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Abstract: Quantized fault detection for sensor/actuator faults of networked control systems (NCSs) with time delays both in the
sensor-to-controller channel and controller-to-actuator channel is concerned in this paper. A fault model is set up based on the possible
cases of sensor/actuator faults. Then, the model predictive control is used to compensate the time delay. When the sensors and
actuators are healthy, an H∞ stability criterion of the state predictive observer is obtained in terms of linear matrix inequality. A
new threshold computational method that conforms to the actual situation is proposed. Then, the thresholds of the false alarm rate
(FAR) and miss detection rate (MDR) are presented by using our proposed method, which are also compared with the ones given in
the existing literatures. Finally, some numerical simulations are shown to demonstrate the effectiveness of the proposed method.
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1 Introduction

In recent years, the issue of network-based control has
drawn increasing attention of academic researchers in the
area of control field. The networked control system (NCS)
is defined as a feedback control system where the control
loops are closed through a real-time network[1−3], which is
different from the normal control system[4]. For NCSs, there
are many advantages such as low cost, reduced weight and
power requirements, simple installation and maintenance,
etc. Because of the introduction of communication network,
there are some issues that need to bring to the attention,
e.g., network-induced delay, packet loss, the effects of quan-
tization, etc. As a result, conventional control theories must
be re-evaluated before being applied to NCSs.

Since fault detection (FD) technique is essential to im-
prove the safety and reliability of dynamic systems[5], more
and more attention has been paid to FD of NCSs[6−8].
Wang et al.[6] studied the fault detection of NCSs with both
access constraints and random packet dropout, where the
schedule of the access to the networks was characterized
by periodic communication sequence. In [7], the problem
of H∞ fault detection filter design for a class of networked
control systems was investigated through describing time
delay as a Markov process. A hybrid observer-based fault
detection filter (FDF) for a class of networked control sys-
tems by considering both the network-induced time delay
and data packet dropout was addressed in [8]. The reviews
on fault diagnosis of NCSs were summarized in [9]. Though
so many works have been done on the fault detection of
NCSs, Wang et al.[6−8] considered the faults coming from
the plant itself. In other word, they first gave a system
suffering from sensor/actuator faults. Up to now, there is
no paper that models the sensor/actuator stuck faults as a
kind of fault. In this paper, a new model is proposed for
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multi-input multi-output (MIMO) NCSs, where the sen-
sor/actuator stuck faults are considered as a kind of fault.
The stuck fault models can be separated by fault indicator
matrices[10−13].

Model predictive control (MPC) can utilize the histori-
cal information to predict current and future states, so it
has wide applications in dealing with the time delay and
packet dropout, especially the long time delay in NCSs. In
[14], an MPC strategy was proposed to overcome the data
packet dropout on the sensor-to-controller channel of NCSs.
Xia et al.[15] proposed to take the latest control value from
the predictive control sequence available to deal with ran-
dom time delay and packet dropout, by using a networked
control predictor.

In this paper, we study the FD for NCSs with disabled
sensor/actuator faults and transmission time delays. For
the sensor-to-controller channel time delay, a state observer
is designed to compensated. And the controller-to-actuator
channel time delay is compensated by using predictive con-
troller, which is designed by optimizing one predictive per-
formance index. Then, an H∞ performance analysis is
established. We propose a new threshold computational
method in the paper, then we give the detailed compar-
ison with respect to the thresholds between our proposed
method and the method in related literature from the point
of false alarm rate/miss detection rate (FAR/MDR). A sim-
ulation example is provided to show the effectiveness of
the proposed method by comparing it with the existing re-
searches.

2 Problem formulation

Consider a class of MIMO discrete systems described by
the following state space form

{
x(k + 1) = Ax(k) + Bu(k) + B1w(k)

y(k) = Cx(k)
(1)

where x(k) ∈ Rn and u(k) ∈ Rm are state and control
inputs, y(k) ∈ Rl and w(k) ∈ Rw are system output and
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the disturbance, respectively. A, B, B1 and C are known
matrices with appropriate dimensions, and (A, C) is de-
tectable.

In this paper, we consider fault detection for networked
control systems via predictive control. The system diagram
is shown as Fig. 1, in which the state observer and predictive
controller are used.

Fig. 1 The diagram of NCSs via predictive control

When all the sensors are healthy, the plant output can
be transmitted successfully through the network. If some of
the sensors are failed, there must exist loss of data packets.

Considering the sensor faults, a fault indicator matrix Fs

is introduced, which is given by

Fs = diag {fs1, fs2, · · · , fsn}

with fsi =

{
1, health

0, failure
, i = 1, 2, · · · , n, indicating whether

sensor i is failed or not. Then, considering the various pos-
sibilities of sensor failures, the system output is

ỹ = Fsr(y(k)) = Fsr(Cx(k)) (2)

where ỹ ∈ Rl is the sensor measurement output, Fsr ∈
FΘ = {Fs1, Fs2, · · · , FsN}, r ∈ {1, 2, · · · , N}, FΘ is the set
of sensor failure modes, with N = 2n − 1, and N is the
number of sensor failure modes. The fault indicator matrix
Fsr is one of the failure modes,which indicates a fault mode
of the sensors including only one sensor fault.

Similarly, we consider the actuator faults and let Fa be
the actuator fault indicator matrix. Here, the same as sen-
sor faults, Fa is given by

Fa = diag {fa1, fa2, · · · , fam}

with faj =

{
1, health

0, failure
, j = 1, 2, · · · , m, indicating

whether actuator j is failed or not. Then, considering the
various possibilities of actuator failures, the actuator output
is

ũ(k) = Fal(u(k)) (3)

where ũ(k) ∈ Rm is the actuator output, i.e., system input,
Fal ∈ FΦ = {Fa1, Fa2, · · · , FaM} and l ∈ {1, 2, · · · , M},
FΦ is the set of failure modes, with M = 2m − 1, M is

the number of actuator failure modes. The fault indicator
matrix Fal is one of the failure modes, which indicates some
fault of the actuators including only one actuator fault.

Then, the model can be rewritten as

{
x(k + 1) = Ax(k) + Bu(k) + Bff(k) + B1w(k)

ỹ(k) = Cx(k) + Dff(k)
(4)

where Bf =
[

BFal −B 0
]
, Df =

[
0 FsrC − C

]
,

and f(k) = [ u(k) x(k) ]T.
When the packets are transmitted through the network,

time delay is unavoidable. The methodology of compen-
sating the time delay for the NCS will be proposed in the
next section. Considering the networked control system,
the following reasonable assumptions need to be made.

1) The plant output nodes (sensors) are clock-driven.
The controller and actuators are event-driven. The data
is transmitted through a single-packet.

2) The network transmission is fixed. τ and d are the time
delay in the sensor-to-controller channel and the controller-
to-actuator channel, respectively. They are integral multi-
ples of the sampling period.

3) The data packets can be transmitted successfully in
the network.

The main objective of this paper is fault detection of
sensor/actuator for NCSs with transmission time delays in
the network. Firstly, we shall compensate the time delays.
Then, we conduct research on fault detection by calculat-
ing the residual. Also, false alarm rate and miss detection
rate, which are two propositions about fault detection, are
presented.

3 State observer and predictive con-
troller design

Since there exist time delays during the network trans-
mission of data packets. In this section, we shall compen-
sate these time delays by designing the state observer and
predictive controller. The state observer is used to com-
pensate the time delay in the sensor-to-controller channel
by using the measured state which is transmitted through
the network channel. Then based on the observer, the pre-
dictive controller is used to compensate the time delay in
the controller-to-actuator channel.

In order to compensate the network transmission delay
τ in the sensor-to-controller channel, x̃(k + 1/k) is con-
structed. In the control centre, x̃(k − τ + 1/k − τ) is re-
ceived, then based on ỹ(k − τ) and the input data u(k − τ)
up to u(k − 1), we can predict the state x̃(k/k − τ).

The state observer is designed as

x̃(k + 1/k) = Ax̃(k/k − 1) + Bu(k)+

L(ỹ(k)− Cx̃(k/k − 1))
(5)

where x̃(k/k − 1) ∈ Rn and u(k) ∈ Rm are the one-step-
ahead predicted state and the input of the observer at time
k, respectively. The matrix L ∈ Rn×l can be designed by
observer design approach.

Based on ỹ(k − τ) and the input data u(k − τ) up to
u(k − 1) received on the side of the observer, the predictions
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of the states from time k − τ + 1 to k are constructed as

x̃(k − τ + 1/k − τ) = Ax̃(k − τ/k − τ − 1) + Bu(k − τ)+

L(ỹ(k − τ)− Cx̃(k − τ/k − τ − 1))

x̃(k − τ + 2/k − τ) = Ax̃(k − τ + 1/k − τ)+

Bu(k − τ + 1)

· · ·
x̃(k/k − τ) = Ax̃(k − 1/k − τ) + Bu(k − 1).

Then, we can get

x̃(k/k − τ) = Aτ−1(A− LC)x̃(k − τ/k − τ − 1)+
τ∑

j=1

Aτ−jBu(k − τ + j − 1) + Aτ−1Lỹ(t− τ). (6)

On the other hand, in order to compensate the time delay in
the controller-to-actuator channel, we consider the following
predictive performance index which is based on the initial
state x̂(k/k − τ) as

J(k) =

Np∑
i=1

x̃T(k + i/k − τ)Qx̃(k + i/k − τ) =

Nu−1∑
i=0

ũT(k + i/k − τ)Ru(k + i/k − τ) (7)

where Np is the predictive horizon, Nu is the control hori-
zon, Q and R denote positive definite weighting matrices,
x̃(k + i/k − τ) is the predicted state at time k + i, and
u(k + i/k − τ) is the corresponding predicted control input
at time k + i. It is assumed that the control increments are
zero beyond the control horizon, i.e.,

u(k + i/k − τ) = u(k + Nu − 1/k − τ), i > Nu − 1. (8)

Let

X̃(k + 1) =
[

x̃(k + 1/k − τ) · · · x̃(k + Np/k − τ)
]T

U(k) =
[

uT(k/k − τ) · · · uT(k + Nu − 1/k − τ)
]T

Ap = [ AT (A2)T · · · (ANp)T ]T

Bp =




B 0 · · · 0

AB B · · · 0

· · · · · · · · ·
ANp−1B ANp−2B · · · ANp−NuB+ANp−Nu−1B+· · ·+B


 .

We have

X̃(k + 1) = Apx̃(k/k − τ) + BpU(k). (9)

Substituting (9) into (7), we have

J(k) = (Apx̃(k/k − τ) + BpU(k))TQ×
(Apx̃(k/k − τ) + BpU(k)) + U(k)TRU(k) (10)

where Q = diag{Q, · · · , Q}, R = diag{R, · · · , R}.
Then by minimizing (10), we can obtain the optimal pre-

dictive control sequence as

U∗(k) = −(BT
p QBp + R)−1BT

p QApx̃(k/k − τ) ,
F x̃(k/k − τ). (11)

If the time delay in the controller-to-actuator channel is d,
the actuator can be chosen as

u(k + d/k − τ) = EFx̃(k/k − τ)

where E =
[

0m×(d−2)m Im×m 0m×(Nu−d+1)m

]
.

For notational simplicity, denote K = EF , we get

u(k + d/k − τ) = Kx̃(k/k − τ). (12)

Since there exist the sensor-to-controller channel delay τ
and the controller-to-actuator channel delayd, in order
to analyze conveniently, let x̃(k − d/k − τ − d) represent
x̃(k/k − τ), the control input and plant state vectors are
given by the following equality.

u(k) = u(k/k − τ − d) = Kx̃(k − d/k − τ − d) (13)

x(k + 1) = Ax(k)+

BK
(
Aτ−1(A− LC)x̃(k − τ/k − τ − 1) +

τ∑
j=1

Aτ−j Bu(k−τ +j−1)+Aτ−1Lỹ(t− τ)
)
+

B1w(k). (14)

When considering the FD of NCS with network-induced
delay, the FD filter can be constructed as





x̂(k + 1) = Ax̂(k)+

BK
(
Aτ−1(A− LC)x̃(k − τ/k − τ − 1) +

τ∑
j=1

Aτ−j Bu(k − τ + j − 1) + Aτ−1Lỹ×
(t− τ)) + L(ỹ(k)− Cx̃(k/k − 1))

rk = V (y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

(15)

where rk is the residual error vector, and V is the residual
error output matrix.

Let e(k) = x(k) − x̂(k/k − 1), when all the sensors and
actuators are healthy, we can get the state error dynamics
through comparing (14) with (15) as

e(k + 1) = (A− LC)e(k) + B1w(k). (16)

Combining (14)–(16), we have

{
Z(k + 1) = ΩZ(k) + Bww(k)

r(k) = Ṽ CZ(k)
(17)

where

Z(k) =
[

x(k) · · · x(k − τ − d) · · ·
u(k − 1) · · · u(k − τ − d) x̃(k/k − 1) · · ·
x̃(k − τ − d/k − τ − d− 1) e(k)

]
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Ω =




Ω11(τ, d) Ω12(τ, d) Ω13(τ, d) Ω14(τ, d)

Ω21(τ, d) Ω22(τ, d) Ω23(τ, d) Ω24(τ, d)

Ω31(τ, d) Ω32(τ, d) Ω33(τ, d) Ω34(τ, d)

Ω41(τ, d) Ω42(τ, d) Ω43(τ, d) Ω44(τ, d)




Ω11(τ, d) =




A 0 · · · 0 Λ1

I 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · I 0




Ω12(τ, d) =




Λ2 Λ3 · · · Λ4 Λ5

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω13(τ, d) =




0 0 · · · 0 Λ6

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω21(τ, d) =




0 0 · · · 0 Λ7

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω22(τ, d) =




Λ8 Λ9 · · · Λ10 Λ11

I 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · I 0




Ω23(τ, d) =




0 0 · · · 0 Λ12

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω31(τ, d) =




Λ13 0 · · · 0 Λ14

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω32(τ, d) =




Λ15 Λ16 · · · Λ17 Λ18

0 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · 0 0




Ω33(τ, d) =




Λ19 0 · · · 0 Λ20

I 0 · · · 0 0

· · · · · · · · ·
0 0 · · · 0 0

0 0 · · · I 0




Ω ∈ R(2(τ+d+1)n+(τ+d)m)×(2(τ+d+1)n+(τ+d)m)

Ω11(τ, d) ∈ R(τ+d+1)n×(τ+d+1)n

Ω12(τ, d) ∈ R(τ+d+1)n×(τ+d)m

Ω13(τ, d) ∈ R(τ+d+1)n×(τ+d+1)n

Ω21(τ, d) ∈ R(τ+d)m×(τ+d+1)n

Ω22(τ, d) ∈ R(τ+d)m×(τ+d)m

Ω23(τ, d) ∈ R(τ+d)m×(τ+d+1)n

Ω31(τ, d) ∈ R(τ+d+1)n×(τ+d+1)n

Ω32(τ, d) ∈ R(τ+d+1)n×(τ+d)m

Ω33(τ, d) ∈ R(τ+d+1)n×(τ+d+1)n

Ω14(τ, d) =
[

0 0 · · · 0 0
]T

∈ R(τ+d+1)n×n

Ω24(τ, d) =
[

0 0 · · · 0 0
]T

∈ R(τ+d)m×n

Ω34(τ, d) =
[

0 0 · · · 0 0
]T

∈ R(τ+d+1)n×n

Ω41(τ, d) =
[

0 0 · · · 0 0
]
∈ Rn×(τ+d+1)n

Ω42(τ, d) =
[

0 0 · · · 0 0
]
∈ Rn×(τ+d)m

Ω43(τ, d) =
[

0 0 · · · 0 0
]
∈ Rn×(τ+d+1)n

Ω44(τ, d) = A− LC

Λ1 = BKAτ−1LC, Λ2 = BKB

Λ3 = BKAB, Λ4 = BKAτ−2B

Λ5 = BKAτ−1B, Λ6 = BKAτ−1(A− LC)

Λ7 = KAτ−1LC, Λ8 = KB

Λ9 = KAB, Λ10 = KAτ−2B

Λ11 = KAτ−1B, Λ12 = KAτ−1(A− LC)

Λ13 = LC, Λ14 = BKAτ−1LC

Λ15 = BKB, Λ16 = BKAB

Λ17 = BKAτ−2B, Λ18 = BKAτ−1B

Λ19 = (A− LC), Λ20 = BKAτ−1(A− LC)

Bw =
[

BT
1 0 · · · 0 BT

1

]T

∈ R(2(τ+d+1)n+(τ+d)m)×n

Ṽ =
[

0 · · · 0 V
]
.

4 Main results

4.1 HHH∞ performance analysis

The following theorem provides a stability condition for
system (17).

Theorem 1. Consider system (17), when all the sensors
and actuators are healthy, the closed-loop system is stable
and the H∞ performance with index γ is satisfied, if there
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exists a positive definite matrix X satisfying



−X ∗ ∗ ∗
Ṽ CX −I ∗ ∗

0 0 −γ2I ∗
ΩX Bw 0 −X


 < 0. (18)

Proof. Let V (k) = ZT(k)PZ(k). Then if w(k) = 0, we
have

∆V (k) = V (k + 1)− V (k) =

ZT(k + 1)PZ(k + 1)− ZT(k)PZ(k) =

ZT(k)(ΩT PΩ− P )Z(k).

(19)

If inequality (18) is satisfied, by the Schur′s complement
formula, we have ∆V (k) < 0. Therefore, system (17) is
stable for w(k) = 0.

Now, let′s consider the H∞ performance of the closed-
loop system. We define the performance function as

Υ
∆
=

∞∑
k=0

[
rT(k)r(k)− γ2wT(k)w(k)

]
=

∞∑
k=0

[
rT(k)r(k)− γ2wT(k)w(k) + ∆V (k)

]
+

V (0)− V (∞).

(20)

Under the zero initial condition, i.e., V (k)|k=0 = 0 and
V (∞) > 0, we have

Υ 6
∞∑

k=0

[
rT(k)r(k)− γ2wT(k)w(k) + ∆V (k)

]
(21)

in which

rT(k)r(k)− γ2wT(k)w(k) + ∆V (k) =

[
Z(k)

w(k)

]T

[
ΩTPΩ + (Ṽ C)TṼ C − P ∗

BT
wPΩ BT

wPBw − γ2I

] [
Z(k)

w(k)

]
.

(22)
Then, Υ < 0 can be replaced by the following inequality

[
ΩTPΩ + (Ṽ C)TṼ C − P ∗

BT
wPΩ BT

wPBw − γ2I

]
< 0. (23)

By using Schur′s complement formula, the following in-
equality can be obtained from (23).




−P ∗ ∗ ∗
Ṽ C −I ∗ ∗
0 0 −γ2I ∗
Ω Bw 0 −P−1


 < 0. (24)

In order to get P , one must linearize (24) since it is a non-
linear matrix inequality. Let X = P−1, and pre-multiplying
and post-multiplying both sides of (24) by diag {X, I, I, I},
then using Schur′s complement we obtain (18). ¤

Remark 1. Theorem 1 shows that the closed-loop sys-
tem (17) is stable if (18) is satisfied with H∞ norm bound
γ. Moreover, we can obtain the disturbance rejection level
γ by solving the following optimal problem

min α (25)

s.t. (18)

where α = γ2. It is well known that (25) is a convex optimal
problem for the linear objective function, and it can be
solved easily.

4.2 Residual evaluation and threshold

The important task for FD is the evaluation of the gen-
erated residual. One of the widely adopted approaches is
to choose the so-called threshold Jth > 0 and use some
properly logical relationship for fault detection.

The following 2-norm of residual signal is chosen as resid-
ual evaluation function as[7, 16]

J(r, k) =

{
k=L1∑

k=0

rT(k)r(k)

} 1
2

(26)

where L1 denotes the current time step of the evaluation
function.

The following threshold exists in most of the
literatures[7, 16].

Jth = sup
w̄(k)∈l2,Bf =0,Df =0

E

{
k=Lth∑

k=0

rT(k)r(k)

} 1
2

(27)

where Lth denotes the maximum time step of the evaluation
function.

In this paper, the threshold is different from (28) as in
[7, 16], and we set it as follows.

Jth(r, k) = sup
w̄(k)∈l2,Bf =0,Df =0

E(J(r, k))+

η sup
w̄(k)∈l2,Bf =0,Df =0

σ(J(r, k))
(28)

where σ(·) denotes the standard deviation and η is a positive
constant value related to the threshold.

E(J(r, k)) =
1

G

n∑
i=1

Ji(r, k)

σ(J(r, k)) =

√√√√ 1

G− 1

n∑
i=1

{Ji(r, k)− E(J(r, k))}2 (29)

where G is the total test number.
Because the values of the residual evaluation function

are different at different time, we would better to construct
a threshold to adapt the residual evaluation function. For
the random character of the disturbance, the residual signal
changes in a certain range at the same time, we can perform
a large number of experiments to get the proper threshold.

Remark 2. Our method is similar to the one consid-
ered in [6]. They considered the disturbance as a con-
stant in each test, so the standard deviation of disturbance
σ(J(d, k)) = 0. Disturbance is stochastic in practice, there-
fore, from a large number of experiments for seeking its
mean value is more realistic.

According to the aforementioned analysis, we can draw a
conclusion that the residual evaluation function may be big
enough if the actuator and/or sensor are/is failed. There-
fore, we can carry out fault detection via comparing the
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residual evaluation function with the threshold. The fol-
lowing is the criterion of fault detection.
{

J(r, k)>Jth(r, k), if actuator and/or sensor is/are failed

J(r, k)6Jth(r, k), if actuators and sensors are healthy.

(30)

4.3 FAR and MDR computation

It is well known that the selection of the threshold is a
tradeoff between FAR and MDR[6]. In order to compare
the proposed threshold with the existent method, we firstly
give the computing methods of FAR and MDR, and then
the detailed comparison will be shown in this section.

Lemma 1[6]. Given a random variable s with mean value
s̄ and variance σ2, for any ε > 0, it follows that

P {|s− s̄| > ε} 6 σ2

ε2
. (31)

According to (29), we say a false alarm occurs if and only if
J(r, k) > Jth(r, k) in the absence of fault. The FAR of the
threshold is determined by

P {J(r, k) > Jth(r, k) |Bf = 0, Df = 0} =

P

{{
k=L1∑
k=0

rT(k)r(k)

} 1
2

>

sup
w̄(k)∈l2,Bf =0,Df =0

E(J(r, k))+

η sup
w̄(k)∈l2,Bf =0,Df =0

σ(J(r, k))

}
6

P

{{
k=L1∑
k=0

rT(k)r(k)

} 1
2

> {E(J(r, k))+ησ(J(r, k))}} .

(32)
By using Lemma 1 and (31), the FAR of threshold (28)

is upper-bounded by 1
η2 .

The FAR of the threshold in [7, 16] can be determined
by

P

{{
k=L1∑
k=0

rT(k)r(k)

} 1
2

>

sup
w(k)∈l2,Bf =0,Df =0

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2



 6

P

{{
K=L1∑
k=0

rT(k)r(k)

} 1
2

>

E

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2

+

η

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2





where

E

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2

+

η

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2



 6

sup
w(k)∈l2,Bf =0,Df =0

{
K=Lth∑

k=0

rT(k)r(k)

} 1
2

.

Here, we let η = (Jth − E(J(r, k)))/σ(J(r, k)).
By using Lemma 1, the FAR of the threshold in [7, 16]

is upper-bounded by 1
η2 .

Ideal fault detection method for a system is that the eval-
uation function should have been greater than the threshold
when a fault occurred. We introduce the MDR computation
given by [17] as

MDR =
G1

G×G2
(33)

where G is the total test number, G1 is the total time of the
faulty system during which the value of evaluation function
remains less than the threshold in all simulations, and G2

is the total fault time in each test.

5 Simulation study

In this section, a simple linear time-invariant system is
constructed to illustrate our method, and we shall show the
detailed comparison of FAR/MDR in this section.

Consider system (1) with

A =

[
−0.01 0.1

−0.3 0.1

]
, B =

[
0.1 0.2

0.3 0.5

]
, B1 =

[
0.2

0.1

]

C =

[
0.1 0

0 0.3

]
, V =

[
0.5 0.5

]
.

Matrix L is designed by pole assignment to ensure the
closed-loop system without network delay is stable. With
the poles placed as [0.5 0.01], we design L as

L =

[
−5.1000 0.333

−3.000 0.3000

]
.

Given the desired parameter matrices as

Q =

[
2 0

0 2

]
, R =

[
1 0

0 1

]

when the time delay d = 1, matrix K is designed as

K =

[
0.0663 −0.0287

0.1097 −0.0509

]
.

For τ = 2, solving the optimal problem (25), we can get the
disturbance rejection level γ = 0.036.

In this simulation, we carry out 200 times of simulation
experiments. And in each experiment, we set the time of
fault occurrence is 15 s, Hence, G = 200, G2 = 15. In addi-
tion, we set the allowable range of FAR as 6.25 %, i.e., η = 4.
Then, we can compute E(J(r, k)), σ(J(r, k)), Jth(r, k) by
using (28) and (29) at 20 s, 60 s, 100 s and 140 s, respectively.
Using 1

η2 and (33), we get the values of FAR and MDR. The

values of FAR and MDR in [7, 16] are also computed. They
are all listed in Table 1.

From Table 1, it can be concluded that the FARs of our
proposed method and the one in [7, 16] have both met the
allowable range of FARs for the 4 sampling times. With
the reduction of the values of MDR in [7, 16], the values of
MDR from our proposed method are growing as time goes
on, but the values of MDR obtained in [7, 16] are still bigger
than the ones obtained by our method.
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Table 1 Comparison of some parameters with different

methods

Time (s) 20 60 100 140

E(J(r, k)) 0.0766 0.1336 0.1735 0.2052

σ(J(r, k)) 0.0078 0.0077 0.0076 0.0079

Proposed Jth(r, k) 0.1078 0.1644 0.2039 0.2368

method η 4 4 4 4

FAR (%) 6.25 6.25 6.25 6.25

MDR(%) 11.10 13.73 18.57 20.30

E(J(r, k)) 0.0766 0.1336 0.1735 0.2052

σ(J(r, k)) 0.0078 0.0077 0.0076 0.0079

By [7, 16] Jth 0.2449 0.2449 0.2449 0.2449

η 21 14 9 5

FAR (%) 0.23 0.51 1.23 4.00

MDR(%) 65.20 51.67 37.83 25.00

In the simulations, we suppose the fault(s) occurred from
k = 60 to k = 120. The residual evolution J(r, k) for
different failure cases are shown in Figs. 2–4, respectively.
Fig. 2 shows the case of the actuator#1 fault, Fig. 3 shows
the case of the sensor#2 fault, and the case of both the
actuator#1 and the sensor#1 faults at the same time is
shown in Fig. 4. For Jth(r, k) obtained by using (28), and
E(J(r, k)), σ(J(r, k)) are shown in Table 1. The simulation
results show that the residual evolutions are all less than
the threshold in the absence of fault.

If actuator#1 gets faulty from 20 s to 30 s, then by us-
ing different thresholds with our proposed method and the
method in referenced literature, the residual evolutions and
the residual signal are shown in Fig. 5.

Fig. 2 Evolution of J(r, k) and Jth(r, k) with faulty actuator#1

From Fig. 4, it can be seen that J(r, 22) = 0.1338 >
Jth(r, 22) = 0.1104, the fault can be detected in two time
steps after its occurrence. The fault can be detected at
22 s by our proposed method. By [7, 16], with the thresh-
old Jth = 0.2449, from Fig. 5, it is shown that J(r, 85) =
0.2437 < Jth < J(r, 86) = 0.2450. Therefore, the fault can
be detected in 66 time steps after its occurrence. It is obvi-
ous that our proposed method can detect the fault earlier
than the one in the existing literatures as [7, 16].

The FAR and MDR of [7, 16] shown in Table 1 and Fig. 5
are related with Lth. If the fault happens very late within
the maximum time step Lth, the FAR will be very large,
and the MDR will be very large if the fault happens very
early when Lth is long. If we set the short Lth, the MDR can
reduce, but the high FAR cannot be avoided. Colligating
the FAR and MDR, our proposed method is superior to
[7, 16].

Fig. 3 Evolution of J(r, k) and Jth(r, k) with faulty sensor#2

Fig. 4 Evolution of J(r, k) and Jth(r, k) with both actuator#1

and sensor#1 faults

Fig. 5 Evolution of J(r, k) and Jth(r, k) with faulty actuator#1

obtained by our method and [7, 16]

Remark 3. A large number of simulation experiments
show that the average detection time is 3.7 s if the fault
occurs at 190 s, by using our proposed method. The resid-
ual evaluation function and threshold are recalculated after
200 s. So there is no worry over the growth of the MDR
value through our proposed method, as the MDR value in-
creases with time.
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6 Conclusions

This paper studied the sensors/actuators fault detection
for networked control systems with transmission delays. To
cope with the time delay, the state observer and predictive
control are adopted. After the FD filter was constructed,
the optimal H∞ performance index can be achieved. When
actuators/sensors failure occurred, one can detect through
comparing the residual evaluation function with the thresh-
old. A new threshold computation method that conforms
to the actual situation was proposed, then we compare the
threshold of FAR/MDR proposed in the paper with the
ones in the existing literature method. Finally, numerical
simulations were performed and the results verify the effec-
tiveness of the proposed method.
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teed active fault-tolerant control of networked control sys-
tems. Journal of Control Science and Engineering, vol. 2008,
Article ID. 189064, 1–9, 2008.

[12] H. Huang, X. D. Han, D. X. Xie, Z. Q. Wang. Active fault-
tolerant control for networked control systems with packet
dropout. Control and Decision, vol. 24, no. 8, pp. 1126–1131,
2009. (in Chinese)

[13] W. Li, J. Q. Zhang, Y. J. Li. Design of robust fault-tolerant
controller based on delay model for networked control sys-
tems. Control Engineering of China, vol. 16, no. 5, pp. 517–
521, 526, 2009. (in Chinese)

[14] Z. J. Li, L. F. Wang, X. H. Lai, S. H. Xu. Stability of con-
strained model predictive control for networked control sys-
tems with data packet dropout. In Proceedings of IEEE In-
ternational Conference on Automation and Logistics, IEEE,
Jinan, China, pp. 3018–3023, 2007.

[15] Y. Xia, G. P. Liu, M. Fu, D. Rees. Predictive control of net-
worked systems with random delay and data dropout. IET
Control Theory and Applications, vol. 3, no. 11, pp. 1476–
1486, 2009.

[16] M. Y. Zhong, H. Ye, P. Shi, G. Wang. Fault detection for
Markovian jump systems. IEE Proceedings: Control The-
ory and Applications, vol. 152, no. 4, pp. 397–402, 2005.

[17] J. Liang, L. Y. Qiao, X. Y. Peng. Fault detection based on
SIR state estimation and smoothed residual. Acta Electron-
ica Sinica, vol. 35, no. 12A, pp. 32–36, 2007. (in Chinese)

Yu-Yan Zhang received the M. Sc. and
Ph.D. degrees from Institute of Electrical
Engineering, Yanshan University, China in
2001 and 2008, respectively. She is cur-
rently an associate professor in Yanshan
University, China.

Her research interests include fault de-
tection and fault-tolerant control, computer
measurement and control system.

E-mail: yyzhang@ysu.edu.cn

Jun-Ling Zhang received her M. Sc.
degree in Institute of Electrical Engineer-
ing, Yanshan University, China in 2012.

Her research interests include fault de-
tection and fault-tolerant control of net-
worked control systems.

E-mail: Junling111@163.com

Xiao-Yuan Luo received the M. Sc. and
Ph.D. degrees from Institute of Electrical
Engineering, Yanshan University, China in
2001 and 2005, respectively. He is currently
a professor in Yanshan University, China.

His research interests include fault de-
tection and fault-tolerant control, and net-
worked control systems.

E-mail: xyluo@ysu.edu.cn (Correspond-
ing author)

Xin-Ping Guan received his M. Sc. de-
gree in applied mathematics, and his Ph.D.
degree in electrical engineering from Harbin
Institute of Technology, China in 1991 and
1999, respectively. He is currently a profes-
sor of control theory and control engineer-
ing in Yanshan University, China

His research interests include robust con-
gestion control in communication networks,
multi-agent systems, and networked control

systems.
E-mail: xpguan@sjtu.edu.cn


