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Abstract: The study presented in this paper is in continuation with the paper published by the authors on parallel fuzzy proportional
plus fuzzy integral plus fuzzy derivative (FP + FI + FD) controller. It addresses the stability analysis of parallel FP + FI + FD
controller. The famous “small gain theorem” is used to study the bounded-input and bounded-output (BIBO) stability of the fuzzy
controller. Sufficient BIBO-stability conditions are developed for parallel FP + FI + FD controller. FP + FI + FD controller is derived
from the conventional parallel proportional plus integral plus derivative (PID) controller. The parallel FP + FI + FD controller is
actually a nonlinear controller with variable gains. It shows much better set-point tracking, disturbance rejection and noise suppression
for nonlinear processes as compared to conventional PID controller.
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1 Introduction

Proportional plus integral plus derivative (PID) con-
troller is extensively used in industry for more than 50 years
in many forms, such as, pneumatic, hydraulic, analog and
digital, etc., because of its effectiveness, simplicity of im-
plementation, inexpensive cost, ease of design and broad
applicability. It has been reported that in process indus-
tries, more than 95% of the controllers are from the PID
controller′s family[1−4].

Driankov et al. reported that conventional PID con-
trollers are generally incapable to control processes with
additional complexities such as time delays, significant os-
cillatory behavior (complex poles with small damping), pa-
rameter variations, nonlinearities, and multiple input and
multiple output (MIMO) plants[1, 2, 5]. Therefore, scientists
and researchers were trying to use intelligent techniques,
such as fuzzy logic, to enhance the capabilities of the clas-
sical PID controller and its family. They were trying to
combine fuzzy logic control technology with the conven-
tional PID controller to obtain a behavior similar to that
of a regular PID controller[1, 2, 5−11]. It is believed that by
combining these two techniques, a better control system can
be achieved.

Lack of stability assurance can limit the applications of
fuzzy controllers[12]. There exist many stability theories for
different fuzzy control systems. Some of the stability the-
ories are the small gain theorem, the energetic method[13],
the fuzzy transfer function and phase plane analysis[14],
Lyapunov function method[5, 15], etc.

Chen et al. have proposed fuzzy PI/PD/PID controllers,
and performed comparison with the conventional con-
trollers. They have derived the structure of fuzzy con-
trollers, with simple analytical formulas as the final re-
sults by considering two fuzzy sets on each input variables
and three fuzzy sets on output variable in the fuzzifica-
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tion process, rule base with four control rules, intersec-
tion T-norm, Lukasiewicz OR T-conorm, drastic product
inference method, and center of area (COA) defuzzification
method. They studied the bounded-input and bounded-
output (BIBO) stability of fuzzy controllers using small
gain theorem[1, 2, 12, 16, 17]. Malki et al.[18] proposed a new
design and stability analysis of fuzzy proportional deriva-
tive controller. Further, Chen et al.[2, 19] have developed
fuzzy PID controller, which is a combination of fuzzy PI
and fuzzy D controller having same structure as mentioned
earlier. Here, derivative function is performed on controlled
variable rather than error signal. Stability analysis is per-
formed using small gain theorem. Kim et al.[20] have pro-
posed another configuration of fuzzy PID controller (fuzzy
PI + fuzzy ID) with the same structure as discussed above.

Mohan et al.[21−25] introduced an analytical struc-
ture and analyzed the simplest fuzzy PI/PD/PID con-
trollers. Sufficient conditions for BIBO stability of fuzzy
PI/PD/PID control systems are established using the small
gain theorem. Kumar et al.[26] presented the design, per-
formance and stability analysis of formula-based fuzzy PI
(FPI) controller. They use a large number of fuzzy sets for
input and output variables to obtain more formulae for cor-
rective action. Further, Kumar et al.[27] presented a review
on classical and fuzzy PID controllers. They presented the
history of the development of classical PID controllers and
their enhancement using fuzzy logic theory.

In this paper, BIBO stability analysis is performed for a
parallel FP + FI + FD controller proposed in [28]. The well
known small gain theorem is used for the stability analysis
of nonlinear process controlled by the parallel FP + FI +
FD controller developed in [28]. Sufficient BIBO-stability
conditions are derived for the various regions of parallel
FP + FI + FD controller. Also, the set-point tracking,
disturbance rejection and noise suppression capabilities are
studied in the case of FP + FI + FD controller for nonlinear
processes.
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2 Review of the FP + FI + FD con-
troller

The design and performance analysis of parallel FP +
FI + FD controllers have been discussed in [28]. Same
notations are used to describe and analyze this fuzzy con-
troller as presented in [28]. The configuration of the closed
loop of the parallel FP + FI + FD controller is shown
in Fig. 1, where T > 0 is the sampling time, ySP(nT )
is the reference set-point, y(nT ) is the process variable,
e(nT ) = ySP(nT ) − y(nT ) is the error signal, r(nT ) is the
rate of change of error signal, and uP+I+D(nT ) is the out-
put of the parallel FP + FI + FD controller.

Fig. 1 The closed loop of parallel FP + FI + FD control system

As presented in [28], the overall control action of parallel
FP + FI + FD controller can be obtained by algebraically
summing fuzzy P control action, fuzzy I control action and
fuzzy D control action simultaneously. The resultant par-
allel FP + FI + FD control action is

uP+I+D(nT ) = u′P (nT ) + uI(nT ) + uD(nT )

uP+I+D(nT ) = KUP uP (nT ) + uI(nT − T ) +

KUI∆uI(nT )− uD(nT − T ) + KUD∆uD(nT ) (1)

where uP (nT ) is the fuzzy P control action, and KUP is the
fuzzy P controller gain, ∆uI(nT ) is the incremental control
action of fuzzy I controller, KUI is the fuzzy I controller
gain, ∆uD(nT ) is the incremental control action of fuzzy D
controller, and KUD is the fuzzy D controller gain.

As presented in [28], two triangular membership func-
tions are considered for input variables and three singleton
membership functions are considered for output variable for
the fuzzy P, fuzzy I and fuzzy D control components. Also,
rule based with the four control rules, max-min inference
mechanism and center of mass for defuzzification method
are considered. The regions of the fuzzy P, fuzzy I and fuzzy
D controllers′ input combination (IC) values are graphically

shown in Fig. 2. The regions for each fuzzy control compo-
nents are divided into 12 different ICs regions. The results
of uP (nT ), ∆uI(nT ) and ∆uD(nT ) are obtained by ap-
plying defuzzification algorithm to each membership area,
shown as





uP (nT ) =

4∑
r=1

µPr uPr

4∑
r=1

µPr

∆uI(nT ) =

4∑
r=1

µIr∆uIr

4∑
r=1

µIr

∆uD(nT ) =

4∑
r=1

µDr∆uDr

4∑
r=1

µDr

(2)

where µPr , µIr and µDr are the membership values at the
r-th rule, uPr , ∆uIr and ∆uDr are the singleton outputs at
the r-th rule.

The expressions of uP (nT ), ∆uI(nT ) and ∆uD(nT ) in
IC I to IC XII regions are shown in Table 1, respectively.

Fig. 2 Regions of the parallel FP + FI + FD controller values

Table 1 Analytical formulas for the 12 IC regions for fuzzy P, fuzzy I and fuzzy D controller[28]

IC# Fuzzy P controller output “uP (nT )” Fuzzy I controller output “∆uI(nT )” Fuzzy D controller output “∆uD(nT )”

IC I & IC III
L[K2

p∆e(nT )−K1
pe(nT )]

2[2L−
∣∣∣K1

pe(nT )
∣∣∣]

L[K1
i e(nT ) + K2

i r(nT )]

2[2L− ∣∣K1
i e(nT )

∣∣]
L[K2

de(nT )−K1
dr(nT )]

2[2L− ∣∣K2
de(nT )

∣∣]

IC II & IC IV
L[K2

p∆e(nT )−K1
pe(nT )]

2[2L−
∣∣∣K2

p∆e(nT )
∣∣∣]

L[K1
i e(nT ) + K2

i r(nT )]

2[2L− ∣∣K2
i r(nT )

∣∣]
L[K2

de(nT )−K1
dr(nT )]

2[2L− ∣∣K1
dr(nT )

∣∣]

IC V
1

2
[−L + K2

p∆e(nT )]
1

2
[L + K2

i r(nT )]
1

2
[L−K1

dr(nT )]

IC VI 0 L 0

IC VII
1

2
[L−K1

pe(nT )]
1

2
[L + K1

i e(nT )]
1

2
[−L + K2

de(nT )]

IC VIII L 0 −L

IC IX
1

2
[L + K2

p∆e(nT )]
1

2
[−L + K2

i r(nT )]
1

2
[−L−K1

dr(nT )]

IC X 0 −L 0

IC XI
1

2
[−L−K1

pe(nT )]
1

2
[−L + K1

i e(nT )]
1

2
[L + K2

de(nT )]

IC XII −L 0 L
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It may be noted that the fuzzy P/I/D controller may
be switched automatically from one control algorithm to
another from time to time, depending on the input sig-
nals to the respective fuzzy P/I/D controllers. However,
such switching is always continuous in time and smooth on
boundaries of any two adjacent regions[12].

From Table 1, it can be observed that the coefficients of
input signals of fuzzy P controller, fuzzy I controller, and
fuzzy D controller are variable gain that change with e(nT ),
∆e(nT ) and r(nT ), respectively. Therefore, parallel FP +
FI + FD controller is a nonlinear controller with variable
gains.

3 Stability analysis

In this section, BIBO stability analysis of FP + FI +
FD control system is done using the well known small gain
theorem[2,12,16−19,23−27,29−32], as shown in Fig. 3.

Fig. 3 Closed loop control system

The subsystem g1 represents the FP + FI + FD controller
and the subsystem g2 represents the process/plant/system
to be controlled. Here e1 and e2 are errors; u1 and u2 are
the inputs to the system, and y1 and y2 are the outputs
from the respective subsystems. The closed loop equations
are





e1 = u1 − y2

e2 = u2 + y1

y1 = g1(e1)

y2 = g2(e2).

(3)

It is assumed that g1 and g2 are BIBO stable so that

‖y1‖ 6 α1 ‖e1‖+ δ1 (4)

‖y2‖ 6 α2 ‖e2‖+ δ2 (5)

where α1 = α(g1), is the gain of subsystem g1, and α2 =
α(g2), gain of subsystem g2; δ1 and δ2 are constants, and
α1, α2 > 0.

Under the above two conditions, (4) and (5), the system
is BIBO stable if α1, α2 > 1[2,12,17−19,23−26].

For the BIBO stability analysis of overall fuzzy control
system, Fig. 4 is the equivalent block diagram of FP + FI
+ FD control system. Here, process/plant is denoted by g2,
and the FP + FI + FD controller is denoted by g1, which is
represented by dashed box in Fig. 4. Now, based upon the
“small gain theorem”, the sufficient conditions for the BIBO
stability of the closed loop control system can be found from
the two conditions given below and if α1α2 > 1[2, 17, 19].

Fig. 4 Equivalent closed loop control system
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∥∥∥∥∥∥∥
+ δ1 (6a)

‖y2‖ = ‖g2(uP+I+D)‖ 6 α2 ‖uP+I+D‖+ δ2 (6b)

where α1, α2, δ1 and δ2 are constants.
Expanding (6a) for region IC I and IC III,

‖y1(nT )‖ = ‖KUP uP (nT )+

KUI∆uI(nT ) + KUD∆uD(nT )‖

or

‖y1(nT )‖ =∥∥∥∥∥KUP
L[K2

p∆e(nT )−K1
pe(nT )]

2[2L−
∣∣K1

pe(nT )
∣∣] +

KUI
L[K1

i e(nT ) + K2
i r(nT )]

2[2L− |K1
i e(nT )|] +

KUD
L[K2

de(nT )−K1
dr(nT )]

2[2L− |K2
de(nT )|]

∥∥∥∥ .

But r(nT ) = e(nT )−e(nT−T )
T

, and ∆e(nT ) = e(nT ) −
e(nT − T ).

Putting r(nT ) and ∆e(nT ), and rewriting the above
equation

‖y1(nT )‖ 6
∣∣∣∣
LKUP (K2

p −K1
p)

2(2L−K1
pMe)

+
LKUI(TK1

i + K2
i )

2T (2L−K1
i Me)

+

LKUD(TK2
d −K1

d)

2T (2L−K2
dMe)

∣∣∣∣ |e1(nT )|+
∣∣∣∣

LKUP K2
pMe

2(2L−K1
pMe)

+
LKUIK2

i Me

2T (2L−K1
i Me)

−

LKUDK1
dMe

2T (2L−K2
dMe)

∣∣∣∣ (7)

where Me := supn>0 |e(nT )| = supn>1 |e(nT − T )| is the
maximum magnitude of error signal.

Further, a general case is considered where the process
under control is nonlinear, denoted by R. Define various
signal as shown in Fig. 4. Since control action is different
in different IC regions, stability for every IC region may
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be discussed. First, consider the location of error signal
and the change rate of error signal in region IC I & IC III.
Rewrite (6a) in the region IC I and IC III and rearrange it.

However, (7) is in the form of (4) with

α1 =

∣∣∣∣
LKUP (K2

p −K1
p)

2(2L−K1
pMe)

+
LKUI(TK1

i + K2
i )

2T (2L−K1
i Me)

+

LKUD(TK2
d −K1

d)

2T (2L−K2
dMe)

∣∣∣∣

gain of subsystem g1 (FP + FI + FD controller) for the
region IC I & IC III and

δ1 =

∣∣∣∣
LKUP K2

pMe

2(2L−K1
pMe)

+
LKUIK2

i Me

2T (2L−K1
i Me)

−

LKUDK1
dMe

2T (2L−K2
dMe)

∣∣∣∣ (8)

are the constant. ‖y2(nT )‖ = ‖R(e2(nT ))‖ , or ‖y2(nT )‖ 6
‖R‖ |(e2(nT ))|, which is in the form of (5) with

y2 = ‖R‖ < ∞ (9)

where ‖R‖ := supv1 6=v2,n>0
|R(v1(nT ))−R(v2(nT ))|

|v1(nT )−v2(nT )| is the op-
erator norm for the given R. This is the gain of the given
nonlinear process.

Using (7) and (9), and the small gain theorem produces
the following sufficient condition for the BIBO stability of

the nonlinear FP + FI + FD controller in the region IC I
& IC III:

1) ‖R‖ < ∞;

2)

∣∣∣∣
LKUP (K2

p−K1
p)

2(2L−K1
pMe)

+
LKUI (TK1

i +K2
i )

2T (2L−K1
i Me)

+
LKUD(TK2

d−K1
d)

2T (2L−K2
d

Me)

∣∣∣∣×
‖R‖ < 1.

Similarly, the BIBO stability conditions for other input
combination regions, i.e., for IC I to ICX II may be ob-
tained. It has been observed that expression α1 and gain of
subsystem g1 (PP+FI+FD controller) are different indiffer-
ent IC regions, as shown in Table 2. Therefore, the above
results are in the form of Theorem 1.

Theorem 1. The sufficient conditions for nonlinear FP
+ FI + FD control system to be stable are:

1) The nonlinear process under control has a bounded
norm (gain) i.e., ‖R‖ < ∞;

2) The parameters of FP + FI + FD controller satisfy

α1 ‖R‖ < ∞ (10)

where α1 is given in Table 2.

4 Illustrative example 1

Generally, processes are nonlinear in nature. Therefore,
a nonlinear process is considered as

dy(t)

dt
= 0.0001 |y(t)|+ u(t) (11)

Table 2 Gain α1 of subsystem g1 (FP + FI + FD controller) in the IC regions

IC# Value of α1

IC I & IC III

∣∣∣∣∣
LKUP (K2

p −K1
p)

2(2L−K1
pMe)

+
LKUI(TK1

i + K2
i )

2T (2L−K1
i Me)

+
LKUD(TK2

d −K1
d)

2T (2L−K2
dMe)

∣∣∣∣∣

IC II & IC IV

∣∣∣∣∣
LKUP (K2

p −K1
p)

2(2L−K2
pM∆e)

+
LKUI(TK1

i + K2
i )

2T (2L−K2
i Mr)

+
LKUD(TK2

d −K1
d)

2T (2L−K1
dMr)

∣∣∣∣∣

IC V

∣∣∣∣∣
KUP K2

p

2
+

KUIK2
i

2T
− KUDK1

d

2T

∣∣∣∣∣
IC VI 0

IC VII

∣∣∣∣∣
KUIK1

i

2
+

KUDK2
d

2
− KUP K1

p

2

∣∣∣∣∣
IC VIII 0

IC IX

∣∣∣∣∣
KUP K2

p

2
+

KUIK2
i

2T
− KUDK1

d

2T

∣∣∣∣∣
IC X 0

IC XI

∣∣∣∣∣
KUIK1

i

2
+

KUDK2
d

2
− KUP K1

p

2

∣∣∣∣∣
IC XII 0

where Mr = supn>1 |r(nT )| = supn>1
1
T
|e(nT )− e(nT − T )| 6 2

T
Me, M∆e := supn>1 |∆e(nT )| =

supn>1 |e(nT )− e(nT − T )| 6 2Me.

Table 3 Values of tuned fuzzy parameters for nonlinear process

Nonlinear process
Fuzzy P controller Fuzzy I controller Fuzzy D controller

K1
p K2

p KUP K1
i K2

i KUI K1
d K2

d KUD

dy(t)
dt = 0.0001 |y(t)|+ u(t) 0.3 1 0.1 0.1 0.2 0.1 2 0.1 40#

# For simulation, adjustable parameter L = 700.
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Table 4 Transient-response specifications for step change in set-point for nonlinear process

Process Type of controller Settling time ts (s) 2% Overshoot (%) Rise time # tr(s) ISE* IAE*

dy(t)
dt = 0.0001 |y(t)|+ u(t)

Conv. PID 2.5 16.980 0.3 0.174076 0.420647

FP + FI + FD 0.1 – 0.1 0.10027 0.458072

*ISE and IAE values are calculated for time t = 0 to t = 500 s with ∆t = 0.1 s. # tr is 90% of its final value.

The preferences of performance criteria, for the present
work, are minimizing the settling time, overshoot, inte-
grated absolute error (IAE), integrated squared error (ISE)
and rise time.

The FP + FI + FD controller and conventional PID con-
troller are tuned manually to obtain the optimum values of
the parameters so that the performance criteria are met.
The attributes of FP + FI + FD controller are listed in
Table 3. In the simulation loop, Runge-Kutta 1 (Euler),
ordinary differential equation (ODE) is used with a loop
time of 0.1 s.

4.1 Transient response

For a nonlinear process, a unit step signal is considered
as a reference signal. The set-point tracking response is
shown in Fig. 5. Transient-response specifications for step
change in set-point are compared in Table 4. It can be ob-
served that the performance of FP + FI + FD controller is
excellent compared to conventional PID controller for the
nonlinear processes.

Fig. 5 Setpoint tracking response of nonlinear process

4.2 Disturbance rejection

To study the disturbance rejection behavior of con-
trollers, disturbance is introduced at the input and output
of the nonlinear process. A ramp input of magnitude 3.2
for nonlinear process for a time period of 0.5 s is suddenly
introduced at the input to the process, when the system
is already in steady state situation, shown in Fig. 6. The
disturbance rejection responses are shown in Fig. 6. It has
been observed that FP + FI + FD controller shows much
superior disturbance rejection as compared to conventional
controller. FP + FI + FD controller takes 0.1 s compared
to 2.3 s taken by PID controller to reach in the 2% band of
the final value.

Also, a unit step input is introduced at the output of the
nonlinear process at a time of 12 s from the starting point.
The disturbance rejection responses are shown in Fig. 7. It
can be observed that the response of the FP + FI + FD
controller is remarkable against the disturbance at output
to the process. FP + FI + FD controller takes 0.1 s com-
pared to 2.5 s for PID controller to reach the 2% band of
the final value.

Fig. 6 Controllers′ responses against the disturbance at input

to the nonlinear process

Fig. 7 Controllers′ responses against the disturbance at output

to the nonlinear process

4.3 Noise suppression

For noise suppression, a random signal varying in the
range of 5%, 10% and 15% of the reference signal is added
in the process variable. During this study, the parameters
of the conventional and fuzzy controllers are not changed.
The step response for 10% random noise are shown in Fig. 8.
The changes in the integral square of error (ISE) and inte-
gral of absolute error (IAE) due to the noise are compared
in Table 5. It can be observed that parallel FP + FI + FD
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controller suppresses noise much better compared to con-
ventional controller. From Table 5, it has been observed
that for nonlinear process, ISE and IAE increase as the
percentage of random noise added in the process variable
increases.

Fig. 8 The step response for 10% random noise for nonlinear

process

Table 5 Comparison of ISE and IAE for random noise for

nonlinear system

Controller ISE IAE

PID (without noise) 0.174076 0.420647

PID 5% noise 0.300134 7.19294

PID 10% noise 0.735062 14.346

PID 15% noise 1.39997 21.1175

FP + FI + FD (without noise) 0.10027 0.458072

FP + FI + FD 5% noise 0.310333 8.34284

FP + FI + FD 10% noise 0.975355 17.1174

FP + FI + FD 15% noise 1.99227 25.2831

*ISE & IAE values are calculated for time t = 0 to
t = 500 s with ∆t = 0.1 s.

5 Illustrative example 2

Further, to critically check the set-point tracking capabil-
ity of parallel FP + FI + FD controller, a single-link robot
arm is considered for study, as shown in Fig. 9. where the
mass of the rod “m” is 1 kg, the length of the rod “l” is 1 m
and g is 10m2/s. The equation of motion of the single-link
robot arm is

d2θ(t)

dt2
= −10 sin θ(t)− 2

dθ(t)

dt
+ u(t) (12)

where θ(t) is the angle of the arm, and u(t) is the torque
supplied by the DC motor[33]. The FP + FI + FD con-
troller is tuned manually to obtain the optimum values of
the parameters to get perfect set-point tracking response.
The attributes of FP + FI + FD controller are listed in Ta-
ble 6. Also, in the simulation loop, Runge-Kutta 1 (Euler)
ODE is used with a loop time of 0.1 s.

Fig. 9 A single-link robot arm[33]

Table 6 Values of tuned fuzzy parameters for single-link robot

arm

Fuzzy P controller Fuzzy I controller Fuzzy D controller

K1
p K2

p KUP K1
i K2

i KUI K1
d K2

d KUD

0.01 4 4 0.2 0.03 8.4 1 0.1 2#

#For simulation, adjustable parameter L = 700.

It has been observed that parallel FP + FI + FD con-
troller successfully tracks the reference trajectory for single-
link robot arm as shown in Fig. 10.

Fig. 10 Tracking control of a single-link robot arm

6 Conclusions

In this paper, BIBO stability of a nonlinear parallel FP +
FI + FD controller is analyzed. The parallel FP + FI + FD
controller is a nonlinear controller and has variable gains.
Small gain theorem is used to study the BIBO stability of
parallel FP + FI + FD controller. Sufficient conditions for
BIBO stability of nonlinear parallel FP + FI + FD con-
trol system are derived for each input combination region.
Also, for nonlinear process, FP + FI + FD controller shows
much better set-point tracking, disturbance rejection and
noise suppression capabilities.
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