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Abstract: This paper deals with the problem of delay size stability analysis of single input-delayed linear and nonlinear systems.
Conventional reduction, reduction linked by sliding mode, and linear memoryless control approaches are used for simple input-delayed
systems to obtain the stability conditions. Several first order examples are investigated systematically to demonstrate the capabilities
and limitations of the advanced stability analysis techniques including Lyapunov-Krasovskii functionals, Newton-Leibniz formula, and
a newly addressed Lagrange mean value theorem. Numerical comparative results show the usefulness and effectiveness of the advanced
delay size analysis techniques proposed in this paper.
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1 Introduction

Time-delay effect is frequently encountered in many en-
gineering systems. Delay effect complicates the analysis
and design of control systems. A major problem in the
analysis and design of time-delayed systems is related to
delay-dependent stability conditions and stabilization us-
ing linear or discontinuous state feedback with or without
memory. Delay-dependent stability and stabilization con-
ditions provided an upper bound of time-delay size, which
ensures the asymptotic stability of the system.

As we known, there are three basic conventional
control design methods for input-delayed systems:
Smith predictor[1], reduction[2] and memoryless control
approaches[3, 4]. Reduction approach linked by variable
structure control was used in [5]. Recently, variable
structure control[6−8] has also been used for stabilization
of time-delay systems.

Recent advances in time-delay systems were presented
in [9−14]. Several new improved delay-dependent stability
and robust stability conditions for time-invariant and uncer-
tain time-delay systems were developed by using standard
and augmented Lyapunov-Krasovskii functionals[15−22].

It is clear that the usage of various control design meth-
ods may lead to different stability conditions, which may
affect the size of the upper bound of the time-delay. From
this point of view, conventional reduction, reduction linked
by sliding mode, linear memoryless control approaches are
used for simple input-delayed systems in this paper. Also,
some new stability conditions are obtained and compared
numerically.

In this paper, the Lagrange mean value theorem is in-
troduced for the first time to the stability analysis of input
delayed systems. This theorem allows expressing the time-
delayed control input as a combination of a delay-free input
and its derivative. Then, a set of sufficient conditions for the
stability are obtained by using Lyapunov-Krasovskii func-
tionals. Numerical comparative results show the usefulness
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and effectiveness of our advanced analysis techniques.
This paper is organized as follows. In Section 2, delay-

dependent stability analysis of simple input-delayed linear
and nonlinear systems by using classical reduction method
and reduction method linked by sliding mode is investigated
systematically with several examples. Section 3 presents
the conventional memoryless control approaches for sim-
ple input-delayed systems. Delay-dependent stability con-
ditions are obtained by using various versions of Lyapunov-
Krasovskii functional candidates, Newton-Leibniz and La-
grange mean value theorem analysis techniques. In Section
4, the Lagrange mean value theorem approach is introduced
for the stability analysis of input-delayed systems and its
extension to multivariable systems. Here, some appropri-
ate analysis techniques are advanced. The obtained upper
bound of delay size is compared with some existing results.
In Section 5, the obtained computational comparison results
for numerical examples of single input-delayed systems are
analyzed. Finally, conclusions are given in Section 6.

2 Reduction method approaches

Comparative delay-dependent stability analysis of simple
input-delayed linear and nonlinear systems with several ex-
amples is investigated systematically. Some useful results
are presented. The Lagrange mean value theorem is intro-
duced and appropriate analysis techniques are advanced.

Let us consider the following single input-delayed system
of the form:

ẋ(t) = Ax(t) + bu(t− h), t > 0

u(t) = φ(t),−h 6 t 6 0 (1)

where x(t) is the available n-state vector, u(t) is the scalar
control input, A is the constant real n × n matrix, b is the
constant n-vector, φ(t) is a known initial control function
in [−h, 0], and h > 0 is a constant time-delay.
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2.1 Reduction method

Consider the following input-delayed system:

ẋ(t) = Ax(t) + b0u(t) + b1u(t− h) (2)

where b0 and b1 are known vectors, if b0 = 0, then (2)
reduces to (1).

By using a linear state transformation[2], we can obtain

z(t) = x(t) +

∫ t

t−h

eA(t−h−θ)b1u(θ)dθ. (3)

And (2) reduces to the delay-free system as

ż(t) = Az(t) + (b0 + e−Ahb1)u(t) = Az(t) + b̄u(t) (4)

where b̄ = b0 + e−Ahb1.
The reduced system (4) can be stabilized by using the

controller

u(t) = −kTz(t) (5)

where k is a gain vector.
Choose a conventional Lyapunov function candidate as

V (z(t)) = zT(t)Pz(t) (6)

where P is a positive definite symmetric matrix.
Then,

V̇ = −zT(t)Qz(t) < 0 (7)

if the following Lyapunov matrix equation holds:

P (A− b̄kT) + (A− b̄kT)TP = −Q < 0 (8)

where Q is a positive definite symmetric matrix.
In order to compute the maximum upper bound h̄ in

0 < h 6 h̄, let us consider the following simple example.
Example 1. Consider the first order input-delayed sys-

tem

ẋ(t) = −ax(t)− bu(t− h) (9)

where a and b are some constant scalars.
By using a linear state transformation

z(t) = x(t)−
∫ t

t−h

e−a(t−h−θ)bu(θ)dθ (10)

the input-delayed system (9) reduces to

ż(t) = −az(t)− eahbu(t) (11)

which can be stabilized by the linear delayed controller

u(t) = −kz(t). (12)

Choose a conventional Lyapunov function as

V =
1

2
z2(t). (13)

Then,

V̇ = −(a− eahbk)z2(t) 6 −(a− eah |bk|)z2(t) < 0 (14)

if

a > eah |bk| > 0. (15)

Hence, the upper bound can be obtained from (15) as

h̄ =
ln a
|bk|
a

. (16)

Thus, the transformed system (11) is asymptotically sta-
ble for any 0 < h < h̄ with the maximum upper bound h̄ of
(16).

2.2 Reduction method linked by sliding
mode

Now, let us demonstrate how this idea can be used for the
control of the single input-delayed system (2) with matched
external disturbances:

ẋ(t) = Ax(t) + b0u(t) + b1u(t− h) + f(t) (17)

where f(t) is an unknown but bounded external distur-
bance. We assume that it is matched by the control:

f(t) = b̄f̄(t)∣∣f̄(t)
∣∣ 6 f0 (18)

f̄(t) is a scalar function, f0 is a scalar constant.
By using the reduction method, the input-delayed system

(17) can be transformed into delay-free system

ż(t) = Az(t) + b̄u(t) + b̄f̄(t). (19)

Then, we can utilize the following simple conventional
sliding mode control

u(t) = −kTz(t)− δsgn(s(t)) (20)

s(t) = cTz(t) (21)

where s(t) is the switching function, c is a design n-vector, k
is a state feedback gain vector, and δ is a relay gain scalar to
be determined. The sufficient conditions for the existence
of sliding mode are formulated in Theorem 1.

Theorem 1. Suppose that the matching condition (18)
holds. Then an asymptotically stable sliding mode exists
on the sliding manifold s(t) = 0 defined for the transformed
system (19) driven by variable structure controller (20) if
the following conditions are satisfied:

cT
(
A− b̄kT

)
= λcT (22)

cTb̄ (δ − f0) > 0 (23)

where λ is one of the negative eigenvalues of the stable
closed loop system matrix

(
A− b̄kT

)
.

Proof. Choose a conventional Lyapunov function

V (s(t)) =
1

2
s2(t). (24)

Then,

V̇ = s(t)ṡ(t) =

s(t)cT
(
A− b̄kT

)
z(t)− cTb̄δ |s(t)|+ cTb̄f̄(t)s(t) 6

λs2(t)− cTb̄(δ − fo)|s(t)| < −cTb̄(δ − f0) |s(t)| < 0 (25)
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if conditions (22) and (23) hold. ¤
In order to compute the maximum upper bound h̄, 0 <

h < h̄, let us consider the following simple example.
Example 2. Again consider a simple input-delayed sys-

tem (9), which is transformed to (11).
Define a classical relay controller with the switching func-

tion as

u(t) = −δsgn(s(t)) (26)

s(t) = cz(t) (27)

where δ and c are some design constants.
The closed-loop system can be written as

ż(t) = −az(t) + eahbδsgn(s(t)). (28)

The sliding condition for (28) is given by

s(t)ṡ(t) < −(a− eah |cbδ|)s2(t) < 0 (29)

if a > eah |cbδ| > 0. (30)

Hence, the maximum upper bound h̄ can be obtained as

h̄ =
ln a
|cbδ|
a

. (31)

And (28) is asymptotically stable for any 0 < h < h̄ with
the upper bound (31).

3 Linear memoryless control approach

In this section, conventional memoryless control ap-
proaches for simple input-delayed systems are investigated.
The delay-dependent stability conditions are obtained by
using various versions of Lyapunov-Krasovskii functionals,
Newton-Leibniz and Lagrange mean value theorem analy-
sis techniques. From these conditions, the upper bound of
time-delays is obtained and compared through a classical
test example.

Consider again a first order input-delayed system (9) with
memoryless control action

u(t) = −kx(t) (32)

where k is a gain constant.
For the purpose of comparison through the well studied

classical test example, let k = −1. Then, (9) reduces to the
classical first order system, which will be briefly remem-
bered from [10] and extended to another type of functional.

3.1 Classical test example

Example 3. The first order system is given by

ẋ(t) = −ax(t)− bx(t− h), t > 0

x(t) = ϕ(t),−h 6 t 6 0 (33)

where a and b are known constants, h > 0 is a constant
time-delay, and ϕ(t) is a known function in −h 6 t 6 0.

Choose a conventional Lyapunov-Krasovskii functional
as

V (x(t), x(t− h)) =
1

2
x2(t) + µ

∫ t

t−h

x2(θ)dθ (34)

where µ is a positive scalar to be selected.
Then, the time-derivative of (34) along (33) is given by

V̇ = −
[

x(t)

x(t− h)

]T

 a− µ

1

2
b

1

2
b µ




[
x(t)

x(t− h)

]
.

(35)

Hence, V̇ is negative definite if and only if |H| =
(a − µ)µ − 1

4
b2 > 0, which gets a maximum value if

∂|H|
∂µ

= a − 2µ=0 or µ = a
2
. Then, max |H| = a2−b2

4
> 0,

from which the stability conditions are obtained as

a + b > 0, a− b > 0

or − a < b < a or 0 < |b| < a. (36)

Note that λmin(H) = a−b
2

> 0 and λmax(H) = a+b
2

> 0,
from which the same stability conditions can be obtained
as

a− b > 0 and a + b > 0. (37)

Thus, (33) is delay-independent asymptotically stable if
condition (36) holds. The only problem here may occur if
b > |a|. In this case, the maximal critical value of h̄ can be
exactly found by using the frequency-domain approach

h̄ =
arccos

(−a
b

)
√

b2 − a2
. (38)

The delay-dependent stability condition by using conven-
tional memoryless control is given in the following example.

Example 4. Again consider a simple time-delay system
(33). Choose the augmented Lyapunov-Krasovskii func-
tional as

V =
1

2
x2(t) + µ

∫ t

t−h

x2(θ)dθ + ρ

∫ 0

−h

∫ t

t+β

x2(γ)dγdβ

(39)

where µ and ρ are some positive scalars.
Then,

V̇ = −
[

x(t)

x(t− h)

]T

 a− µ− ρh

1

2
b

1

2
b µ


×

[
x(t)

x(t− h)

]
− ρ

∫ t

t−h

x2(β)dβ < 0 (40)

if the condition

|H| = (a− µ− ρh)µ− 1

4
b2 > 0 (41)

with a− µ− ρh > 0, µ > 0, ρ > 0.
As seen from (41), if h = a−µ

ρ
, and H 6 0, system (33)

with functional (39) becomes unstable. Therefore, the sta-
bility condition and region depend on the form of the se-
lected functional and the size of delay.

Now, we can find the upper bound h̄ in a similar way to
the one in Example 3 as

h̄ =
a2 − b2

b2
with |b| < a (42)
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and ρ = µ = a
2(1+h)

.

If ρ = 0 is substituted into (40) then the delay-dependent
conditions (41) and (42) reduce to the delay-independent
case.

Now let us consider the Newton-Leibniz formula ap-
proach.

3.2 Newton-Leibniz formula approach

Example 5. Again consider a simple time delay system
(33).

Substituting the Newton-Leibniz formula

x(t− h) = x(t)−
∫ t

t−h

ẋ(θ)dθ (43)

into (33), we can obtain

ẋ(t) = −(a + b)x(t)− ab

∫ t

t−h

x(θ)dθ − b2

∫ t

t−h

x(θ − h)dθ.

(44)
Construct an augmented Lyapunov-Krasovskii functional

V =
1

2
x2(t) + µ

∫ 0

−h

∫

t

+θtx2(β)dβdθ+

ρ

∫ 0

−h

∫ t

t+θ−h

x2(β)dβdθ + γ

∫ t

t−h

x2(θ)dθ (45)

where µ, ρ, and γ are some positive scalars. Then,

V̇ = x(t)ẋ(t) + µhx2(t)− µ

∫ t

t−h

x2(θ)dθ + ρhx2(t)−

ρ

∫ t

t−h

x2(θ − h)dθ + γx2(t)− γx2(t− h) =

− (a + b− γ)x2(t)− abx(t)

∫ t

t−h

x(θ)dθ−

b2x(t)

∫ t

t−h

x(θ − h)dθ + µhx2(t)− µ

∫ t

t−h

x2(θ)dθ+

ρhx2(t)− ρ

∫ t

t−h

x2(θ − h)dθ − γx2(t− h). (46)

For any h > 0, the Noldus inequality holds:

h

∫ t

t−h

x2(θ)dθ >
[∫ t

t−h

x(θ)dθ

]2

(47)

h

∫ t

t−h

x2(θ − h)dθ >
[∫ t

t−h

x(θ − h)dθ

]2

. (48)

Therefore, (46) reduces to

V̇ 6 − [(a + b− γ)− ρh− µh] x2(t)−

abx(t)

∫ t

t−h

x2(θ)dθ − γx2(t− h)− b2x(t)

∫ t

t−h

x2(θ − h)dθ − 1

h
µ

[∫ t

t−h

x(θ)dθ

]2

−

1

h
ρ

[∫ t

t−h

x(θ − h)dθ

]2

= −




x(t)∫ t

t−h

x(θ)dθ
∫ t

t−h

x(θ − h)dθ

x(t− h)




T

×




a + b− γ − ρh− µh
1

2
ab

1

2
b2 0

1

2
ab

1

h
µ 0 0

1

2
b2 0

1

h
ρ 0

0 0 0 γ




×




x(t)∫ t

t−h

x(θ)dθ
∫ t

t−h

x(θ − h)dθ

x(t− h)




< 0. (49)

Hence V̇ < 0, if the matrix H > 0 in (49) is positive definite.
The upper bound h̄ can be found numerically from the

condition λmin(H) < 0.
The same problem can be analyzed by using the Lagrange

mean value theorem, which is going to be introduced as fol-
lows.

4 Lagrange mean value theorem ap-
proach

Example 6. Again consider the first order system (33).
In this case, we will use the Lagrange mean value theorem.
Remembering that the Lagrange mean value theorem[23] is
stated as

f(b)− f(a)

b− a
= f ′(ξ), a < ξ < b (50)

where f(x) is continuous at every point of the closed inter-
val [a, b] and differentiable at every point of its interior (a,
b). Then, delay term can be expressed as

x(t− h) = x(t)− hẋ(θ) (51)

where θ is a point in the interval t− h < θ < t.
Substituting (51) into (33), we have

ẋ(t) = −(a + b)x(t)− abhx(θ)− b2hx(θ − h). (52)

Note that, (44) obtained by using Newton-Leibniz formula
also reduces to (52) after applying the mean value theorem
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to definite integrals[23]:

∫ b

a

f(x)dx

(b− a)
= f(ξ) (53)

where a 6 ξ 6 b, and f(x) is continuous in the closed in-
terval [a, b].

Therefore, according to (53),

∫ t

t−h

x(θ)dθ = hx(θ)

∫ t

t−h

x(θ − h)dθ = hx(θ − h) (54)

where θ is some point in the interval t− h 6 θ 6 t.
Substituting (54) into (44), we have the same trans-

formed system as in (52).
Now, we can proceed to the analysis of the system (52).

First, we need to make Assumption 1.
Assumption 1. The time-delay parameter θ(t) given by

(51) is in general a time-dependent function with domain
t − h(t) < θ(t) < t. Then, we assume that the rate of a
change of this function satisfies

0 < 1− η 6 θ̇(t) 6 1 and ḣ(t) 6 η < 1 (55)

where η is a known scalar satisfying ḣ(t) 6 η < 1[14, 16].
Note that if h(t) = const and η = 0, then θ̇(t) = 1 is obvi-
ous from (55).

Choose an augmented Lyapunov-Krasovskii functional as

V =
1

2
x2(t) + α

∫ θ

θ−h

x2(ξ)dξ + β

∫ t

θ

x2(ζ)dζ+

γ

∫ t

t−h

x2(ψ)dψ (56)

where α, β and γ are some positive scalars.
The time-derivative of (56) along (52) is given by

V̇ = − (a + b)x2(t)− abhx(t)x(θ)− b2hx(t)x(θ − h)+

βx2(t) + θ̇(t)α
[
x2(θ)− x2(θ − h)

]−
θ̇(t)βx2(θ) + γx2(t)− γx2(t− h).

Since (55) holds and −θ̇(t) 6 −(1− η), it follows that

V̇ 6 −
[

x(t) x(θ) x(θ − h) x(t− h)
]




a + b− β − γ 1
2
abh̄ 1

2
b2h̄ 0

1
2
abh̄ −α + (1− η)β 0 0

1
2
b2h̄ 0 α(1− η) 0

0 0 0 γ


×




x(t)

x(θ)

x(θ − h)

x(t− h)


 < 0 (57)

if H > 0.
The upper bound h̄ can be found numerically from H > 0

if one of the eigenvalues equals to zero.

4.1 Extension: Multivariable time-delay
system

The results obtained in Example 6 can be extended to
the following multivariable time-delay system:

ẋ(t) = Ax(t) + A1x(t− h) (58)

where A and A1 are given n× n matrices.
Substituting (51) into (58), we have

ẋ(t) = (A + A1)x(t)− hA1Ax(θ)− hA2
1x(θ − h). (59)

Theorem 2. Suppose that Assumption 1 holds. Then
the transformed time-delay system (59) is delay-dependent
asymptotically stable if there exist some positive definite
symmetric matrices P, R, S and T such that the following
conditions are satisfied:

H =




Q h D h C 0

h DT R− (1− η)S 0 0

h CT 0 −(1− η)R 0

0 0 0 −(1−η)T




<0

(60)

where D = PA1A and C = PA2
1. The following two condi-

tions have to be satisfied for negative definiteness of H in
defined in (60):

Q = P (A +A1) + (A +A1)
TP + S + T < 0 (61)

0 < R < (1− η)S. (62)

Proof. By choosing an augmented Lyapunov-Krasovskii
functional

V = xT(t)Px(t)+

∫ θ

θ−h

xT(ζ)Rx(ζ)dζ +

∫ t

θ

xT(ξ)Sx(ξ)dξ+

∫ t

t−h

xT(ϕ)Tx(ϕ)dϕ (63)
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the time derivative of (63) along (59) can be evaluated as

V̇ = xT(t)P ẋ(t) + ẋT(t)Px(t)+

θ̇(t)xT(θ)Rx(θ)− .

θ(t)x
T(θ − h)Rx(θ − h)+

xT(t)Sx(t)− θ̇(t)xT(θ)Sx(θ) + xT(t)Tx(t)−
xT(t− h)Tx(t− h) =

xT(t)(P (A+A1)+(A+A1)
TP )x(t)−2hxT(t)PA1Ax(θ)−

2hxT(t)P (A1)
2x(θ − h) + θ̇(t)xT(θ)(R− S)x(θ)−

θ̇(t)xT(θ − h)Rx(θ − h) + xT(t)(S + T )x(t)−
xT(t− h)Tx(t− h) 6
xT(t)(P (A+A1)+(A+A1)

TP )x(t)−2hxT(t)PA1Ax(θ)−
2hxT(t)P (A1)

2x(θ − h) + xT(θ)Rx(θ)−
(1− η)xT(θ)Sx(θ)− (1− η)xT(θ − h)Rx(θ − h)−

xT(t− h)Tx(t− h) 6




x(t)

x(θ)

x(θ − h)

x(t− h)




T

×




Q h D h C 0

h DT R− (1− η)S 0 0

h CT 0 −(1− η)R 0

0 0 0 −T


×




x(t)

x(θ)

x(θ − h)

x(t− h)


 < 0, if H < 0. (64)

¤
Example 7. Consider the linear time-delay system (58)

with parameters taken from [17]:

A =

[
−2 0

0 −0.9

]
, A1 =

[
−1 0

−1 −1

]
. (65)

The maximum allowable bounds of the time-delay com-
puted from condition (60) using LMI control toolbox gives
the solution hmax = 1.1074, where η = 0.001, H is shown

in the end of this page, and

eig(H) = (1.0E + 004)× [−1.0380− 0.3392− 0.0054− 0.0009

− 0.0002− 0.0001− 0.0000− 0.0000]T

P =

[
2039.7− 18.7

−18.70.8

]

R =

[
1614.1− 15.2

−15.20.7

]

S =

[
5625.4− 34.3

−34.31.5

]

T =

[
26.7728− 1.1711

−1.17110.0525

]

if η = 0.00001, hmax = 1.1081.

By considering the well known existing results from
[17] where hmax = 0.8571, from [18] where hmax =
0.9999, from [20, 21] where hmax = 1.0, it can be con-
cluded that the obtained result hmax = 1.1081 of the
proposed Theorem 2 is comparable with and even bet-
ter than the existing results of [17−21]. Note that, in
Theorem 2, the recently highly improved methods with
augmented Lyapunov-Krasovskii functionals such as Park
inequality[19], Xu and Lam relaxation[15] or descriptor sys-
tem approach[22] are not used. Moreover, the condition (60)
is simpler than the ones of existing approaches, and the
functionals (63) are standard. However, the largest avail-
able time-delay bound obtained in the literature for the
numerical example (65) is hmax = 4.47[15, 19, 22].

5 Computational comparison analysis

The maximum upper bound of delay size can be found
numerically from the stability conditions presented above
in a systematical way by using various control approaches.
The computational results for the same first order system
with the same numerical parameters are given in Table 1.
In the left column of this table, the names of appropriate
methods with obtained conditions are given whereas the
maximum allowable delay bounds are presented in the right
column. As seen from Table 1, all the compared conditions
derived in this paper give different but comparable upper
delay bounds. Therefore, these conditions and approaches
are useful. For example, for the same parameters, Newton-
Leibniz formula gives hmax = 1.8685 while the Lagrange

H = (1.0E + 003)×



−6.5486 0.0552 4.4761 −0.0186 2.2174 −0.0207 0 0

0.0552 −0.0016 −0.0395 0.0008 −0.0188 0.0009 0 0

4.4761 −0.0395 −4.0057 0.0191 0 0 0 0

−0.0186 0.0008 0.0191 −0.0009 0 0 0 0

2.2174 −0.0188 0 0 −3.2249 0.0304 0 0

−0.0207 0.0009 0 0 0.0304 −0.0014 0 0

0 0 0 0 0 0 −0.0535 0.0023

0 0 0 0 0 0 0.0023 −0.0001
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Table 1 Maximum upper bounds of delay size

Methods Maximum allowable delay

Classical test example Lyapunov-Krasovskii method:

1) Condition (36) a = 0.3, b = 0.2, b < a Delay-independent hmax = ∞

2) Nyquist criterion, condition(38) a = 0.3, b = 0.6, b > a hmax =
2π

3
= 2.093

Reduction method, condition (16) a = 0.3, b = 0.2, k = −1 hmax = 1.3515

Reduction method linked by sliding mode, Condition (31)

a = 0.3, b = 0.2, δ = 0.9, c = 0.9 hmax = 6.1728

Memoryless control approach, Lyapunov-Krasovskii method:

1) Condition (41) a = 0.3, b = 0.2 hmax = 1 if µ = 0.1, ρ = 0.1

2) Condition (42) a = 0.3, b = 0.2 hmax = 1.25 if µ = 0.1, ρ = 0.0001; hmax = 0.5 if µ = 0.1, ρ = 0.1

Newton-Leibniz formula condition (49):

1) a = 0.3, b = 0.2, b < a hmax = 1.8685 if µ = 0.1; hmax = 2.65 if µ = 0.01 ρ = 0.01, γ = 0.102

2) a = 0.3, b = 0.6, b > a hmax = 1.319 if µ = 0.1; hmax = 0.196 if µ = 0.01, ρ = 0.01, γ = 0.102

Lagrange mean value theorem, condition (57):

1) a = 0.3, b = 0.2, b < a, α = 0.01, β = 0.01, γ = 0.102 hmax = 1.69 if η = 0.09; hmax = 1.67 if η = 0.1

2) a = 0.3, b = 0.2, b < a, α = 0.1, β = 0.1, γ = 0.102 hmax = 5.014 if η = 0.09; hmax = 4.952 if η = 0.1

3) a = 0.3, b = 0.6, b > a, α = 0.01, β = 0.01, γ = 0.102 hmax = 0.209 if η = 0.09; hmax = 0.206 if η = 0.1

4) a = 0.3, b = 0.6, b > a, α = 0.1, β = 0.1, γ = 0.102 hmax = 1.409 if η = 0.09; hmax = 1.393 if η = 0.1

mean value theorem gives hmax = 5.014. Therefore, the last
condition is less conservative than the other ones. Notice
that the numerical examples for a first order input delay
system, which is systematically investigated in this paper,
have not been handled by others yet.

6 Conclusions

In this paper, single input-delayed systems have been in-
vestigated systematically by using conventional reduction,
reduction linked by sliding mode, and linear control design
approaches. Delay-dependent stability conditions are ob-
tained by using various types of Lyapunov-Krasovskii func-
tionals, Newton-Leibniz formula, and newly introduced La-
grange mean value theorem analysis techniques. From these
conditions, the upper bounds of time-delay are obtained and
compared through a classical test example. Comparative
numerical results show the usefulness of advanced analysis
techniques proposed in the paper. It is believed that the
usage of the Lagrange mean value theorem has a great po-
tential for further investigations of input-delayed systems.
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