ds+

∫ t

t−τ

∫ t

θ

ẋT(s)Rẋ(s)dsdθ (24)

where P > 0, Qj > 0 (j = 1, 2, 3), R > 0.
From Theorem 1, we can obtain the following delay-

dependent stability criterion for system (23).
Corollary 2. For given scalars τi > 0, di > 0 (i = 1, 2),

delays τ1(t) and τ2(t) satisfying (4), the time-delay system
(23) is stable, if there exist matrices P > 0, Qj > 0 (j =
1, 2, 3), R > 0 and Xk, Yk, Zk (k = 1, 2), such that the fol-
lowing LMIs hold:

[
Ω τX

∗ −τR

]
< 0 (25)




Ω τ1X τ2Y

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (26)



J. M. Jiao / A Stability Criterion for Singular Systems with Two Additive Time-varying Delay Components 43




Ω τ1Z τ2X

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (27)




Ω τ1Z τ2Y

∗ −τ1R 0

∗ ∗ −τ2R


 < 0 (28)

where

X = [XT
1 XT

2 0 0]T

Y = [Y T
1 Y T

2 0 0]T

Z = [ZT
1 ZT

2 0 0]T

Ω =




Ω11 Ω12 Y1 − Z1 −X1

∗ Ω22 Y2 − Z2 −X2

∗ ∗ −(1− d1)Q2 0

∗ ∗ ∗ −Q3




with

Ω11 = PA + ATP + Q1 + Q2 + Q3 + τATRA + Z1 + ZT
1

Ω12 = PB + τATRB + X1 − Y1 + ZT
2

Ω22 = −(1− d)Q1 + τBTRB + X2 + XT
2 − Y2 − Y T

2 .

Remark 4. The obtained criteria in this paper are de-
rived by defining the simple type of Lyapunov-Krasovskii
functionals (11) and (24), which not only make full use of
the information about τ1(t) and τ2(t), but also have fewer
decision variables than the corresponding ones in some ex-
isting literatures[4−8, 16, 17]. Thus, our new proposed crite-
ria are less conservative and the numerical complexity is
smaller than some existing results, which will be demon-
strated by numerical examples.

Remark 5. The conditions in Theorem 1, Corollaries
1 and 2 are all delay-dependent and rate-dependent. How-
ever, if we set Q1 and Q2 in them as zero, they reduce to
delay-dependent and rate-independent ones, which can be
used when the delay is not differentiable or the derivative
of the delay is unknown.

Remark 6. The obtained results in this paper are for-
mulated in terms of strict LMIs. It can be easily solved
using any LMI toolbox, e.g, Matlab or Scilab.

4 Numerical examples

In this section, two numerical examples are used to il-
lustrate that the proposed methods are effective and less
conservative than some previous results.

Example 1. Consider singular time-delay system (3)
with

E =

[
1 0

0 0

]

A =

[
0.5 0

0 −1

]

B =

[
−1.1 1

0 0.5

]
.

First, it is assumed that τ̇1(t) 6 0.2, τ̇2(t) 6 0.5. Our
purpose is to find the upper bound τ of delay τ(t), when
the delay τ1 is known, such that the system is regular, im-
pulse free and stable. The calculation results obtained by
Theorem 1 in [14], Theorem 1 in [16], Theorem 1 in [17],
and Theorem 1 in this paper for different cases are listed in
Table 1. Next, it is assumed that τ1(t) ≡ τ1, τ̇2(t) 6 0.7.
Our purpose is to find the upper bound τ of delay τ(t) when
the delay τ1 is known, such that the system is regular, im-
pulse free and stable. The calculation results obtained by
Theorem 1 in [16], Theorem 1 in [17], and Corollary 1 in
this paper for different cases are listed in Table 2. It is clear
that Theorem 1 and Corollary 1 in this paper gives much
better results than those obtained by [14, 16, 17].

Table 1 Comparison of delay upper bound τ for various τ1

and d1 = 0.2, d2 = 0.5

τ1 0.1 0.2 0.3

[14] 0.851 0.751 0.651

[16, 17] 0.920 0.820 0.720

Theorem 1 1.038 1.038 1.038

Table 2 Comparison of delay upper bound τ for various τ1

and d1 = 0, d2 = 0.7

τ1 0.1 0.3 0.5 0.7 0.9

[16, 17] 1.023 1.030 1.037 1.046 1.056

Corollary 1 1.039 1.043 1.047 1.052 1.059

Example 2. Consider time-delay system (23)

A =

[
−2 0

0 −0.9

]

B =

[
−1 0

−1 −1

]

τ̇1(t) 6 0.1

τ2(t) 6 0.8.

Our purpose is to find the upper bound τ2 of delay τ2(t),
or τ1 of delay τ1(t) when the delay τ1 or τ2 is known, such
that the system is stable. The calculation results obtained
by Theorem 1 in [4], Theorem 1 in [5], Theorem 1 in [6],
Corollary 1 in [7], Theorem 1 in [8], and Corollary 2 in this
paper for different cases are listed in Tables 3 and 4. It is
clear that Corollary 2 in this paper gives much better results
than those obtained by [4−7]. Moreover, the Corollary 2 in
this paper contains fewer decision variables than those con-
ditions in [4−8], which can be seen from Table 5. Hence, it
is mathematically less complex and computationally more
efficient.
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Table 3 Comparison of delay upper bound τ2 for various τ1

τ1 1.0 1.2 1.5

[4] 0.415 0.376 0.248

[5] 0.512 0.406 0.283

[7], (N = 1) 0.637 0.422 0.285

[7], (N = 2) 0.694 0.478 0.331

[6] 0.872 0.672 0.371

[8], Corollary 2 0.873 0.673 0.452

Table 4 Comparison of delay upper bound τ1 for various τ2

τ2 0.1 0.2 0.3

[4] 2.263 1.696 1.324

[5] 2.300 1.779 1.456

[7], (N = 1) 2.409 1.814 1.459

[7], (N = 2) 2.472 1.866 1.504

[6] 1.772 1.672 1.572

[8], Corollary 2 2.558 2.100 1.808

Table 5 Number of decision variables

Method Number of decision variables

[4] 12.5n2 + 4.5n

[5] 19.5n2 + 3.5n

[7], (N = 1) 11.5n2 + 4.5n

[7], (N = 2) 22.5n2 + 8.5n

[6] 32.5n2 + 8.5n

[8] 15.5n2 + 3.5n

Corollary 2 8.5n2 + 2.5n

5 Conclusions

This paper has investigated the stability problem for sin-
gular systems with two additive time-varying delay compo-
nents. On the basis of a simple type of Lyapunov-Krasovskii
functional and by utilizing free-weighting matrices, a delay-
dependent stability criterion is established for the consid-
ered systems to be regular, impulse free, and stable in terms
of LMIs. The obtained results can be used to deal with
the problems of stability analysis for singular systems with
single delay in a range and regular systems with two addi-
tive time-varying delay components. The resulting criteria
have advantages over the previous ones because they involve
fewer decision variables. Furthermore, they are less conser-
vative than some existing ones. Two numerical examples
are given to illustrate the applicability of the results.
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