
International Journal of Automation and Computing 10(2), April 2013, 157-166

DOI: 10.1007/s11633-013-0708-y

Refactoring Software Packages via Community Detection

in Complex Software Networks

Wei-Feng Pan1,2 Bo Jiang1 Bing Li2
1School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

2State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

Abstract: An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the

increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is

regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed.

But the research on software refactoring at the package level is very little. This paper presents a novel approach to refactor the package

structures of object oriented software. It uses software networks to represent classes and their dependencies. It proposes a constrained

community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the

optimized package structures. And it finally provides a list of classes as refactoring candidates by comparing the optimized package

structures with the real package structures. The empirical evaluation of the proposed approach has been performed in two open source

Java projects, and the benefits of our approach are illustrated in comparison with the other three approaches.

Keywords: Refactoring, community detection, complex networks, package, software.

1 Introduction

The original design of a software system is rarely pre-

pared for every new requirement appearing over the life

cycle of software system, such as fault corrections, perfor-

mance improvements, and adaption to new environments.

Software has to evolve to accommodate them. However,

due to the tight schedule in real life software development

process, change has to be made quickly by different people,

which usually lowers its quality[1].

Refactoring, proposed by Fowler, is regarded as an effec-

tive way to improve the design of the code, both at the time

of the original development and during the maintenance of

legacy code[2, 3]. However, software developers have to iden-

tify parts of code which have a negative impact on system′s
maintainability, and apply appropriate refactorings in order

to remove the so-called “bad-smells”[4]. But it is a challeng-

ing and time-consuming task to decide which refactoring to

apply and where to apply it[5].

Complex network theory provides an effective tool to ex-

plore the whole structure of a system and its dynamics.

In recent years, a few researchers introduced the complex

network theory to software engineering domain, and used

complex networks in software, hereafter referred to as soft-

ware networks, to represent software structure at a higher

level. Based on software networks, a lot of work has been

carried out[6−9]. And it has also opened new and broad op-

portunities for software refactoring. In our primary work[3],

we have proposed to represent object-oriented (OO) soft-

ware by complex software networks, and used a community

Manuscript received April 11, 2012; revised December 17, 2012
This work was supported by National Natural Science Foundation of

China (No. 61202048), Zhejiang Provincial Nature Science Founda-
tion of China (No. LQ12F02011), and Open Foundation of State Key
Laboratory of Software Engineering of Wuhan University of China
(No. SKLSE-2012-09-21).

detection technique from complex network theory to refac-

tor software at the class level. Empirical results show that

introducing complex network theory into software refactor-

ing is promising and can produce better performance than

other approaches. But, to the best of our knowledge, how

such an approach can be extended to software refactoring

at the package level is still a problem which has never been

explored.

The objective of this paper is to use the community de-

tection technique in complex network theory as a method

to help software developers do refactoring at the package

level. Firstly, the proposed approach builds an undirected

weighted class dependency network to describe the macro-

topological structure of software at the class level, where

classes are nodes and the interaction between every pair of

classes if any is an edge. And we also assign a weight to

each node to reflect the dependency strength of the two con-

nected classes. Secondly, a constrained community detec-

tion algorithm is proposed to detect the community struc-

tures which correspond to the optimized package structures

in the undirected weighted class dependency network. Fi-

nally, a list of classes will be suggested as refactoring can-

didates simply by comparing the optimized package struc-

tures with the corresponding real package structures in soft-

ware systems.

The rest of this paper is organized as follows. Section

2 contains a brief summary of the related works. Section

3 describes our approach in detail, with focus on the for-

mal definitions of related software networks, the procedures

to refactor the package structures, and the algorithm we

used to optimize community structures in the undirected

weighted class dependency network. Section 4 presents the

results of two case studies conducted on open source soft-

ware systems. And we conclude the paper in Section 5.

158 International Journal of Automation and Computing 10(2), April 2013

2 Related works

This section is a brief, but for reasons of space, incom-

plete, overview of the related works on source code refactor-

ing. It mainly falls into three categories according to where

the refactoring activities occurred: method level refactor-

ing, class level refactoring, and package level refactoring.

2.1 Method level refactoring

The works belonging to this category try to detect state-

ments poorly structured in methods. Some representative

works of this category are as the following:

Maruyama and Shima[10] presented a mechanism to auto-

matically refactor methods by using weighted program de-

pendence graphs based on the methods′ modification histo-

ries. Atkinson and King[11] presented a low-cost, syntactic

approach to automatically discover extract method refac-

toring opportunities. Tsantalis and Chatzigeorgiou[12] also

proposed a methodology to automatically identify extract

method refactoring opportunities. Kanemitsu et al.[13] pre-

sented a program dependency graph (PDG) visualization

method based on the data connection strength between sen-

tences in the source code to identify extract method refac-

toring opportunities.

2.2 Class level refactoring

The works belonging to this category try to detect at-

tributes and methods poorly structured in classes. Some

representative works of this category are as the following:

Tahvildari and Kontogiannis[14] proposed a framework

using a catalogue of OO metrics as indicators, to suggest

refactoring opportunities. Trifu and Marinescu[15] proposed

to use detection strategies as a mean to detect instances of

a structural anomaly. O′Keeffe and O′Cinneide[16] formu-

lated the task of refactoring as a search problem guided

by a quality evaluation function in the space of alternative

designs. Seng et al.[5] proposed a search based approach,

namely, genetic algorithm to support move-method refac-

toring. Tsantalis and Chatzigeorgiou[17] proposed the no-

tion of distance between attributes/methods and classes.

Besides, based on it, they presented a method for the iden-

tification of move-method refactoring opportunities. In our

primary work[3], we have proposed to represent software at

method/attribute level by unweighted software networks,

and used the community detection technique to refactor

software at the class level of granularity.

2.3 Package level refactoring

The works belonging to this category try to detect classes

poorly structured in packages. Some representative works

of this category are as the following:

Hautus[18] defined the package structure analysis

(PASTA) metric for evaluating the quality of package struc-

tures, and implemented a tool that can assist the developers

in developing a proper package structure through analy-

sis and visualization. Melton and Tempero[19] presented a

tool that can analyze the large cycles in dependency graphs

(CDGs) in order to identify classes as possible refactoring

candidates. Melton and Tempero[20] further developed a

simple metric, class reachability set size (CRSS), that can

be used to determine whether the system is with a good

package design or not and to identify candidates for refac-

toring. Alkhalid et al.[21] investigated software refactoring

at the package level using clustering techniques.

3 The approach

From the above review of the related works, it is clear

that most research efforts mainly focus on refactoring at

the class level. To the best of our knowledge, there has

been little discussion about refactoring at the package level.

Melton, Hautus, and Alkhalid are the only three pioneers.

In general, the approaches they proposed use structural

metrics to capture the inter-relationships between software

entities (methods, attributes, classes, and packages), such

as method calls, attribute references and class inheritances,

to guide refactoring operations. Indeed, the structural

metrics they used mainly focus on the local properties of

software (e.g., dependency cycles, class-package similarity,

etc.). Due to the lack of suitable tools and theories, people

seldom investigate software refactoring at the package level

from the perspective of software as a whole.

Though this is not the first work on software refactoring

at the package level, we will cover a different angle, i.e.,

from the perspective of software as a whole using commu-

nity detection techniques. Fig. 1 gives a short overview of

the workflow of the proposed approach. In the following

sections, we will detail it.

Fig. 1 The workflow of the proposed approach

3.1 Java software

This paper mainly focuses on the OO domain, and takes

the open source Java software systems as research subjects.

The rationale is threefold[9]: 1) OO has become the most

widely used development paradigm since 1990 s. And there

are a lot of open source OO software systems with sufficient

supplement materials on the web which can be easily got for

W. F. Pan et al. / Refactoring Software Packages via Community Detection in Complex Software Networks 159

our research objectives. 2) OO software systems have a rel-

atively clear internal structure and the components, such as

methods, classes/interfaces, packages, and their dependen-

cies are amenable to extraction and analysis. 3) The choice

of Java programming language is limited by the developed

tools to perform analysis, and our interest in understanding

software written in Java.

3.2 Software information collection

In order to construct the software networks, entities in

the source code should be collected firstly. Specifically, the

entities we care about in the current work mainly include

attributes, methods, classes, packages and their dependen-

cies. And only two kinds of dependencies are taken into con-

sideration, i.e., method accessing attribute dependency and

method call dependency. The dependencies between classes

are obtained from these two kinds of dependencies. A de-

pendency between two methods or method and attribute in

two separate classes implies a dependency between the two

classes.

3.3 Software network definition

Based on the collected data, two types of software net-

works, specifically undirected feature dependency network

(uFDN) and undirected weighted class dependency network

(uWCDN), can be built. We use the term feature to desig-

nate attributes and methods.

Definition 1. In uFDN, nodes denote the features of a

specific OO software system, and each feature is represented

by only one node. Edges between two nodes indicate the

use dependency between the corresponding features, i.e.,

if feature A uses feature B, there is an edge between the

nodes denoting the two features. And here we only consider

the presence of dependency and neglect the multiplicity of

dependencies such as A depends three time on B and its

direction. Therefore, uFDN can be described as

uFDN = (Vf , Ef , Wf) (1)

where Vf is the set of all nodes in uFDN (the subscript f

denotes that the software network is built at the feature

level), Ef is the set of edges, and Wf is a symmetric ad-

jacency matrix. The entry wf (i, j) at position (i, j) is 1

if there is an edge between node i and node j, and is 0

otherwise.

Fig. 2 shows a simple source code segment and its corre-

sponding uFDN, where Wf is described as matrix (2).

Wf =

a b() c() d() e() f()

a 0 0 0 1 0 0

b() 0 0 1 1 0 0

c() 0 1 0 1 0 1

d() 1 1 1 0 0 0

e() 0 0 0 0 0 1

f() 0 0 1 0 1 0

. (2)

Fig. 2 Illustration of uFDN

Definition 2. In uWCDN, nodes denote the classes of a

specific OO software system and each class is represented by

only one node. Edges between two nodes indicate a certain

dependency between the corresponding classes. Such de-

pendencies are obtained from the dependencies between fea-

tures they enclosed, i.e., a dependency between two meth-

ods or method and attribute in two separate classes im-

plies a dependency between the classes. Each edge is also

weighted with a value to signify the dependency strength,

such as class X depends three times on class Y . Therefore,

uWCDN can be written as

uWCDN = (Vc, Ec, Wc) (3)

where Vc is the set of all nodes in uWCDN (the subscript c

denotes the software network is at the class level), Ec is the

set of edges, and Wc is a symmetric weight matrix. The

entry wc(i, j) at position (i, j) is an integer no less than

1 if there is an edge between node i and node j, and is

0 otherwise. Obviously, Wc is also a symmetric adjacency

matrix where a non-zero entry denotes an edge between the

corresponding nodes.

Introduction of weights brings a flexibility that allows us

to consider the dependency strength between classes, but it

also raises a new problem: determining the weights. In this

paper, we will use the dependencies between the features

in two classes to quantify the weight on the corresponding

edge between the two classes. Denote Rik as the set of all

reachable nodes originated from node i within a distance k,

and Fi as the set of all features class i contains. Then, the

weight wc(i, j) (or wc(j, i)) is defined as

wc(i, j) = wc(j, i) = | ∪
ni∈Fi

Ri1 ∩ Fj | = | ∪
nj∈Fj

Rj1 ∩ Fi| (4)

where | ∗ | denotes the number of elements in set ∗.
Indeed, small value of weight indicates the low depen-

dency between the two classes. It is desirable to keep the

weight as small as possible for a specific software system as

far as software maintainability is concerned.

Fig. 3 shows the corresponding uWCDN of uFDN in

Fig. 2. Here, the uWCDN has only two nodes, i.e., Vc

= {X, Y }. Since Y.f () in class Y directly depends on

160 International Journal of Automation and Computing 10(2), April 2013

X.c () in class X, there is an edge between X and Y

in uWCDN. At the same time, RY.f()1 = {X.c (), Y.e ()}
and RY.e ()1 = {Y.f ()}. So wc(X, Y) = |{X.c (), Y.e ()} ∪
{Y.f ()} ∩ {X.a, X.b (), X.c (), X.d ()}| = |{X.c ()}| = 1.

Fig. 3 Illustration of uWCDN

3.4 Constrained community detection al-
gorithm

Community structure, the gathering of nodes into groups

such that there is a higher density of edges within groups

than between them, is one of the network features that has

been emphasized in recent complex network research[22]. A

popular method now widely used is to optimize a quality

index for a partition of a network into communities. And

the approach proposed in the current work is also in this

line of research.

As we all know, OO software systems consist of a set of

packages, which in turn are composed of a set of classes.

Such an organization of software entities forms an interest-

ing community structures, i.e., the packages are the natu-

ral communities of classes, and the classes are the natural

communities of features. As a result of many design prin-

ciples (e.g., low coupling and high cohesion), a majority of

classes are in the right packages, while only several mis-

placed classes lowering the quality of software systems are

needed to be moved. So there is no need to start the com-

munity detection process in a random way with every class

belonging to a random community as many community de-

tection algorithms do in other domains[23].

Our approach starts from a state in which every class be-

longs to a specific community. The community, in essence,

is the package where the class is defined. And our approach

proceeds by a series of class-moving operations at classes

with dependencies to other classes that are not defined in

the same package. We propose a constrained community

detection algorithm to fulfill this task.

3.4.1 Quality index

The quality index used to evaluate one partition is of

vital importance to our approach, for it controls the class-

moving process. This paper uses modularity Q[23] devised

by Newman and Girvan as the quality index simply for its

popularity. But the original Q is proposed to detect commu-

nities in unweighted networks. In order to make it suitable

for weighted networks, we use its weighted version which is

given as

Qw =
∑

i

(weii − wai
2) (5)

where Qw is the quality index of a particular partition, weii

is the fraction of the total weight of the edges that connect

two nodes within community i, while wai is the fraction of

the total weight of the edges that have at least one endpoint

within community i.

In the process of community detection, Qw will be recal-

culated on every class-moving operation to decide whether

to accept or reject this movement. So how to calculate Qw

will greatly influence the performance of our algorithm even

in the cases that the number of classes is very large. This

paper calculates ∆Qw, the change in Qw, rather than cal-

culating Qw. Because if a class is moved to a worse package

(i.e., increase the coupling), there will be a decrease in mod-

ularity Qw. And if a class is moved to a better package,

there will be an increase in Qw. The value of ∆Qw denotes

the suitability of a class-moving operation. Thus, to find

the community that one class should be moved to means

to find the largest ∆Qw. Such a strategy to accelerate the

speed of the algorithm is borrowed from [3] and [23].

The change in Qw, ∆Qw, upon moving a class from com-

munity i to community j is given by

∆Qw =

weij + weji − 2 wai waj , if community i and

j are connected

0, otherwise.

(6)

In our approach, the algorithm travels through every

class (node) with dependencies on other classes not de-

fined in the same package (community), iteratively searches

for the changes resulted from class-moving operation, and

moves the class to the package that makes the largest in-

crease in Qw.

3.4.2 Constrained community detection algorithm

flow

We propose a constrained community detection algo-

rithm (CCDA) to fulfill the community detection task in

uWCDN, which is shown as Algorithm 1. Here, array

Wc[][] stores the symmetric weight matrix Wc in uWCDN.

Wc[i][j] > 1 means there is an edge between node i and

node j with weight Wc[i][j], otherwise there is no edge.

nodeCom[] is an array storing the community identifiers for

all nodes, e.g. node i belongs to the community with iden-

tifier nodeCom[i]. bV isited[] is an array with type boolean

denoting whether node i has been visited or not.

Algorithm 1. CCDA algorithm

Input:

uWCDN (actually the largest weakly connected compo-

nent of the whole uWCDN)

Output:

Qw and a list of classes that should be moved

Procedure:

1: Initialize Wc[][], nodeCom[] (nodes (classes) in the

same package will be assigned the same community identi-

fier), and bV isited[] = false, i = 0, j = 0

2: Calculate Qw according to (5)

3: for i = 1 to |Nc| do

4: for j = 1 to |Nc| do

5: if Wc[i][j] > 1&&nodeCom[i] 6= nodeCom[j]

W. F. Pan et al. / Refactoring Software Packages via Community Detection in Complex Software Networks 161

&& !bV isited[i] then

6: bV isited[i] = true

7: Suppose move node i to community

nodeCom[j] and calculate ∆Qw according

to (6), and store it into an array ∆Qw[]

8: end if

9: end for

10: Select the maximum ∆Qw, ∆Qwmax

11: if ∆Qwmax > 0 then

12: Move node i to community nodeCom[j] that

produces the largest ∆Qw

13: for j = 1 to i do

14: if Wc[i][j] > 1 then

15: bV isited[i] = false

16: end if

17: end for

18: i = 1

19: Qw = ∆Qw + Qw

20: end if

21: end for

22: return Qw and a list of classes that should be moved

4 Experiment and data analysis

In this section, we describe in detail the subjects, pro-

cess and results of two case studies carried out to assess the

proposed approach.

4.1 Subjects

The experiments were carried out on two open source

Java software systems, namely Trama[24], and Front End

for MySQL Domain (denoted as Font4MySQL)[25]. Trama

is a tool that provides different graphical user interface to

help user to easily work with matrices. Font4MySQL is

a portable front end to the open source database server

MYSQL, providing a complete front end and thus reducing

the difficulty caused by using SQL query language. The two

systems are selected as they are introduced in [21]. Using

the same subjects lays a basis as comparing our approach

with that they proposed.

Table 1 reports the size, in terms of thousand lines of

code (KLOC), number of packages (#P), number of classes

(#C), number of features (#F), and the versions of the

systems used in our study. We should point out that the

#P excludes the outer packages, #C includes the number

of inner classes, and KLOC is the practical lines of code,

excluding the comment lines and blank lines. For a clear

presentation, here we have omitted the details about the

organization of software entities such as classes in every

package and features in every class. For details, please

refer to the data set provided on homepage[26].

Table 1 Systems used in case studies

System Version KLOC #P #C #F

Trama 1.0 4.019 6 57 546

Font4MySQL 1.0 3.187 8 51 553

4.2 Case studies and results

In this section, we follow the main steps shown in Fig. 1

to refactor the package structures of the two systems listed

above. Our experiments were carried out on a PC at

2.30GHz with 2GB of RAM.

The software information (mentioned in Subsection 3.2)

and the software networks (i.e., uFDN and uWCDN) used

in this paper are all automatically generated by our own

developed software analysis tool SNAT (software network

analysis tool)[9]. It can parse the compiled Java code (files

with .class and .jar extension), extract the relevant infor-

mation, and further build the uFDN and uWCDN.

Fig. 4 uWCDNs for all systems under study

162 International Journal of Automation and Computing 10(2), April 2013

Figs. 4 (a) and (b) show the uWCDNs for all the systems

under study. Enlarging the networks can give more infor-

mation about the uWCDNs, such as the class each node

denotes (the label beside the node is the name of the class),

and the dependency between two classes if there is an edge

between two nodes. The value on each edge is the weight be-

tween the two classes. The positions of nodes in uWCDNs

are calculated using a force-directed layout algorithm[27].

In order to clarify some properties of the uWCDNs, a sta-

tistical analysis has been carried out. Table 2 lists the basic

statistical results of the tested software systems. In this ta-

ble, |V | is the number of nodes, |E| is the total number of

edges, d is the average distance, C̄ is the average clustering

coefficient, drand and C̄rand are the d and C̄ of the corre-

sponding random network with the same |V | and |E|, K is

the average degree, #WCC is the number of weakly con-

nected components (WCC), and LWCC is the number of

nodes belonging to the largest WCC. And we should point

out that d is calculated among reachable pairs, not includ-

ing the isolated nodes which have no edge to other nodes

such as DocumentEditor and StatusBarDataStructure in

Font4MySQL. Also Fig. 4 does not show the isolated nodes.

Fig. 5 shows the cumulative degree distributions, Pcum(k)

for uWCDNs.

It is interesting to find that uWCDNs for the two sys-

tems are of small world type, with their d being very close

to drand of the corresponding random networks and C̄ being

much larger. Further, we can also observe all Pcum(k) fit

power-law like tails, obeying a power law Pcum(k) ∼ k−α.

And the measures for goodness of fit (R2) are higher than

0.962. Thus, uWCDNs are also scale free networks. And we

also observe that both systems consist of a single LWCC,

comprising a large fraction of the total nodes in the sys-

tem (ranging from 80.97 % to 100 %), and a few very small

remaining WCCs. Here, we only use the LWCC as the in-

put of our community detection algorithm. It is reasonable

from the perspective of statistics.

Table 2 Basic statistical results of the two software systems

Software |V | |E| d drand C̄ C̄rand K #WCC LWCC

Trama 57 91 2.521 3.483 0.308 0.056 3.193 1 57

Font4MySQL 51 66 3.003 3.967 0.264 0.053 2.694 4 47

Tables 3 and 4 show the classes should be moved for each

system using CCDA. The first column is the moving order

of the classes, the second column contains the classes sug-

gested to be moved, the third column is the original package

the class is defined, and the last column shows the suggested

the target package.

Fig. 5 Cumulative degree distributions Pcum(k) for uWCDNs of the two subject systems (log-log scale)

Table 3 Classes should be moved for Trama

Order Class name Original package Target package

1 PersistenciaProjeto persistencia negocio

2 Projeto persistencia negocio

3 Matriz negocio persistencia

4 ModeloTabela visao persistencia

5 ControleTela negocio visao

6 LeitorDeModelo leitor visao

7 ControleTela$1 negocio visao

8 ControleTela$2 negocio visao

9 Main negocio visao

10 RenderizadorCelula renderizador visao

11 RenderizadorTituloColuna renderizador visao

12 RenderizadorTituloLinha renderizador visao

W. F. Pan et al. / Refactoring Software Packages via Community Detection in Complex Software Networks 163

Table 4 Classes should be moved for Font4MySQL

Order Class name Original package Target package

1 Factory Frontendformysql System

2 ProcedureGenerator BackEnd BackEndInterfaces

3 QueryGenerator BackEnd BackEndInterfaces

4 TransactionManager BackEnd BackEndData

5 UserManager BackEnd BackEndData

6 IOManager IO System

7 Database BackEndData BackEnd

8 ProcedureExecuter BackEnd BackEndInterfaces

9 DriverManagerInterface DriverModule BackEnd

10 DatabaseReader BackEnd IO

11 Tuple BackEndData BackEndInterfaces

12 DatabaseViewChangeInterface BackEndInterfaces IO

13 Driver BackEndData DriverModule

14 DriverListener BackEndInterfaces DriverModule

15 XMLWriter XMLutil DriverModule

16 IOUtil IO System

4.3 Analysis and comparison

As shown in Tables 3 and 4, our approach suggested

12 classes and 16 classes to be moved for Trama and

Font4MySQL, respectively. In order to judge whether

these refactorings make sense to the developer, we manually

checked them one by one. By referring to the source code

files (with .java extension), we found that all the proposed

refactorings can be justified.

In system Trama, classes PersistenciaProjeto and Projeto

are suggested to be moved from the original package persis-

tencia to negocio, because all these classes are heavily used

by (or use) class ControleProjeto in negocio (wc = 5 and

3 respectively) than that in persistencia (wc = 1). Mov-

ing them from persistencia to negocio can reduce the cou-

pling, and improve the modularity by 8.977%. Class Ma-

triz is recommended to be moved to package persistencia as

it is more heavily used by (or uses) class DadosMatriz in

persistencia (wc = 34). Class ModeloTabela′s refacotring

mainly results from Matriz′s refactoring. Classes Contro-

leTela, ControleTela$1, and ControleTela$2 can be similarly

justified. Our approach also suggests to move class Main

from package negocio to visao as it is only used by (or uses)

class Tela in package visao, and does not use (or used by)

classes inside the same package where it is defined. Classes

LeitorDeModelo, RenderizadorCelula, RenderizadorTitulo-

Coluna, and RenderizadorTituloLinhacan can be similarly

justified. Fig. 6 (a) shows the evolution curve of the mod-

ularity with each class movement. The order in Table 3 is

used as abscissa in Fig. 6 (a).

The same observation is valid for the second system

Font4MySQL. Classes Factory, UserManager, and Proce-

dureExecuter are recommended to be moved as their move-

ments can improve the modularity of software by 0.659 %,

1%, and 24.355%, respectively. Classes ProcedureGen-

erator, QueryGenerator, TransactionManager, IOManager,

and DatabaseReader are suggested to be moved from the

original packages to the target packages, as all these classes

are heavily used by (or use) classes in the target pack-

ages than that in the original packages. Moving them from

the original package to the target package can improve the

modularity by 11.865 %, 55.293%, 10.694 %, 0.385%, and

80.378%, respectively. Classes Database, DriverManagerIn-

terface, DatabaseViewChangeInterface, Driver, DriverLis-

tener, and XMLWriter are suggested to be moved as they

are only used by (or use) the classes in target packages, and

do not use (or used by) classes inside the same packages

where they are defined. Class Tuple′s movement mainly

results from Database′s movement, and IOUtil′s movement

results from Tuple′s movement. It is because Tuple is only

used by (or uses) Database, and IOUtil is only used by

(or uses) Tuple. Fig. 6 (b) shows the evolution curve of the

modularity with each class movement. The order in Table

4 is used as abscissa in Fig. 6 (b).

To provide more confidence on the results obtained by

our approach, we asked five software engineers to provide

their judgments on the results. And we also ask them to

manually detect the list of refactorings for the two systems.

We provided the five engineers with the package designs

before and after refactoring and asked them the following

question: Which design is better in terms of high cohesion

and low coupling? All the five engineers confirmed that

the results obtained by our approach, maximized the pack-

age cohesion and lowered the package coupling, and thus

improved the software modularity.

Further, the effectiveness of our approach is evaluated by

recall and precision[28], two metrics that have been widely

used in pattern recognition and information retrieval. Here,

we borrow these two metrics from information retrieval, and

adapt them to fit in with the software package refactoring

problem.

164 International Journal of Automation and Computing 10(2), April 2013

Fig. 6 The curve of modularity Qw versus order (class moving steps) over the running of CCDA

In software refactoring, precision is the fraction of recom-

mended classes that are right (confirmed to be refactored).

It is given by

Precision =
|{Recommended right classes }|
|{Recommended classes}| . (7)

Recall is the fraction of the classes that should be refac-

tored that are successfully recommended. It is defined as

Recall =
|{Recommended right classes}|
|{Classes should be refactored}| . (8)

Here the classes that should be refactored in each sys-

tem are provided by the five engineers mentioned above via

manually checking every class in the system. And the rec-

ommended classes are automatically provided by a specific

approach. Indeed, as for systems Trama and Font4MySQL,

classes that should be refactored are the same as the list of

classes we have provided in Tables 3 and 4. And the recom-

mend right classes are obtained by making an intersection

of the two set of classes.

We calculate the precision and recall of CCDA on the

two systems to compare with the approaches cited in re-

lated works, i.e., CDGs, CRSS, and A-KNN. In CDGS and

CRSS, the recommended classes are the top-12 classes par-

ticipating in the largest number of cycles and the top-16

classes with the largest CRSS values, respectively. The re-

sults are shown in Table 5.

Table 5 Precision and recall

Approach System Precision Recall

CCDA
Trama 100% 100%

Font4MySQL 100% 100%

CDGs
Trama 58.33% 58.33%

Font4MySQL 25% 25%

CRSS
Trama 58.33% 58.33%

Font4MySQL 25% 25%

A-KNN
Trama 66.67% 16.67%

Font4MySQL 60% 18.75%

Compared with CDGs, CRSS, and A-KNN, the advan-

tages of the proposed approach can be illustrated as follows:

1) Obviously, it can be seen from Table 5 that the pre-

cision and recall of CCDA are 100%, better than those of

CDGs, CRSS, and A-KNN. The classes obtained by our

approach are equal to the classes provided by the five en-

gineers, while the other three approaches only contain part

of the classes provided by the five engineers. Such differ-

ence may result from different optimization strategies: Our

approach is carried out from the perspective of software

modularity. It is a global optimization process. However,

CDGs, CRSS, and A-KNN are proceeded by calculating lo-

cal metrics such as CRSS value and similarity. It is a local

optimization process. 2) The computational complexity of

CCDA is better than that of A-KNN. The most dominant

steps of CCDA are the construction of software networks,

and Step 3 to Step 21 with the loop. Hence, the computa-

tional complexity of CCDA is O(|Nc|2). However, the com-

putational complexity of A-KNN is O(|N2
c |A) as reported

in [21], where A is the number of attributes of the classes.

But we cannot compare the computational complexity of

CCDA with that of CDGs and CRSS, since we have no

idea about their specific implementations in [19, 20].

Our approach provides a new perspective for software

refactorings. It only uses community detection technology

in software networks to find the meaningful refactorings. It

makes software refactoring a very simple task.

5 Conclusions and future work

Software refactoring at the package level of granularity

has great importance for the software quality and mainte-

nance tasks. However, deciding which refactoring to ap-

ply and where to apply it is nontrivial. In this paper, we

have proposed an approach for identifying refactoring op-

portunities in packages. The proposed approach uses an

undirected weighted software network at class level of gran-

ularity to represent classes and their dependency, where

each node represents a class in the system. The weight of

an edge that connects two nodes (classes) is a measure of

the dependency strength. A constrained community detec-

tion algorithm is proposed to find the communities in such

a software network. These communities are the optimized

package structures which can be used to detect the classes

W. F. Pan et al. / Refactoring Software Packages via Community Detection in Complex Software Networks 165

that should be moved.

We conducted two case studies to assess the proposed

approach. Our manual checking and the assessment by in-

dependent engineers of the suggested refactorings for the

two systems indicated that the proposed approach is capa-

ble of extracting sound suggestions. We also carried out

a comparative study with the other three approaches on

software refactoring at package level, highlighting the ben-

efits such as better performance and lower computational

complexity.

Although our approach shows some feasibilities, the

broad validity of our approach demands further demon-

stration. Thus, the future work include: 1) Evaluate the

approach using other open source software systems with

different scales and from different domains. 2) Implement

more refactorings such as extracting package and splitting

package. 3) Develop a refactoring tool which can refactor

software systems at different levels of granularity.

References

[1] T. Mens, T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering, vol. 30, no. 2,
pp. 126–139, 2004.

[2] M. Fowler, K. Beck. Refactoring: Improving the Design of
Existing Code, New York, USA: Addison Wesley, pp. 260–
266, 1999.

[3] W. F. Pan, B. Li, Y. T. Ma, J. Liu, Y. Y. Qin. Class struc-
ture refactoring of object-oriented softwares using commu-
nity detection in dependency networks. Frontiers of Com-
puter Science in China, vol. 3, no. 3, pp. 396–404, 2009.

[4] W. J. Brown, R. C. Malveau, H. W. McCormick, T. J. Mow-
bray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crises, New York, USA: John Wiley and
Sons, pp. 47–56, 1998.

[5] O. Seng, J. Stanmmel, D. Burkhart. Search-based deter-
mination of refactorings for improving the class structure
of object-oriented systems. In Proceedings of the 8th An-
nual Conference on Genetic and Evolutionary Computa-
tion, ACM, New York, USA, pp. 1909–1916, 2006.

[6] C. R. Myers. Software systems as complex networks: Struc-
ture, function, and evolvability of software collaboration
graphs. Physical Review E, vol. 68, no. 4, 046116, 2003.

[7] A. Potanin, J. Noble, M. Frean, R. Biddle. Scale-free geom-
etry in OO programs. Communications of the ACM, vol. 48,
no. 5, pp. 99–103, 2005.

[8] G. Concas, M. Marchesi, S. Pinna, N. Serra. Power-laws in
a large object-oriented software system. IEEE Transactions
on Software Engineering, vol. 33, no. 10, pp. 687–708, 2007.

[9] W. F. Pan, B. Li, Y. T. Ma, Y. Y. Qin, X. Y. Zhou. Mea-
suring structural quality of object-oriented softwares via
bug propagation analysis on weighted software networks.
Journal of Computer Science and Technology, vol. 25, no. 6,
pp. 1202–1213, 2010.

[10] K. Maruyama, K. Shima. Automatic method refactoring us-
ing weighted dependence graphs. In Proceedings of the 21st
International Conference on Software Engineering, ACM,
Los Angeles, CA, USA, pp. 236–245, 1999.

[11] D. C. Atkinson, T. King. Lightweight detection of program
refactorings. In Proceedings of the 11th Working Confer-
ence on Reverse Engineering, IEEE, Taipei, Taiwan, China,
pp. 663–670, 2005.

[12] N. Tsantalis, A. Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of
methods. Journal of Systems and Software, vol. 84, no. 10,
pp. 1757–1782, 2011.

[13] T. Kanemitsu, Y. Higo, S. Kusumoto. A visualization
method of program dependency graph for identifying ex-
tract method opportunity. In Proceedings of the 4th Work-
shop on Refactoring Tools, ACM, New York, USA, pp. 8–14,
2011.

[14] L. Tahvildari, K. Kontogiannis. A metric-based approach
to enhance design quality through meta-pattern transfor-
mations. In Proceedings of the 7th European Conference
on Software Maintenance and Reengineering, IEEE, Ben-
evento, Italy, pp. 183–192, 2003.

[15] A. Trifu, R. Marinescu. Diagnosing design problems in ob-
ject oriented systems. In Proceedings of the 12th Working
Conference on Reverse Engineering, IEEE, Pittsburgh, PA,
USA, pp. 155–164, 2005.

[16] M. O′Keeffe, M. O′Cinneide. Search-based software main-
tenance. In Proceedings of the 10th European Conference
on Software Maintenance and Reengineering, IEEE, Wash-
ington, DC, USA, pp. 249–260, 2006.

[17] N. Tsantalis, A. Chatzigeorgious. Identification of move
method refactoring opportunities. IEEE Transactions on
Software Engineering, vol. 35, no. 3, pp. 347–367, 2009.

[18] E. Hautus. Improving Java software through package struc-
ture analysis. In Proceedings of the 6th IASTED Interna-
tional Conference on Software Engineering and Applica-
tions, IEEE, Cambridge, USA, 2002.

[19] H. Melton, E. Tempero. Identifying refactoring opportu-
nities by identifying dependency cycles. In Proceedings of
the 29th Australasian Computer Science Conference, Aus-
tralian Computer Society, Hobart, Australia, pp. 35–41,
2006.

[20] H. Melton, E. Tempero. The CRSS metric for package de-
sign quality. In Proceedings of the 30th Australasian Com-
puter Science Conference, Australian Computer Society,
Ballarat, Victoria, Australia, pp. 201–210, 2007.

[21] A. Alkhalid, M. Alshayeb, S. A. Mahmoud. Software refac-
toring at the package level using clustering techniques. IET
Software, vol. 5, no. 3, pp. 276–284, 2011.

[22] S. Fortunato. Community detection in graphs. Physics Re-
ports, vol. 486, no. 3–5, pp. 75–174, 2010.

[23] M. E. J. Newman. Fast algorithm for detecting commu-
nity structure in networks. Physical Review E, vol. 69, no. 6,
066133, 2004.

166 International Journal of Automation and Computing 10(2), April 2013

[24] M. Fabio. Trama, [Online], Available: http://source-
forge.net/projects/trama, April 10, 2012.

[25] S. Shrestha, Y. Gurung. Front End For MySQL, [On-
line], Available: http://sourceforge.net/projects/ fron-
tend4mysql, April 10, 2012.

[26] W. F. Pan. Weifeng Pan′s homepage, [Online], Available:
http://www.whucn.com/wfpan.htm, April 10, 2012.

[27] I. F. Cruz, R. Tamassia. Graph drawing tutorial,
[Online], Available: http://www.cs.brown.edu/people/
rt/papers/gd-tutorial/gd-constraints.pdf, April 10, 2012.

[28] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel. Perfor-
mance measures for information extraction. In Proceedings
of DARPA Broadcast News Workshop, Herndon, VA, USA,
pp. 249–252, 1999.

Wei-Feng Pan received his Ph. D. de-
gree from State Key Laboratory of Soft-
ware Engineering (SKLSE) at Wuhan Uni-
versity (WHU), China in 2011. He is
presently a lecture at School of Com-
puter Science and Information Engineer-
ing (SCIE), Zhejiang Gongshang Univer-
sity (ZJGSU), China. He is also a mem-
ber of China Computer Federation (CCF)
and Association for Computing Machinery

(ACM).
His research interests include software engineering, service

computing, complex networks, and intelligent computation.

E-mail: panweifeng1982@gmail.com (Corresponding author)

Bo Jiang received her Ph.D. degree from
Zhejiang University (ZJU) in computer sci-
ence in 2007. She is presently a professor
and M. Sc. supervisor at School of Com-
puter Science and Information Engineer-
ing (SCIE), Zhejiang Gongshang University
(ZJGSU), China. She is also a senior mem-
ber of China Computer Federation (CCF)
and a member of Association for Comput-
ing Machinery (ACM).

Her research interests include social computing and service
computing.

E-mail: nancybjiang@mail.zjgsu.edu.cn

Bing Li received his Ph.D., M. Sc. and
B.A. degrees from Huazhong University of
Science and Technology (HUST), China in
2003, 1997 and 1990, respectively, all in
computer science. He is presently a profes-
sor and Ph.D. supervisor at State Key Lab-
oratory of Software Engineering (SKLSE)
and School of Computer at Wuhan Uni-
versity (WHU), China. He is also a se-
nior member of China Computer Federa-

tion (CCF) and a member of Association for Computing Ma-
chinery (ACM).

His research interests include requirements engineering, cloud
computing, complex network, and semantic web service.

E-mail: bingli@whu.edu.cn

