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Abstract: This paper addresses the adaptive H∞ control problem for a class of nonlinear Hamiltonian systems with time delay
and parametric uncertainties. The uncertainties under consideration are some small parameter perturbations involved in the structure
of the Hamiltonian system. Both delay-independent and delay-dependent criteria are established based on the dissipative structural
properties of the Hamiltonian systems and the Lyapunov-Krasovskii functional approach. In order to construct the adaptive H∞
controller, the situation that the parameter perturbation is inexistent in the system is also studied and the controller is designed.
The adaptive H∞ control problem is solved under some sufficient conditions which ensure the asymptotic stability and the L2 gain
performance of the resulted closed-loop system. Numerical example is given to illustrate the applicability of the theoretical results.
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1 Introduction

In recent years, more and more researchers pay their at-
tentions to time delay systems since delays are often the
main causes of instability and poor performance of dynamic
systems (see [1–3] and the references therein). Time delay
occurs in many systems and stability analysis and synthe-
sis for time delay systems have been one of the most chal-
lenging issues. The Lyapunov-Krasovskii (L-K) method is
often used in solving the time delay problems. Stability cri-
teria for delay systems can be classified into two categories:
delay-independent and delay-dependent criteria. During
the last decades, much attention has been devoted to the
problems of stability analysis, robust stabilization, H∞ con-
troller design, etc., for time delay systems (see [4–9] and the
references therein).

On the other hand, port-controlled Hamiltonian (PCH)
systems have attracted increasing attentions in the field
of nonlinear control theory (see [10–15] and the references
therein). This class of nonlinear systems can describe not
only mechanical systems but also a broad class of physi-
cal systems including passive electro-mechanical systems,
power systems and their combinations. Recently, some re-
sults on Hamiltonian systems[16−18] with time delay are ob-
tained. The stabilization problem[16], L2-disturbance atten-
uation problem[17], the finite-time stability and H∞ control
design[18] of time delay PCH systems are all studied.

As is well known, the Hamiltonian function in PCH sys-
tems is considered as the sum of potential energy (exclud-
ing gravitational potential energy) and kinetic energy in
physical systems, and is always a good candidate Lyapunov
function for many systems[11, 13, 18, 19]. This Hamiltonian
function method is simple in form, easy and effective in
operation. However, when the Hamiltonian systems en-
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counter time delay and uncertainties, the Hamiltonian func-
tion method is no longer effective directly. In this paper,
we consider a class of time delay nonlinear Hamiltonian
systems with parametric uncertainties and external distur-
bances. The adaptive H∞ control problem of the systems
under consideration is solved not only based on the dissipa-
tive structural properties of the Hamiltonian systems, but
also using the L-K functional approach. In order to get
the main results, we also consider the situation that the
structure of the system has no parameter perturbation.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem formulation and some pre-
liminaries. The main results are provided in Section 3.
Section 4 illustrates the obtained results by a numerical ex-
ample, which is followed by the conclusion in Section 5.

Notations. Rn denotes the n-dimensional Euclidean
space and Rn×m represents the set of all n × m matri-
ces of real elements; ‖ · ‖ stands for either the Euclidean
vector norm or the induced matrix 2-norm; ‖x‖Cn,τ =
maxt−h�ϕ�t ‖x(ϕ)‖, where Cn,τ = C([−h, 0], Rn) denotes
the Banach space of continuous functions mapping the
interval [−h, 0] into Rn; Ln

2 [0,∞) denotes the set of
all measurable functions x : [0,∞) → Rn that satisfy∫ ∞

0
|x(t)|2dt < ∞; λmax(A) and λmin(A) stand for the max-

imum and the minimum of eigenvalue of a real symmetric
matrix A; the notation ∗ represents the elements below the
main diagonal of a symmetric matrix. In addition, for the
sake of simplicity, throughout the paper, we denote ∂H/∂x
by ∇H .

2 Problem statement and preliminaries

Consider the following time delay nonlinear Hamiltonian
system with parametric uncertainties and disturbances

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = [J(x, p) − R(x, p)]∇H(x, p) + [J1(x, p)−
R1(x, p)]∇H(xτ , p) + g1(x)u + g2(x)ω,

y = gT
2 (x)∇H(x),

z = r(x)gT
1 (x)∇H(x)

(1)
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where x ∈ Rn is the state; u ∈ Rm is the control input;
ω ∈ Rs is the disturbance input; y ∈ Rp is the output;
z ∈ Rq is the penalty signal; xτ = x(t − τ ) ∈ Cn,τ stands
for the delayed state; J(x, p) and J1(x, p) ∈ Rn×n are skew-
symmetric matrices; R(x, p) and R1(x, p) ∈ Rn×n are non-
negative symmetric matrices; ∇H(x, p) ∈ Rn×1 is the gra-
dient of the Hamiltonian function H(x, p) which satisfies
H(x, p) � 0, H(0, 0) = 0; p is an unknown bounded con-
stant vector that denotes the parameter perturbation of the
Hamiltonian structure; g1(x) and g2(x) are gain matrices of
appropriate dimensions, g1(x)gT

1 (x) is nonsingular; r(x) is
a weighting matrix with full column rank.

Remark 1. p in system (1) is small parameter per-
turbation, which makes the dissipativeness of the structure
matrix unchanged. The parameter perturbations usually
bring a direct impact on the states, but an indirect effect
on the output of the system. Thus, the output can be cho-
sen independent of p.

Decompose all functions related to the uncertain param-
eters p as

∇H(x, p) = ΔH(x, p) + ∇H(x)

∇H(xτ , p) = ΔH(x, p) + ∇H(xτ )

J(x, p) = ΔJ (x, p) + J(x), J1(x, p) = ΔJ1(x, p) + J1(x)

R(x, p) = ΔR(x, p) + R(x), R1(x, p) = ΔR1(x, p) + R1(x)

where Δi(x, 0) = 0 (i = H,J, J1, R, R1). We denote the cor-
responding nominal functions as H(x) = H(x, 0), H(xτ ) =
H(xτ , 0), J(x) = J(x, 0), J1(x) = J1(x, 0), R(x) = R(x, 0),
and R1(x) = R1(x, 0), while the system (1) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = [J(x) − R(x)]∇H(x) + [J1(x) − R1(x)]·
∇H(xτ ) + g1(x)u + g2(x)ω

y = gT
2 (x)∇H(x)

z = r(x)gT
1 (x)∇H(x).

(2)

The adaptive H∞ control problem of the system (1) can
be described as follows: Given a disturbance attenuation
level γ > 0, find an adaptive control law

{
u = α(x, θ̂)
˙̂
θ = β(x, θ̂).

(3)

So that the L2 gain (from ω to z) of the closed-loop sys-
tem is less than or equal to γ, i.e.,

∫ T

0

‖z(t)‖2dt � γ2

∫ T

0

‖ω(t)‖2dt, ∀ ω ∈ L2[0, T ] (4)

is satisfied for the closed-loop system, and meanwhile the
closed-loop system under the control law (3) can be asymp-
totically stable when ω = 0.

We seek to investigate the H∞ control problem of system
(1) for the two cases of time delay

Case 1. τ is an unknown constant.
Case 2. τ = d(t) is a time-varying continuous function

which satisfies the following conditions

0 � d(t) � h (5)

and
ḋ(t) � μ < 1 (6)

where h and μ are known positive scalars.
The following assumptions are supposed to be satisfied.
Assumption 1. The Hamiltonian function H(x) and its

gradient ∇H(x) satisfy
1) H(x) ∈ C2;
2) ε1(‖x‖) � H(x) � ε2(‖x‖);
3) ι1(‖x‖) � ∇TH(x) · ∇H(x) � ι2(‖x‖)

where ε1, ε2, ι1, ι2 all belong to class K functions.
Remark 2. Assumption 1 not only guarantees the exis-

tence of ∇H(x) and Hess(H(x)), but also guarantees that
both H(x) and ∇H(x) are bounded in terms of x. We shall
note that the assumption is not very conservative to Hamil-
tonian functions and the majority of Hamiltonian functions
in Hamiltonian systems can easily satisfy these conditions.

Assumption 2. R(x, p) � A, A � 0 is a constant ma-
trix.

Assumption 3. There exists an appropriate dimen-
sioned matrix Φ(x) such that

{[J(x, p) − R(x, p)] + [J1(x, p) − R1(x, p)]} ×
ΔH(x, p) = g1(x)ΦT(x)θ (7)

where θ is a constant parameter vector subjecting to p.
Remark 3. Assumption 3 is the matched condition. In

most cases, we can find Φ(x) and θ such that (7) holds.
Similar assumption can be found in [20].

Assumption 4. ΔJ1(x, p), ΔR1(x, p) satisfy

ΔJ1(x, p) − ΔR1(x, p) = 2E(x)Σ(x, p) (8)

where E(x) is a known functional matrix with appropriate
dimensions and Σ(x, p) satisfies ΣT(x, p)Σ(x, p) � I .

To obtain the main results of this paper, the following
lemma will be needed.

Lemma 1.[21] For given matrices Z = ZT, R and S with
appropriate dimensions,

Z + RD(t)S + STDT(t)RT < 0 (9)

holds for all D(t) satisfying DT(t)D(t) � I if and only if
there exists a scalar ε < 0 such that

Z + ε−1RRT + εSTS < 0. (10)

3 Main results

In this section, we will put forward the adaptive H∞ con-
troller design approach for the time delay Hamiltonian sys-
tems (1) and both delay-independent and delay-dependent
criteria will be given considering different cases of time de-
lay. For the sake of clarifying the main idea, in every sub-
section, we will study system (2) in which the parameter
perturbation dose not exist, that is, p = 0 in (1) firstly.

3.1 Delay-independent result

In this subsection, we consider the time delay of Case 1
and develop delay-independent analysis. Firstly, the H∞
control problem of system (2) is considered and a result is
given below.

Theorem 1. Consider system (2). Suppose
Assumption 1 holds. If there exist matrices P1 = PT

1 > 0,
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M1 = MT
1 > 0 such that

Λ1 =

⎡

⎢
⎢
⎣

Λ1,1 Λ1,2
1

2
g2(x)

∗ −P1 0

∗ ∗ −1

2
γ2I

⎤

⎥
⎥
⎦ < 0 (11)

where

Λ1,1 = −R(x) − g1(x)gT
1 (x)(P1 + M1) + P1 +

1

2
g1(x)rT(x)r(x)gT

1 (x)

Λ1,2 =
1

2
[J1(x) − R1(x)]

then the H∞ control problem of system (2) can be solved
by the following control law

u = −gT
1 (x)(M1 + P1)∇H(x). (12)

Proof. Substituting (12) into (2) yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = [J(x) − R(x)]∇H(x) + [J1(x) − R1(x)]∇H(xτ)−
g1(x)gT

1 (x)(P1 + M1)∇H(x) + g2(x)ω

y = gT
2 (x)∇H(x)

z = r(x)gT
1 (x)∇H(x).

(13)
Choose a Lyapunov function as

V1(x, xt) = H(x) +

∫ t

t−τ

∇TH(x(s))P1∇H(x(s))ds. (14)

Calculating the derivative of V1(x, xτ ) along the trajec-
tories of the closed-loop system (13), we have

V̇1(x, xτ ) = −∇TH(x)[J(x)− R(x) + g1(x)gT
1 (x)(P1+

M1)]∇H(x) + ∇TH(x)g2(x)ω+

∇TH(x)[J1(x) − R1(x)]∇H(xτ)+

∇TH(x)P1∇H(x)−
∇TH(xτ )P1∇H(xτ ). (15)

Using inequality (11), we further have

V̇1(x, xτ ) − 1

2
(γ2‖ω‖2 − ‖z‖2) =

−∇TH(x)[R(x) + g1(x)gT
1 (x)(P1 + M1) − P1]∇H(x)+

∇TH(x)g2(x)ω + ∇TH(x)[J1(x) − R1(x)]∇H(xτ )−
∇TH(xτ)P1∇H(xτ ) − 1

2
γ2ωT(t)ω(t)+

1

2
∇TH(x)g1(x)rT(x)r(x)gT

1 (x)∇H(x) =

ηT
1 (t)Λ1η1(t) � 0 (16)

where

η1(t) =
[

∇TH(x) ∇TH(xτ) ωT(t)
]T

. (17)

Consequently, the inequality (4) holds. That means the
L2 gain of the closed-loop system is less than or equal to γ.

In the following, we consider the stability of the closed-
loop system when ω = 0.

Since H(x) ∈ C2, ∇TH(x(s))P1∇H(x(s)) is continuous.
We conclude by the condition P1 > 0 that

∫ t

t−τ

∇TH(x(s))P1∇H(x(s))ds � 0. (18)

Furthermore, according to 3) in Assumption 1, we have

∫ t

t−τ

∇TH(x(s))P1∇H(x(s))ds �

λp1

∫ t

t−τ

ι2(‖x(s)‖)ds �

τλp1ι2( max
t−τ�s�t

‖x(s)‖) =

τλp1ι2(‖x‖Cn,τ ) (19)

where λp1 = λmax(P1) > 0.
Using 2) in Assumption 1, we get

V1(x, xτ ) � ε2(‖x‖) + τλp1ι2(‖x‖Cn,τ ). (20)

Let �1(‖x‖Cn,τ ) = ε2(‖x‖)+τλp1ι2(‖x‖Cn,τ ). Obviously,
it is a class K function. So

ε1(‖x‖) � V1(x, xτ ) � �1(‖x‖Cn,τ ). (21)

By evaluating the time-derivative of V1(x, xτ ) along the
trajectories of (13) with ω = 0, we obtain

V̇1(x, xτ ) =

−∇TH(x)[R(x)−g1(x)gT
1 (x)(P1+M1)−P1]∇H(x)+

∇TH(x)[J1(x) − R1(x)]∇H(xτ)−
∇TH(xτ )P1∇H(xτ ) =
[

∇H(x)

∇H(xτ )

]T [
Γ1 Γ2

∗ −P1

] [
∇H(x)

∇H(xτ )

]

� 0 (22)

where

Γ1 = −R(x) − g1(x)gT
1 (x)(P1 + M1) + P1

Γ2 =
1

2
[J1(x) − R1(x)].

Thus, there exists υ1 which belongs to class K functions
such that

V̇1(x, xτ ) � −υ1(‖x‖). (23)

According to L-K theorem, we can obtain that the sys-
tem (2) is asymptotically stable independent of delay. �

Next, as for system (1), an adaptive H∞ control result is
described as follows.

Theorem 2. Consider system (1). Suppose Assump-
tions 1–4 hold. If there exist matrices P2 = PT

2 > 0,
Q1 = QT

1 > 0, M2 = MT
2 > 0 and a scalar ε1 > 0 such

that

Λ2 =

⎡

⎢
⎢
⎣

Λ̄1,1 Λ̄1,2
1

2
g2(x)

∗ Λ̄2,2 0

∗ ∗ −1

2
γ2I

⎤

⎥
⎥
⎦ < 0 (24)
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where

Λ̄1,1 = −A − g1(x)gT
1 (x)(M2 + P2) + ε−1

1 E(x)ET(x)+

P2 +
1

2
g1(x)rT(x)r(x)gT

1 (x)

Λ̄1,2 =
1

2
[J1(x) − R1(x)]

Λ̄2,2 = −P2 + ε1I

then the adaptive H∞ control problem of system (1) can be
solved by the following control law

{
u = −gT

1 (x)(M2 + P2)∇H(x) − ΦT(x)θ̂
˙̂
θ = Q1Φ(x)gT

1 (x)∇H(x).
(25)

Proof. Substituting (7) and (25) into (1) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [J(x, p) − R(x, p)]∇H(x) + [J1(x, p) − R1(x, p)]×
∇H(xτ ) − g1(x)gT

1 (x)(M2 + P2)∇H(x)+

g2(x)ω + g1(x)ΦT(x)(θ − θ̂)
˙̂
θ = Q1Φ(x)gT

1 (x)∇H(x)

y = gT
2 (x)∇H(x)

z = r(x)gT
1 (x)∇H(x).

(26)

Choose a Lyapunov function as

V2(x, xτ , θ̃) =

H(x) +

∫ t

t−τ

∇TH(x(s))P2∇H(x(s))ds+

1

2
θ̃TQ−1

1 θ̃ (27)

where θ̃ = θ − θ̂.
Calculating the derivative of V2(x, xτ , θ̃) along the trajec-

tories of (26) and combining Assumption 2, we can obtain

V̇2(x, xτ , θ̃) − 1

2
(γ2‖ω‖2 − ‖z‖2) �

−∇TH(x)[A + g1(x)gT
1 (x)(M2 + P2) − P2]∇H(x)+

∇TH(x)[J1(x, p) − R1(x, p)]∇H(xτ)−
∇TH(xτ)P2∇H(xτ ) + ∇TH(x)g2(x)ω−
1

2
γ2ωT(t)ω(t) +

1

2
∇TH(x)g1(x)rT(x)×

r(x)gT
1 (x)∇H(x) =

ηT
1 (t)Θη1(t) (28)

where

Θ =

⎡

⎢
⎢
⎣

Θ1,1 Θ1,2
1

2
g2(x)

∗ −P2 0

∗ ∗ −1

2
γ2I

⎤

⎥
⎥
⎦

Θ1,1 = −A − g1(x)gT
1 (x)(M2 + P2) + P2+

1

2
g1(x)rT(x)r(x)gT

1 (x)

Θ1,2 =
1

2
[J1(x, p) − R1(x, p)].

From Lemma 1 and Assumption 4, we know that Λ2 < 0
ensures Θ < 0. Hence we have

V̇2(x, xτ , θ̃) − 1

2
(γ2‖ω‖2 − ‖z‖2) � 0 (29)

which means that inequality (4) is satisfied.
Using the similar method as in Theorem 1, we get

ε1(‖χ‖) � V2(χ) � �2(‖χ‖Cn,τ ) (30)

where χ = [ xT xT
τ θ̃T ]T, �2(‖χ‖Cn,τ ) = ε2(‖x‖) +

λQ1(‖θ̃‖) + τλP2ι2(‖x‖Cn,τ ), �2(‖χ‖Cn,τ ) belongs to class
K functions, λQ1 = 1

2
λmax(Q

−1
1 ) > 0, λP2 = λmax(P2) > 0.

Since (24) and (28) hold, we can easily get that when
ω = 0,

V̇2(χ) � 0. (31)

Thus, there exists υ2 which is a class K function such
that

V̇2(χ) � −υ2(‖χ‖). (32)

According to L-K theorem, we can obtain that the sys-
tem (1) is asymptotically stable independent of time de-
lay. �

Remark 4. Theorems 1 and 2 serve for the H∞ control
design of system (1) and (2) with delay of Case 1, respec-
tively. In fact, when the delay τ is time varying, these delay-
independent results still hold. However, if τ is bounded or
very small, such results often bring very conservative sta-
bility assessment (see [19]).

3.2 Delay-dependent result

In what follows, we focus on delay of Case 2 and acquire
two H∞ control results dependent on time delay for Hamil-
tonian system (1) and (2), respectively. Firstly, the time
delay system (1) with p = 0 admits the following theorem.

Theorem 3. Consider system (2). Suppose
Assumption 1 holds. For given scalars h and μ, if there
exist matrices K1 = KT

1 > 0, P3 = PT
3 > 0, M3 = MT

3 > 0,
such that

g1(x)K1g
T
1 (x) � hHessT(H(x))Hess(H(x)) (33)

Ξ1 =

⎡

⎢
⎢
⎣

Ξ1,1
1

2
[J1(x) − R1(x)]

1

2
g2(x)

∗ −(1 − μ)P3 0

∗ ∗ −1

2
γ2I

⎤

⎥
⎥
⎦ < 0 (34)

then the H∞ control problem of system (2) can be solved
by the following control law

u = −[gT
1 (x)(P3 + M3) + λM3K1g

T
1 (x)]∇H(x) (35)

where λM3 = λmax(M3),

Ξ1,1 = −R(x) − g1(x)gT
1 (x)(P3 + M3) + P3+

1

2
g1(x)rT(x)r(x)gT

1 (x).
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Proof. Substituting (35) into (2) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = [J(x) − R(x)]∇H(x) + [J1(x) − R1(x)]∇H(xτ)−
λM3g1(x)K1g

T
1 (x)∇H(x) + g2(x)ω−

g1(x)gT
1 (x)(P3 + M3)∇H(x)

y = gT
2 (x)∇H(x)

z = r(x)gT
1 (x)∇H(x).

(36)

Let the Lyapunov function for the closed-loop system
(36) be selected as

V3(x, xτ ) =

H(x) +

∫ t

t−d(t)

∇TH(x(s))P3∇H(x(s))ds + V̄1(x) (37)

where

V̄1(x) =

∫ 0

−h

∫ t

t+α

∇TH(x(s))HessT(H(x(s)))M3×

Hess(H(x(s)))∇H(x(s))dsdα.

Calculating the derivative of V3(x, xτ ) along the trajec-
tories of (36), and then taking advantages of (5), (6) and
(33), we have

V̇3(x, xτ ) − 1

2
(γ2‖ω‖2 − ‖z‖2) �

−∇TH(x)[R(x) + g1(x)gT
1 (x)(P3 + M3) − P3−

1

2
g1(x)rT(x)r(x)gT

1 (x)]∇H(x) + ∇TH(x)×
[J1(x) − R1(x)]∇H(xτ ) − (1 − μ)∇TH(xτ )P3×
∇H(xτ ) + ∇TH(x)g2(x)ω − 1

2
γ2ωT(t)ω(t) =

ηT
1 (t)Ξ1η1(t). (38)

Since (34) holds, then we get

V̇3(x, xτ ) − 1

2
(γ2‖ω‖2 − ‖z‖2) � 0 (39)

which means that (4) is satisfied.
Since H(x) ∈ C2, ∇TH(x(s))P3∇H(x(s)) and ∇T

H(x(s))HessT(H(x(s)))M3Hess(H(x(s)))∇H(x(s)) are
continuous, combining P3 > 0, M3 > 0, the inequality

∫ t

t−d(t)

∇TH(x(s))P3∇H(x(s))ds � 0 (40)

and

V̄1(x) � 0 (41)

hold.
Noting (5) and using 3) in Assumption 1, we have

∫ t

t−d(t)

∇TH(x(s))P3∇H(x(s))ds � hλP3ι2(‖x‖Cn,τ ) (42)

and

V̄1(x) �

νλM3

∫ 0

−h

∫ t

t+α

ι2(max‖x(s)‖)dsdα �

1

2
h2νλM3ι2(maxt−h�s�t‖x(s)‖) =

1

2
h2νλM3ι2(‖x‖Cn,τ ) (43)

where λP3 = λmax(P3) > 0, λM3 = λmax(M3) > 0,
ν = supx{λmax[HessT(H(x))Hess(H(x))]}.

Combining (42) and (43), using 2) in Assumption 1, we
have

V3(x, xτ ) � ε2(‖x‖) + (hλP3 +
1

2
h2νλM3)ι2(‖x‖Cn,τ ).

(44)

Let �3(‖x‖Cn,τ ) = ε2(‖x‖) + (hλP3 + 1
2
h2νλM3)

ι2(‖x‖Cn,τ ). Obviously, it is a class K function. Thus,
V3(x, xτ ) satisfies

ε1(‖x‖) � V3(x, xτ ) � �3(‖x‖). (45)

When ω = 0, the derivative of V3(x, xτ ) along the trajec-
tories of (36) satisfies

V̇3(x, xτ ) �
−∇TH(x)[R(x) + g1(x)gT

1 (x)(P3 + M3) − P3]∇H(x)+

∇TH(x)[J1(x) − R1(x)]∇H(xτ)−
(1 − μ)∇TH(xτ )P3∇H(xτ) =

η̂T
1 (t)Ξ̃1η̂1(t) (46)

where

η̂1(t) =
[

∇TH(x) ∇TH(xτ )
]T

.

The fact that Ξ1 < 0 ensures

Ξ̃1 =

[
Ξ̃1,1

1

2
[J1(x) − R1(x)]

∗ −(1 − μ)P3

]

< 0 (47)

holds, where Ξ̃1,1 = −R(x) − g1(x)gT
1 (x)(P3 + M3) + P3.

Thus, we have

V̇3(x, xτ ) � 0. (48)

Therefore, there exists υ3 which belongs to class K func-
tions such that

V̇3(x, xτ ) � −υ3(‖x‖). (49)

Using L-K theorem we can conclude that the closed-loop
Hamiltonian system (36) is asymptotically stable dependent
of delay. �

The following theorem provides a delay-dependent adap-
tive H∞ control result for system (1) with time-varying de-
lay of Case 2.

Theorem 4. Consider system (1). Suppose Assump-
tions 1–4 hold. For given scalars h and μ, if there exist
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matrices K2 = KT
2 > 0, P4 = PT

4 > 0, M4 = MT
4 > 0,

Q2 = QT
2 > 0 and a scalar ε2 > 0 such that

g1(x)K2g
T
1 (x) � hHessT(H(x))Hess(H(x)) (50)

Ψ1 =

⎡

⎢
⎣

Ψ1,1
1
2
[J1(x) − R1(x)] 1

2
g2(x)

∗ Ψ2,2 0

∗ ∗ − 1
2
γ2I

⎤

⎥
⎦ < 0 (51)

where

Ψ1,1 = −A − g1(x)gT
1 (x)(P4 + M4) + P4+

1

2
g1(x)rT(x)r(x)gT

1 (x) + ε−1
2 E(x)ET(x)

Ψ2,2 = −(1 − μ)P4 + ε2I

then the adaptive H∞ control problem of system (1) can be
solved by the following control law
{

u = −[gT
1 (x)(P4 + M4) + λM4K2g

T
1 (x)]∇H(x) − ΦT(x)θ̂

˙̂
θ = Q2Φ(x)gT

1 (x)∇H(x)

(52)

where λM4 = λmax(M4).
Proof. Substituting (7) and (52) into (1) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [J(x, p) − R(x, p)]∇H(x) + [J1(x, p) − R1(x, p)]×
∇H(xτ ) + g2(x)ω − g1(x)gT

1 (x)(P4 + M4)∇H(x)−
λM4g1(x)K2g

T
1 (x)∇H(x) + g1(x)ΦT(x)(θ − θ̂)

˙̂
θ = Q2Φ(x)gT

1 (x)∇H(x)

y = gT
2 (x)∇H(x)

z = r(x)gT
1 (x)∇H(x).

(53)

Choose the following Lyapunov function

V4(x, xτ , θ̃) =

H(x) +

∫ t

t−d(t)

∇TH(x(s))P4∇H(x(s))ds+

V̄2(x) +
1

2
θ̃TQ−1

2 θ̃

where θ̃ = θ − θ̂, and

V̄2(x) =

∫ 0

−h

∫ t

t+α

∇TH(x(s))HessT(H(x(s)))M4·

Hess(H(x(s)))∇H(x(s))dsdα.

Calculating the derivative of V4(x, xτ , θ̃) along the tra-
jectories of the closed-loop system (53), and combining As-
sumption 2 and (50), it follows that

V̇4(x, xτ , θ̃) − 1

2
(γ2‖ω‖2 − ‖z‖2) �

∇TH(x)[−A − g1(x)gT
1 (x)(P4 + M4) + P4+

1

2
g1(x)rT(x)r(x)gT

1 (x)]∇H(x) + ∇TH(x)g2(x)ω+

∇TH(x)[J1(x, p) − R1(x, p)]∇H(xτ )−
(1 − μ)∇TH(xτ)P4∇H(xτ ) − 1

2
γ2ωT(t)ω(t) =

ηT
1 (t)Ωη1(t) (54)

where

Ω =

⎡

⎢
⎢
⎣

Ω1,1
1

2
[J1(x, p) − R1(x, p)]

1

2
g2(x)

∗ −(1 − μ)P4 0

∗ ∗ −1

2
γ2I

⎤

⎥
⎥
⎦

Ω1,1 = −A − g1(x)gT
1 (x)(P4 + M4) + P4+

1

2
g1(x)rT(x)r(x)gT

1 (x).

From Lemma 1 and Assumption 4, we know that Ψ1 < 0
ensures Ω < 0. Since (51) holds, hence we have

V̇4(x, xτ , θ̃) − 1

2
(γ2‖ω‖2 − ‖z‖2) � 0 (55)

which means that the inequality (4) is satisfied.
In the following, we consider the stability of the closed-

loop system when ω = 0.
Using the similar method as in Theorem 3, we get

ε1(‖χ‖) � V4(χ) � �4(‖χ‖Cn,τ ) (56)

where χ =
[

xT xT
τ θ̃T

]T

, ‖χ‖Cn,τ = maxt−h�s�t ‖χ‖,
�4(‖χ‖Cn,τ ) = ε2(‖x‖) + λQ2(‖θ̃‖) + (hλP4 +
1
2
h2νλM4)ι2(‖x‖Cn,τ ), and �4(‖χ‖Cn,τ ) belongs to class

K functions, λQ2 = 1
2
λmax(Q

−1
2 ) > 0, λP4 = λmax(P4) > 0,

λM4 = λmax(M4) > 0.
Similarly, when ω = 0, we have

V̇4(χ) � 0. (57)

Thus, there exists υ4 which belongs to class K functions
such that

V̇4(χ) � −υ4(‖χ‖) (58)

holds which guarantees that the time delay Hamiltonian
system (1) is asymptotically stable for all time delay fac-
tors satisfying (5) and (6). �

Remark 5. Both Theorems 3 and 4 are delay-dependent
results. It should be pointed out that K1 in Theorem 3 and
K2 in Theorem 4 satisfy the same inequality. This indicates
that the conditions (33) and (50) are necessary to guaran-
tee the H∞ control performance regardless of the parameter
perturbations in the time delay Hamiltonian system under
consideration.

Remark 6. The conditions obtained in Theorems 1–4
are not strict linear matrix inequalities. But with the help
of some existing technique related to functions and inequal-
ities, one can always solve these inequalities constraints. As
the theorems show, most matrices need not to be solved but
require the existence of themselves. In particular, when the
state and gain matrices in system (1) only depend on pa-
rameter p, the conditions become linear matrix inequalities
(LMIs) and can be easily resolved by the LMI toolbox of
Matlab.

Remark 7. When the state matrices of system (1)
J(x, p), R(x, p), J1(x, p) and R1(x, p) have time delay,
they can be rewritten as J(x, xτ , p), R(x, xτ , p), J1(x, xτ , p),
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R1(x, xτ , p), we may decompose them as

J(x, xτ , p) = ΔJ (x, xτ , p) + J(x, xτ , 0)

J1(x, xτ , p) = ΔJ1(x, xτ , p) + J1(x, xτ , 0)

R(x, xτ , p) = ΔR(x, xτ , p) + R(x, xτ , 0)

R1(x, xτ , p) = ΔR1(x, xτ , p) + R1(x, xτ , 0).

It can be concluded that Theorem 4 still works provided
that Assumptions 2–4 be replaced by the following assump-
tions, respectively.

Assumption 2′. R(x, xτ , p) satisfies R(x, xτ , p) � A∗,
A∗ is a constant matrix.

Assumption 3′. There exists an appropriate dimen-
sioned matrix Φ(x, xτ ) such that

{[J(x, xτ , p) − R(x, xτ , p)] + [J1(x, xτ , p)−
R1(x, xτ , p)]}ΔH(x, p) = g1(x)ΦT(x, xτ )θ (59)

where θ is a constant parameter vector subjecting to p.
Assumption 4′. J1(x, xτ , p), R1(x, xτ , p) satisfy

J1(x, xτ , p) − R1(x, xτ , p) � Y + 2E(x)Σ(xτ , p)) (60)

where ΔJ1(x, xτ , p)−ΔR1(x, xτ , p) = 2E(x)Σ(xτ , p), Y is a
constant matrix, E(x) is a known matrix with appropriate
dimensions and Σ(xτ , p) satisfies ΣT(xτ , p)Σ(xτ , p) � I .

In the premise of the above Assumptions, A and J1(x)−
R1(x) can be replaced by A∗ and Y respectively in the ma-
trix inequality (51) in Theorem 4.

4 Illustrative example

In this section, an example will be demonstrated to illus-
trate our developed theoretical results. The following ex-
ample demonstrates the correctness of Theorems 2 and 4.

Consider a two-dimensional nonlinear time delay system
with parameter uncertainty and disturbance of the follow-
ing form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −(x2
2 + 1.5 + p) sin x1 − 0.5x2

1x2 − 0.5px2
1−

2 sin x1(t − τ ) + u1(t) + ω1(t)

ẋ2 = 0.5x2
1 sin x1 − x3

2 − px2
2 − (2 − p)x2 − 3p−

(1 + p)x2(t − τ ) + u2(t) + ω2(t)

y1 = sin x1

y2 = x2

(61)

where τ is time delay, p is an unknown constant and |p| < 1.
Let x = [x1, x2]

T, u = [u1(t), u2(t)]
T, y = [y1, y2]

T and
ω = [ω1(t), ω2(t)]

T, the system (61) can be rewritten in the
following form of nonlinear time delay Hamiltonian system

⎧
⎪⎨

⎪⎩

ẋ = [J(x, p) − R(x, p)]∇H(x, p) + [J1(x, p)−
R1(x, p)]∇H(xτ , p) + g1(x)u + g2(x)ω

y = gT
2 (x)∇H(x)

(62)

where

J(x, p) =

[
0 −0.5x2

1

0.5x2
1 0

]

J1(x, p) = −J(x, p)

R1(x, p) =

[
2 0.5x2

1

−0.5x2
1 1 + p

]

g1(x) =

[
1 0

0 1

]

R(x, p) =

[
x2

2 + 1.5 + p 0

0 x2
2 + 2 − p

]

g2(x) = g1(x)

and

H(x, p) = sin2(0.5x1) + 0.5(x2
2 + 2px2 + p2).

We give a penalty signal

z = r(x)g1(x)∇H(x) (63)

where r(x) =

[
1 1

0.5 1

]

.

It is easy to verify that the Hamiltonian function H(x, 0)
and its gradient ∇H(x, 0) in system (61) satisfy Assump-

tion 1. Let ν = 1, A =

[
0.5 0

0 1

]

, θ = −p and

Φ(x) = [0.5x2
1, x

2
2 + 3]. We can easily verify that system

(61) with the above values satisfies Assumptions 2–4.
Firstly, in order to verify Theorem 2, we consider the case

that the delay τ in system (61) is a constant and develop
a delay-independent result by using Theorem 2. Here we
set ε1 = 1, Q1 = 1. Using the LMI control toolbox of Mat-
lab, the LMIs in Theorem 2 are solved to find the following
matrices

P2 =

[
4.3773 0.0000

0.0000 4.3773

]

M2 =

[
4.4398 0.3750

0.3750 4.3773

]

.

An adaptive H∞ controller of the system (61) is obtained
as

u =

[
−8.8171 sin x1 − 0.3750x2 − 0.5x2

1 θ̂

−0.3750 sin x1 − 8.7546x2 − (x2
2 + 3)θ̂

]

.

We carry the simulation results with the following
choices: the initial condition x(0) = ϕ0 = [1,−2]T, the
disturbance signal ω = e−t sin t, the disturbance attenu-
ation level γ = 1. The simulation results are shown in
Figs. 1 and 2 with τ = 0.5 and τ = 3. The simulation
results show that the robust H∞ control law proposed in
Theorem 2 is effective.

Fig. 1 Response curves with τ = 0.5
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Fig. 2 Response curves with τ = 3

Next we consider the case that the delay in system (61) is
a time-varying continuous function and design an adaptive
controller by using Theorem 4 to guarantee the asymptoti-
cal stability of the closed-loop system.

Here we set τ = d(t) = 1
6
(π+2arctan t), then we can take

μ = 0.34, h = 1.05. Through simple test works and calcu-

lations, we get that ε2 = 1, Q2 = 1, K2 =

[
1.05 0

0 1.05

]

and the solution of (51)

P4 =

[
7.3218 0.0000

0.0000 7.3218

]

M4 =

[
6.4970 0.3750

0.3750 6.4345

]

satisfy all the conditions in Theorem 4. Then an adaptive
H∞ controller of the system (61) is obtained as

u =

[
−21.0029 sin x1 − 0.3750x2 − 0.5x2

1θ̂

−0.3750 sin x1 − 20.9404x2 − (x2
2 + 3)θ̂

]

.

Simulation is shown in Fig. 3. From the simulation we
can see that the adaptive H∞ control law proposed in
Theorem 4 is effective.

Fig. 3 Response curves with τ = d(t)

5 Conclusions

In this paper, the adaptive H∞ control problem of a class
of time delay nonlinear Hamiltonian systems with paramet-
ric uncertainties and disturbances has been investigated.
Based on the Lyapunov-Krasovskii functional technique,
some sufficient conditions are established and adaptive con-
trollers are designed which guarantee the asymptotic sta-
bility and L2 gain stability of the closed-loop systems. A
numerical example is provided to illustrate the theoretical
developments. Especially, the results obtained in this paper
have provided a new way in dealing with the H∞ control
design problem for some classes of nonlinear systems with
time delay and uncertainties.
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