
International Journal of Automation and Computing 10(6), December 2013, 587-596

DOI: 10.1007/s11633-013-0757-2

The Case of Using Multiple Streams in Streaming

Muhammad Abid Mughal Hai-Xia Wang Dong-Sheng Wang
Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science & Technology,

Tsinghua University, Beijing 100084, China

Abstract: Off-chip replacement (capacity and conflict) and coherent read misses in a distributed shared memory system cause

execution to stall for hundreds of cycles. These off-chip replacement and coherent read misses are recurring and forming sequences of
two or more misses called streams. Prior streaming techniques ignored reordering of misses and not-recently-accessed streams while
streaming data. In this paper, we present stream prefetcher design that can deal with both problems. Our stream prefetcher design
utilizes stream waiting rooms to store not-recently-accessed streams. Stream waiting rooms help remove more off-chip misses. Using

trace based simulations, our stream prefetcher design can remove 8% to 66% (on average 40%) and 17% to 63% (on average 39%)
replacement and coherent read misses, respectively. Using cycle-accurate full-system simulation, our design gives speedups from 1.00 to
1.17 of princeton application repository for shared-memory computers (PARSEC) workloads running on a distributed shared memory
system with the exception of dedup and swaptions workloads.

Keywords: Prefetching, stream first in first out (FIFO), princeton application repository for shared-memory computers (PARSEC),

stream waiting rooms, reordering of misses, sequitur.

1 Introduction

The performance of a computer system depends not only
on its processor but memory as well. For decades, the mem-
ory has been the main barrier for computer system perfor-
mance. In the past decades, advancements in semiconduc-
tor fabrication technology along with micro-architectural
and circuit innovations gave rise to increased processor
speed, while during the same period, architects focused
more on increasing the memory density than its speed, re-
sulting in an ever growing processor-memory performance
gap. However, with the introduction of chip multiproces-
sors (CMPs), processor clock frequencies are increasing less
rapidly than in the past, yet bandwidth contention, inter-
connect latencies, etc. cause execution to stall for hun-
dreds of cycles. Princeton application repository for shared-
memory computers (PARSEC) workloads[1, 2] running on a
distributed shared memory system stall for hundreds of cy-
cles due to off-chip replacement (capacity and conflict) and
coherent read misses[3]. Limited instruction window/re-
order buffer (ROB) size[4] and data dependence (presented
in PARSEC workloads) allow only a certain fraction of
this off-chip read latency to be overlapped with computa-
tion. These off-chip replacement and coherent read misses
are recurring and forming recurring sequences of two or
more misses called streams[3]. The goal of this paper is
to remove recurring off-chip replacement and coherent read
misses, i.e., misses that follow address-correlation[5−7] , us-
ing streaming (an act of early fetching data from memory
using stream).

Prefetching is one of the ways to mitigate processor mem-
ory performance gap, also known as memory wall. Stride
prefetchers[8] issue prefetches only when stride pattern is
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found. We found that most of the off-chip replacement and
coherent read misses in most of the PARSEC workloads do
not follow strided patterns.

Prior correlation-based prefetching approaches (tempo-
ral streaming (TS)[7], global history buffer[5], Markov pre-
fetcher[6], etc.) locate single or multiple streams. Some
of these techniques[7] compare multiple streams assuming
that the order of addresses remains constant across stream
recurrences. However, order of addresses is not always
the same from one recurrence to another, called reorder-
ing. This reordering of addresses can be more common in
CMPs where multiple on-chip processor cores compete for
last-level shared cache. Fig. 1 shows reordering of off-chip
coherent addresses from streamcluster workload. Similar
examples can also be found for replacement misses. As
Fig. 1 shows that misses are recurring but the order always
does not remain the same, e.g., in one recurrence address
0x0c0048b1 follows 0x0c97bdc1 whereas in another recur-
rence 0x0c97bdc1 follows 0x0c0048b1. Moreover, we have
observed using sequitur[9, 10] that streams are not unique
and can start with the same address(es). In other words,
streams share addresses. When stream recurs, most of the
time it follows the most recently-accessed stream. However,
sometimes stream does follow not-recently-accessed stream.
Prior correlation-based prefetching approaches[5−7] do not
utilize such streams while streaming data.

Based on above observations, we present hardware de-
sign called stream prefetcher (SP) that does not compare
multiple streams while streaming data. Moreover, SP ex-
ploits a component, called stream waiting rooms (SWRs),
to capture not-recently-accessed fetched streams. SWRs
provide the most likely not-recently-accessed stream (to be
followed) in case node is not following the most recently-
accessed stream. Using a combination of trace-driven and
cycle-accurate full-system simulation of a distributed shared
memory system running PARSEC workloads, we show:
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1) Our SP design can eliminate 8% to 66 % (on average
40%) and 17 % to 63% (on average 39 %) replacement and
coherent read misses, respectively.

2) Using SWRs, our SP design can remove more off-chip
misses.

3) The performance results are not constant across SP
and competitive prefetchers. For some workloads, SP ex-
cels whereas for others competitive prefetchers.

4) Our SP design gives speedups from 1.00 to 1.17 with
the exception of dedup and swaptions.

Fig. 1 Addresses of cache lines, in hexadecimal format, which

incurred off-chip coherent read misses. These addresses are taken

from streamcluster workload. This shows that misses are recur-

ring but order may vary from one recurrence to another

The rest of the paper is organized as follows. Section 2
discusses classification of off-chip misses. Section 3 elab-
orates our SP design. Section 4 describes simulated sys-
tem and workloads. Section 5 presents results, comparisons
with other competitive prefetchers and performance. Fi-
nally, Section 6 concludes the paper.

2 Off-chip misses and streams

We classify off-chip read miss into three types:
1) Cold: Very first read access to a line that is missed in

L2 cache is classified as cold miss.
2) Replacement: Second or subsequent read access to a

line that missed in L2 cache is classified as replacement
miss. These misses occur because of the L2 cache capacity
or conflicts.

3) Coherent: First read access to a line that is written
by another node is classified as coherent miss. We do not
differentiate between true and false coherent read misses
because we are interested in coherent traffic occurred with
real system parameters, e.g., cache line size[11].

With the help of sequitur, we found that off-chip re-
placement and coherent read misses are recurring, i.e., they
keep repeating[3, 12]. A repetitive sequence of two or more
misses is called stream. Coherent read misses form coherent
streams when read-write shared data structures with repet-
itive traversals are transferred among nodes. Replacement
misses form replacement streams when a repetitive traver-
sal accesses a data structure that exceeds the L2 caches
capacity or traversals are separated by many intervening
accesses. Even though off-chip replacement and coherent
read misses are recurring, but some reordering of misses is
present from one recurrence to another. This reordering im-
plies that multiple streams should not be compared while
streaming data. Therefore, our SP utilizes one stream while
streaming data. We use term off-chip read misses to imply
both off-chip replacement and coherent read misses. Sim-
ilarly, we use term stream to imply both replacement and
coherent streams.

3 Stream prefetcher

Each node has one stream prefetcher. Components that
belong to SP are highlighted in Fig. 2. SP streams data for
both off-chip replacement and coherent read misses. With
the help of directory embedded in each node, SP dynam-
ically identifies off-chip read misses as replacement or co-
herent. It stores replacement and coherent read misses into
separate off-chip circular buffers as these misses can grow to
a large number. Circular buffers that store off-chip coher-
ent and replacement read misses are called coherent pointer
buffer (CPB) and replacement pointer buffer (RPB), re-
spectively. A part of memory is used to implement CPB
and RPB. These buffers are not visible to operating sys-
tem. As each processor executes instructions speculatively,
SP stores read misses into corresponding CPB/RPB only
when corresponding read instructions get committed. This
makes sure that both CPB and RPB store read misses from
correct execution path. Like temporal streaming of shared
memory[7] and prior proposals for recording on-chip gener-
ated metadata in memory (e.g., [13]), SP separately pack-
etizes off-chip replacement and coherent addresses in the
form of cache blocks and ships them off-chip to the cor-
responding CPB/RPB. To locate multiple streams across
the system, SP extends each directory entry with mul-
tiple separate CPB and RPB pointers and CP and RP
fields. Each CPB/RPB pointer in the directory includes
a node ID and an offset within the CPB/RPB where the
miss is stored. The storage overhead is (number of CPB
pointers)×(log2(nodes) + log2(CPB size)) + (number of
RPB pointers)×(log2(nodes) + log2(RPB size)) bits.

Fig. 2 Node along with stream prefetcher. Highlighted compo-

nents are new and added for stream prefetcher. Each node has

four cores and a shared L2 cache

3.1 Storing read misses into off-chip
buffers

Fig. 3 shows actions involved in storing off-chip coher-
ent/replacement read misses into the corresponding off-chip
buffer, CPB/RPB. 1) Node issues a read request to mem-
ory/directory node when off-chip miss occurs. 2) Directory
annotates data response to classify miss as either coherent
or replacement. This annotation avoids sending separate
message for the classification of miss. 3) Node gets data. SP
waits for corresponding instruction retirement that caused
miss. If that instruction gets retired, SP packetizes that
miss and issues packet to CPB/RPB if packet size has been
reached. 4) Finally, CPB/RPB controller receives packet
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and starts extracting miss addresses from a packet. It in-
serts each address into CPB/RPB and then issues a message
to home directory node to update CP/RP field. Writing ad-
dresses to CPB/RPB and updating CP/RP field take place
in background and are off the critical path of the processor.

Fig. 3 Actions involved in storing a read miss to off-chip buffer

3.2 Locating and forwarding stream

With the help of CP/RP field(s), SP locates stream(s).
Fig. 4 shows actions involved in locating and forwarding a
stream. 1) Node incurs off-chip read miss and issues read
request to memory/directory node. 2) Directory node de-
tects if miss is a replacement or coherent. If miss is ei-
ther replacement or coherent, then it reads RP or CP field
and issues read stream message to corresponding node. 3)
CPB/RPB controller sends stream, reads from CPB/RPB,
to a node where miss occurred. 4) Finally, node gets stream
and inserts it to either stream FIFO or SWR. Stream read
access latency is high, but it is either compensated (on the
initial miss) or overlapped through streaming look-ahead.

Fig. 4 Actions involved in reading a stream from off-chip buffer

3.3 Prefetch engine

Fig. 5 depicts heart of SP, called prefetch engine (PE).
Its design is motivated by two main observations: 1) Re-
ordering of misses and 2) capturing of not-recently-accessed
streams. To deal with these observations, PE streams data
uses single stream and utilizes SWRs to capture multiple

not-recently-accessed streams. PE has three components,
namely, stream FIFOs (SFs), stream waiting room (SWRs)
and issue prefetch engine (IPE).

Fig. 5 Prefetch Engine which manages fetched streams and is-

sues prefetch

Each SF is composed of one FIFO, 10-bit stream identity
register (Sid), 1-bit init flag register (Init), 1-bit progress
flag register (Prog), 1-bit stream type register (ST), pointer
register (P), 4-bit saturate counter (Counter), and 1-bit
valid register (V), as shown in Fig. 5. Each FIFO stores
fetched stream. PE dynamically assigns identity to each
stream, and saved in Sid. Using ten bits for stream identity
makes sure that multiple active streams may not have same
Sid. Init bit tells PE whether SF is just initialized or not.
Prog bit tells PE if stream is still helpful avoiding off-chip
misses. PE increments saturate counter whenever demand
requests hit in prefetch buffer (PB). Saturate counter deter-
mines which streams are more useful in terms of removing
off-chip misses. Saturate counter is used by IPE and SF
replacement policy. Replacement policy gives preference to
SFs with lower values of saturate counter. To reuse SFs
that outlived their usefulness but remained in there be-
cause of high saturate counter value, saturate counter is
decremented for every ten SF allocation requests. ST bit
tells about the type of stream that is either replacement or
coherent. ST is used in conjunction with pointer register
and directs PE which buffer to read more stream, i.e., CPB
or RPB. Valid bit (V) tells whether SF is valid or not.

Each SWR is composed of buffer, comparators, 3-bit sat-
urate counter, 1-bit stream type register (ST), pointer reg-
ister (P) and 1-bit valid register (V), as shown in Fig. 5.
ST bit, P register, and V bit have the same goals as in SF.
For each bit in the buffer, there is a comparator. When-
ever there is an off-chip miss, all SWRs are searched against
miss in parallel for a match. If a match is found, then sat-
urate counter of corresponding SWR is incremented. Later
PE selects SWR having the highest value of counter to
be moved to SF as it is likely that node will follow that
stream. PE moves buffer contents (after matching point),
ST, and P register from selected SWR to SF. Later, that
chosen SWR is reset. SWRs are replaced using least re-
cently used policy. The purpose of SWRs is to capture mul-
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tiple not-recently-accessed streams starting with the same
miss. Streams are not unique and same read miss(es) can
belong to more than one stream[3]. SWRs provide the most
likely not-recently-accessed stream in case node is not fol-
lowing the most recently-accessed stream. This is the main
motivation of using SWRs. As we will see in Section 5,
using SWRs helps remove more off-chip misses.

IPE is a counter based issue-prefetch engine that issues
prefetches based on SFs saturate counter. IPE gives more
priority to SFs having the higher value of saturate counter
i.e., first it issues prefetches from SF having the highest
value of counter then the second highest and so on. Each
PE has number of SFs and SWRs but only one IPE. PE al-
ways locates multiple streams starting with the same miss
using multiple CP/RP fields. However, only most recently
seen stream goes to SF and the rest of the streams stay in
the SWRs.

Fig. 6 shows the structure of the prefetch buffer, which
is used to store prefetched data. PB is implemented as
a fully-associative buffer and accessed in parallel with L2
cache. For each node, one PB is used. Using separate stor-
age for prefetched data helps avoiding pollution of L2 cache
when streams are useless and modification to baseline L2
cache. Each PB entry includes a valid bit, address, data,
state, sharers and the identity of the stream to which it
belongs to. Sharers keep track of number of on-chip proces-
sors where this line is present. State is the cache coherence
protocol state. The data in PB can be dirty. Since each
node has number of processors, maintaining clean data in
PB is not a trivial task. We use same baseline cache coher-
ence protocol to maintain the coherence in PB. PB entries
are replaced using a least recently used (LRU) policy.

Fig. 6 Fully-associative prefetch buffer that holds prefetched

lines. Prefetches are only allocated to this buffer

3.4 SP working

Like temporal streaming[7], SP locates multiple streams
following procedure described in Section 3.2 whenever off-
chip miss occurs. All fetched streams go to SWRs except
the most recently seen stream which goes to SF. When
stream is written to SF, PE sets SF′s Init bit so that IPE
can issue prefetch requests from it upon its turn. After is-
suing prefetch requests, PE resets its Init bit. IPE does not
issue more prefetch requests unless its Prog bit is set. Later,
when processor read accesses hit in the PB, the PE is no-
tified to set Prog bit and increment saturate counter of the
corresponding stream identified by Sid. Again, IPE issues
prefetch requests from this stream upon its turn and re-
sets Prog bit. Setting Prog bit each time whenever demand
read request hits in a PB is a way to signal useful streams to

IPE (useful streams help removing off-chip misses whereas
useless streams do not, and lead to increased number of
prefetches that are not used by processor). This setting
and resetting of Prog bit is critical as it signals IPE that
this stream is still useful or not. If PE finds that stream
is useful and its FIFO is 3

4
-th empty then it reads more

stream addresses from off-chip buffer using pointer register
(P) and ST bit. If neither Init nor Prog bit is set, IPE
issues no prefetch requests. In case node is not following
most recently-accessed stream, it will incur off-chip miss.
PE compares that miss against all SWRs and ultimately
SWRs can provide stream (to SFs) likely to be followed
by node. Later, IPE can issue prefetch requests using that
stream as described above.

4 Methodology

4.1 Target system and workloads

We simulate a 4-node distributed shared memory system
with 4GB memory running Sun Solaris 10 operating sys-
tem. Each node has four processors, 8-way 2MB unified
shared L2 cache, PB, and 1GB memory, as shown in Fig. 2.
Each processor has 2-way 16KB L1 instruction and data
caches. Running number of simulations with varying L2
cache reveals that 2 MB L2 cache is sufficient for most of
the PARSEC workloads to capture temporal locality in the
data footprints of application. We configured Simics[14] to
model UltraSparc III plus target system. We collect our re-
sults using a combination of trace-driven and cycle-accurate
full system simulation of a distributed shared-memory sys-
tem using GEMS. Multifacet general execution-driven mul-
tiprocessor simulator (GEMS) toolset[15] is a simulation
framework that uses modular component-based design. A
GEMS builds on Wind River Simics, a full system simu-
lator that allows functional emulation of unmodified ap-
plications and operating systems. GEMS furnishes sim-
ics with cycle-accurate models of an out-of-order proces-
sor core, single/multi-banked cache hierarchies, broad range
of coherence protocols, distributed memory and intercon-
nect networks. Using table driven specification methodol-
ogy GEMS accurately models state transitions (including
transient states) of the coherence protocols in cache and
memory controllers.

Table 1 lists the PARSEC workloads we use for our study.
All workloads use sim small data set. We chose PARSEC
because of its diversity, emerging workloads and state-of-
art algorithms[2]. All workloads were compiled using GCC
3.4.3 with -o3 optimization. Our trace-based analysis use
memory access traces collected from GEMS with in-order
execution, no memory system stalls, and a fixed Instruc-
tion Per Cycle (IPC) of 1.0. We fast forwarded the sim-
ulation until the beginning of region of interest (ROI)[1]

before collecting traces. ROI is the parallel phase of each
PARSEC workload. Moreover, all prefetch instructions are
filtered out while collecting traces. Each trace based simula-
tion uses these traces and we perform measurements for the
whole ROI. Our cycle-accurate full system simulations use
out-of-order processor cores. Each processor core can fetch,
decode, dispatch, execute and retire eight instructions per
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cycle. Other relevant parameters of target system are shown
in Table 2. Because of the variability[16] in multi-threaded
workloads, we use total execution time as a performance
metric. Speedup is the ratio of total execution time of base
system and enhanced system. We also show average oppor-
tunity and average coverage that are the averages across
PARSEC workloads.

5 Results

5.1 Opportunity

The maximum number of off-chip read misses that can
be removed is called opportunity. Fig. 7 shows opportu-
nity for replacement and coherent read misses. Sequitur
calculates this opportunity by adding all recurring misses.
Average opportunity is the average of all PARSEC work-
loads opportunities, which is 53% for replacement and 68%
for coherent read misses. Coverage is the fraction of all read
misses that SP correctly predicts and eliminates. Average
coverage is the average of all PARSEC workloads cover-
age. Fig. 8 shows coverage for replacement and coherent
read misses for a stream look-ahead of eight cache blocks
along with number of fetched streams and no SP hardware
restrictions (unlimited CPB/RPB, unlimited PB, two SFs
and eight SWRs). Using infinite number of SFs leads to a
delay in issuing prefetches from useful streams as streams
that outlived their usefulness remain stayed in SFs. More-
over, using infinite SWRs causes streams to stay forever in
SWRs that may lead useless streams to be moved to SFs.
In Fig. 8, Stream1 implies that SP locates only one most
recently-accessed stream, Stream2 implies that SP locates
two most recently-accessed streams and so on. SWRs are
not used when SP locates only one stream. The cover-
age increases as the number of fetched streams is increased.
This increase is due to SWRs that move likely not-recently-
accessed streams to SFs. When SP locates two streams in-

stead of one, the coverage increases for all workloads, with
maximum increase in swaptions (8% for replacement and
13% for coherent misses) while average coverage increases
3% and 4% for replacement and coherent misses, respec-
tively. When the number of streams increased from two to
four or eight, the increase in average coverage is not ap-
preciable (less than 2%), so we configure SP to locate two
most recently-accessed streams. The results hereafter as-
sume two streams.

5.2 Sensitivity

So far, we have used two SFs, eight SWRs, infinite PB,
unlimited CPB/RPB, and eight cache blocks stream look-
ahead. For all following results, SP locates two streams.

5.2.1 Stream FiFOs, stream waiting rooms and
prefetch buffer

We run a number of experiments with varying number
of SFs to see their effect on coverage (Fig. 9). For most of
the workloads, increasing number of SFs from two to eight
decreases average coverage for replacement misses by 2%
whereas average coverage for coherent misses increases by
3%. Therefore, increasing number of SFs gives conflicting
behavior. To remove this conflict, SP uses separate exclu-
sive number of SFs: Two SFs for replacement streams and
eight SFs for coherent streams as such SFs count provides
maximum coverage for each type of misses (Fig. 9). The
rest of the results use separate exclusive SFs count for re-
placement and coherent streams.

Up to now we have used eight SWRs because SP locates
maximum eight streams and seven of them go to SWRs.
Fig. 10 shows SWRs effect on coverage. When SWRs are
reduced to four, the average coverage decreases only less
than 1% for replacement and coherent misses, so we config-
ure SP to use four SWRs.

Running number of experiments with varying PB size re-
veals that for coherent misses, even 1KB PB provides same

Table 1 Workloads

Workload Description

Blackscholes Calculates the prices for a portfolio analytically with the black-scholes partial differential equation (PDE);

financial analysis applications

Bodytrack Tracks a human body with multiple cameras through an image sequence; computer vision applications

Canneal Electronic design automation (EDA) kernel for minimizing the routing cost of a chip design; engineering applications

Dedup Pipelined compression kernel; enterprise storage applications

Ferret Image search engine; similarity search applications

Fluidanimate Simulates the underlying physics of fluid motion; animation applications

Freqmine Identifies frequently occurring patterns in a transaction database; data mining applications

Streamcluster Computes an approximation for the optimal clustering of a stream of data points; data mining applications

Swaptions Prices a portfolio of swaptions with the heath-jarrow-morton framework; financial analysis applications

VIPs Applies a series of transformations to an image; media applications

Table 2 System specification

System Specification

Processor UltraSPARC III plus ISA; 11-stage pipeline; out-of-order execution; 8-wide dispatch/retirement; 256-entry ROB;

64-entry LSQ and writebuffer

L1 caches Split, 2-way 16 KB L1 instruction and data caches; 2 cycles hit latency; 32 MSHRs

L2 cache Unified, 8-way 2MB; 7 cycles hit latency; 128 MSHRs

Memory Total 4GB, 1GB/Node; 300 cycles access latency

Protocol MOSI, 64 B coherence unit

Interconnect Full mesh; off-chip 80 cycles latency per hop; 64 bytes wide links

PB 16KB fully-associative cache; 1 cycle hit latency
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Fig. 7 Opportunity

Fig. 8 Coverage

Fig. 9 Stream FIFO′s effect on coverage

coverage as infinite PB, whereas for replacement misses
a big-sized 16KB PB provides same coverage as infinite
PB (Fig. 11). When PB is increased from 1KB to 16 KB,
the average coverage increases by 21% and 0.1% for
replacement and coherent misses, respectively. Small
size PB for coherent misses implies that they are closer
to each other in time than replacement misses. Replace-
ment/coherent misses, that form replacement/coherent
streams, do not necessarily mean that they also occurred
close in time. Since each node has one shared PB, we use
16KB PB.

5.2.2 Discards, off-chip buffers and bandwidth

Fig. 12 shows how stream look-ahead affects discards,
presented as a fraction of misses in the base system. Dis-
cards are fetched cache blocks that are not used by proces-
sor. In Fig. 12, 4 8 means stream look-ahead of four cache
blocks for replacement misses and eight for coherent misses.
Using stream look-ahead of four provides reduced fraction
of discards while coverage remains same or increases for re-
placement misses whereas it decreases for coherent misses
slightly with the exception of canneal (figure not shown
here). Rest of the results assume stream look-ahead of four
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Fig. 10 Stream waiting room′s effect on coverage

Fig. 11 Prefetch buffer′s size effect on coverage

Fig. 12 Discards

cache blocks.
Off-chip buffers, CPB/RPB, must be big enough to hold

useful streams. Once CPB/RPB gets full, overwriting to
these buffers may cause to lose useful streams and hence
coverage starts decreasing. We choose buffers sizes by
instrumenting our simulator and use same size for both
buffers. We vary both buffers sizes in the same simula-
tion. Varying RPB size reveals that replacement coverage

starts decreasing for freqmine and streamcluster when RPB
size changed from 4 MB to 2MB whereas it stays the same
for other workloads, so we use 4MB RPB (Fig. 13 (a)). In
the same way, varying CPB size reveals that the coherent
coverage starts decreasing for streamcluster and VIPs when
CPB size changed from 1MB to 512KB whereas it stays the
same for other workloads, so we use 1MB CPB (Fig. 13 (b)).

Fig. 14 shows bandwidth consumed by our design. The
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Fig. 13 Off-chip buffer′s size effect on coverage

Fig. 14 Bandwidth comsumed by our design

annotation above each bar indicates the increase in band-
width comparing to base system. This increase in band-
width is mostly due to discards. Canneal has the highest
increase in bandwidth as most of the replacement misses do
not recur and hence result in many discards.

5.3 Comparison and performance

To see the effectiveness of SP in eliminating replacement
and coherent read misses, we compare it against temporal
streaming (TS), stride prefetcher (Strided)[8], and stream
chaining (SC)[17] as shown in Fig. 15. TS has been shown
as the best prefetcher for streams. In addition, we use
stride prefetcher because it can be found in modern proces-
sors (e.g., Intel xeon, Intel i5/i7 desktop processor, AMD
Opteron). We implement two-delta stride prefetcher[8] and
use separate 512× 4 set-associative caches for replacement
and coherent read misses. We also implement SC[17] be-
cause it has been shown best for single-threaded applica-
tions.

Replacement read misses: SP outperforms all competi-
tive prefetchers, with the exception of freqmine workload.
The maximum coverage given by SP, TS, Strided, and
SC is about 66% (for streamcluster), 25% (for streamclus-
ter), 61% (for freqmine), and 36% (for freqmine), respec-
tively. Stride prefetcher and SC outperform SP for freqmine

whereas for bodytrack and dedup, stride prefetcher is com-
parable to SP. Average coverages given by SP, TS, Strided,
and SC are 42%, 16%, 20%, and 14%, respectively.

Coherent read misses: For most of the workloads, SP
performs as well as SC, but SC outperforms SP for dedup,
fluidanimate, and VIPs. The maximum coverage given by
SP, TS, Strided, and SC is about 62% (for ferret), 44% (for
ferret), 50% (for dedup), and 67% (for VIPs), respectively.
Stride prefetcher outperforms SP for dedup. Average cover-
ages given by SP, TS, Strided, and SC are 37%, 14%, 16%,
and 43%, respectively. So SC, on average, performs better
than all other competitive prefetchers.

Unlike TS, stride prefetcher, and SC, SP produces more
discards (Fig. 16) and hence consumes more bandwidth. Us-
ing cycle accurate full-system simulation of a 4-node dis-
tributed shared memory system, we measure the speedup
of SP, TS, stride prefetcher, and SC as shown in Fig. 17.
For some workloads, SP excels whereas for others, com-
petitive prefetchers excel. SP gives best performance to
blackscholes, ferret, fluidanimate, and streamcluster. TS
gives best performance only to swaptions. Strided gives best
performance to bodytrack, dedup, freqmine, and vips. SC
gives best performance to only canneal. SP gives maximum
performance to fluidanimate workload, 17.7%, whereas it
decreases performance of dedup and swaptions.
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6 Conclusions

This paper presented a stream prefetcher (SP) design
that tries to remove recurring off-chip replacement (capac-
ity and conflict) and coherent read misses. SP streams data
using only single stream due to the reordering of misses. It
introduces the concept of stream waiting rooms that cap-
ture not-recently-accessed streams. Stream waiting rooms
provide likely not-recently-accessed streams to stream FI-
FOs in case future streams do not follow most recently-
accessed stream. Results showed that, with two streams

being fetched, stream waiting rooms help improve average
coverage by 3% and 4% for off-chip replacement and coher-
ent read misses, respectively. We showed using trace based
simulation that SP can eliminate, on average, 40% and 39%
replacement and coherent read misses, respectively. Us-
ing cycle-accurate full-system simulation, our design gives
speedups from 1.00 to 1.17 for PARSEC workloads run-
ning on a 4-node distributed shared memory system with
the exception of dedup and swaptions, where it degrades
performance.

Fig. 15 Comparison of SP′s coverage

Fig. 16 Comparison of SP′s discards

Fig. 17 Speedup
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