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Abstract: In this paper, an iterative learning control strategy is presented for a class of nonlinear time-varying systems, the time-
varying parameters are expanded into Fourier series with bounded remainder term. The backstepping design technique is used to
deal with system dynamics with non-global Lipschitz nonlinearities and the approach proposed in this paper solves the non-uniform
trajectory tracking problem. Based on the Lyapunov-like synthesis, the proposed method shows that all signals in the closed-loop
system remain bounded over a pre-specified time interval [0, T ]. And perfect non-uniform trajectory tracking of the system output is
completed. A typical series is introduced in order to deal with the unknown bound of remainder term. Finally, a simulation example
shows the feasibility and effectiveness of the approach.
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1 Introduction

Iterative learning control (ILC) or adaptive iterative
learning control (AILC) has become one of the most ef-
fective control strategies in dealing with repeated tracking
control of nonlinear systems. And the additional require-
ment of the repetitive mode is that a specified output tra-
jectory on a finite interval is followed with a high precision
(or so called exactly tracking). Examples of such systems
include robotic manipulators required to repeat a given task
with high precision, chemical batch processes, vehicles and
man-machine systems. The ILC system improves the con-
trol performances by self-tuning the leaning gains in the
traditional D-type, P-type, PD-type or PID-type ILC for
linear or affine nonlinear dynamic systems with nonlineari-
ties satisfying the global Lipschitz continuous condition[1, 2].

In the existing literature, the tracking trajectory must be
uniform, for a complex tracking trajectory problem (such
as varying trajectory along iterative direction), there is no
well-posed method to consider it. Actually, the non-uniform
trajectory can be considered as an uncertain time-varying
parameter along both iterative direction and time domain,
therefore, it becomes a challenging problem to study an ILC
strategy for uncertain time-varying parametric systems. In
[3], D-type, PD-type and PID-type learning algorithms were
presented to solve the problem of slow varying trajectory
along iterative direction. In [4], an adaptive iterative learn-
ing control method via Lyapunov technique was proposed
for the system with unknown constant parameter uncer-
tainty, which can be used to track the similar variant tra-
jectory or unseen trajectories. In [5], a new adaptive iter-
ative learning control strategy was presented on the basis
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of neural networks, which has the capability of generaliza-
tion both for tracking trajectory and for system structure.
However, there still have some restricts on the trajectory.
In [6], for the first-order hybrid parametric system, a new
iterative learning control law consisting of a feedback term
and a learning term was proposed, which can perform dif-
ferent tracking control tasks. Recently, a novel adaptive
iterative learning control approach was proposed for a class
of hybrid parametric nonlinear systems by means of back-
stepping method in [7]. Similarly, a novel adaptive iterative
learning control approach was proposed for a class of hybrid
parametric nonlinear time-delay systems[8]. The approach
consists of a differential-deference type updating law and a
learning control law for handling the non-uniform trajectory
tracking problem. It avoids the restrictions on the tracking
trajectory in the traditional ILC.

In many industrial applications, the system parameters
are completely unknown or partially unknown. When these
parameters are unknown time-varying ones, the controller
design problem of the uncertain nonlinear system becomes
a challenging topic[9−11]. When the period of uncertain pa-
rameters of the system is known in advance, by the point-
wise integral mechanism, a new adaptive control approach
characterized by periodic parameter adaptation was pro-
posed, which complements periodic parameter adaptation
control of the first-order uncertain system with mixed lin-
ear parameters, such that the tracking error converges to
zero asymptotically in the L2

T -norm sense[12]. In [13], a
new approach of designing a repetitive learning controller
for a class of unmatched nonlinear systems with both com-
pletely unknown virtual control coefficients and unknown
time-varying parameters was proposed, which by incorpo-
rating a Nussbaum-type function and backstepping tech-
nique, can guarantee uniform ultimate boundedness of the
states. In [14], combining the backstepping approach with
the pointwise integral mechanism, a novel adaptive repeti-
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tive learning control for high-order nonlinear systems with
time-varying and time-invariant parameters was proposed.
An iterative learning controller was presented for a class of
strict-feedback nonlinear systems with time-varying uncer-
tainties in [15]. The learning controller is designed based on
the Lyapunov-like synthesis, which can handle system dy-
namics with non-global Lipschitz nonlinearities. The theo-
retical analysis shows that all signals in the closed-loop sys-
tem remain bounded over a pre-specified time interval [0, T ].
And complete tracking of the system output is achieved.
But the control objective of the article was uniform and
the bound of remain term was known.

Motivated by the above discussion, we propose an itera-
tive learning controller for a class of nonlinear time-varying
systems to solve the non-uniform trajectory tracking prob-
lem. The learning controller is designed based on the
Lyapunov-like synthesis, which can handle system dynam-
ics with non-global Lipschitz nonlinearities. For the con-
troller design, the time-varying parameters are expanded
into Fourier series with bounded remainder term, whose
bound is unknown. The theoretical analysis shows that all
signals in the closed-loop system remain bounded, and per-
fect non-uniform trajectory tracking of the system output
is completed. Finally, we give a simulation example to show
the feasibility and effectiveness of the approach.

2 System description

Consider a class of high-order nonlinear time-varying sys-
tems

ẋi = xi+1 + θT(t)ϕi(x̄i)

ẋn = u(t) + θT(t)ϕn(x̄n)

y = x1 (1)

where x̄n = [x1, · · · , xn]T ∈ Rn is the state vectors of the
system, which is assumed to be available for measurement,
x̄i = [x1, · · · , xi]

T, u ∈ R and y ∈ R correspond to system
input and output, respectively. Denote x = x̄n. x(t0) = x0

represents initial conditions of the system, θ(t) ∈ Rp is an
unknown continuous time varying function vector, ϕi(x̄i),
i = 1, · · · , n are all known smooth function, and ϕi(0) = 0,
i = 1, · · · , n.

Now, we suppose that the system time-varying parameter
vector θ(t) is a fully unknown continuous periodic function
vector with a known period T . Each component θi(t), i =
1, · · · , p of the continuous and periodic function vector θ(t)
can be expressed by a linearly parameterized Fourier series
expansion as

θi(t) = φT
i (t)ηi + δi(t), |δi(t)| � δ̄i (2)

where ηi = [ηi1, ηi2, · · · , ηiq ]
T ∈ Rq is a constant vector

consisting of the first q coefficients of the Fourier series ex-
pansion of θi(t) (q is an odd integer). δi(t) is the trunca-
tion error with the minimum upper bound δ̄i > 0, which
can be arbitrarily decreased by increasing q. And φi(t) =
[φi1(t), · · · , φiq(t)]

T with φi1(t) = 1, φi2j(t) = sin( 2πjt
T

) and

φi2j+1(t) = cos( 2πjt
T

), j = 1, · · · , (q−1)
2

, whose derivatives
up to n-order are smooth and bounded.

Let φ(t) = diag{φ1(t), φ2(t), · · · , φn(t)}, η = [ηT
1 , η

T
2 , · · ·

, ηT
n ]T, δ(t) = [δ1(t), δ2(t), · · · , δn(t)]T. Then the parameter

vector θ(t) can be rewritten as

θ(t) = φT(t)η + δ(t). (3)

From (2), we have ‖δ(t)‖ � s. We assume that the upper
bound s is an unknown parameter. Then after substituting
(3) into system (1), system (1) becomes

ẋi = xi+1 + ηTφ(t)ϕi(x̄i) + δT(t)ϕi(x̄i)

ẋn = u(t) + ηTφ(t)ϕn(x̄n) + δT(t)ϕn(x̄n)

y = x1. (4)

Our objective is to design an adaptive iterative learn-
ing control law uk(t) on [0, T ], such that the tracking error
ek(t) = yk(t) − yr,k(t) converges to zero completely when
k → ∞, and all signals of the closed-loop system are kept
bounded, where k denotes the iteration index, yr,k(t) repre-
sents the k-th sufficiently smooth iterative target trajectory.

In order to design the controller, a definition of conver-
gent series sequence and its lemma are given as follows.

Definition 1[15]. A convergent series sequence {Δk} is
defined as

Δk =
a

kl
(5)

where k = 1, 2, · · · ; a and l are designed constant parame-
ters, and a > 0 ∈ R, l � 2 ∈ N.

Lemma 1[15]. For given sequence { 1
kl }, where k =

1, 2, · · · , and the positive integer l � 2, the following in-
equality holds:

lim
k→∞

k∑

i=1

1

il
� 2. (6)

3 Adaptive iterative learning controller
design

In the design process of the controller, we introduce the
convergent series sequence of Definition 1 to eliminate the
effect on system performance of the redundant item after
expanding the time-varying parameter by using Fourier se-
ries. We give the design process of the controller for high-
order strict feedback nonlinear time-varying systems as fol-
lows.

3.1 Design of the controller

Step 1. Let ω1,k = ϕ1,k. There exists a smooth
function ϕ̄1,k(x1,k) > 0 such that |δT(t)ϕ1,k(x1,k)| �
‖δT(t)‖ϕ̄1,k(x1,k) � sϕ̄1,k(x1,k). Denote S = s2, z1,k =
x1,k − yr,k, z2,k = x2,k − α1,k − ẏr,k, where α1,k is the vir-
tual controller. The time derivative of z1,k along systems
(4) is given as

ż1,k = z2,k + α1,k + ηTφ(t)ω1,k + δT(t)ω1,k. (7)

For any real number a > 0 and positive integer l � 2,
let Δk = a

kl , and denote τ1,k = Γ1φ(t)ω1,kz1,k, ν1,k =

Γ2
1

Δk
ϕ̄2

1,kz
2
1,k.

Take virtual control as α1,k = −c1z1,k − η̂T
k φ(t)ω1,k −

Ŝk
1

Δk
ϕ̄2

1,kz1,k, where c1 is a positive constant. It is substi-
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tuted into (7), and we have

ż1,k = z2,k − c1z1,k + η̃T
k φ(t)ω1,k−

Ŝk
1

Δk
ϕ̄2

1,kz1,k + δT(t)ω1,k (8)

where η̂k is the estimation of parameter η, and η̃k = η−η̂k is
parameter estimation error. Take the following nonnegative
function:

V1,k(zk, η̂k, Ŝk) =
1

2
z2
1,k +

1

2
η̃T

k Γ−1
1 η̃k +

1

2
Γ−1

2 S̃2
k (9)

where Γ1 and Γ2 are symmetric positive definite matrices.
Ŝk is the estimation of parameter S, S̃k = S − Ŝk is the
parameter estimation error. The time derivative of V1,k

along systems (8) is given as

V̇1,k = z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)−

Ŝk
1

Δk
ϕ̄2

1,kz
2
1,k + δT(t)ω1,kz1,k − Γ−1

2 S̃k
˙̂
Sk �

z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)−

Ŝk
1

Δk
ϕ̄2

1,kz
2
1,k + sϕ̄1,k|z1,k| − Γ−1

2 S̃k
˙̂
Sk �

z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)−

Ŝk
1

Δk
ϕ̄2

1,kz
2
1,k +

1

Δk
s2ϕ̄2

1,kz
2
1,k+

1

4
Δk − Γ−1

2 S̃k
˙̂
Sk =

z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)−

Ŝk
1

Δk
ϕ̄2

1,kz
2
1,k +

1

Δk
Sϕ̄2

1,kz
2
1,k+

1

4
Δk − Γ−1

2 S̃k
˙̂
Sk =

z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)+

1

4
Δk +

1

Δk
S̃kϕ̄

2
1,kz

2
1,k − Γ−1

2 S̃k
˙̂
Sk =

z1,kz2,k − c1z
2
1,k + η̃T

k Γ−1
1 (τ1,k − ˙̂ηk)+

S̃kΓ−1
2 (ν1,k − ˙̂

Sk) +
1

4
Δk. (10)

The following inequality is used in the previous equation.
For any r > 0, mn � 1

r
m2 + 1

4
n2r, where r = Δk.

Step 1 (2� i�n−1). Let ωi,k = ϕi,k−Σi−1
j=1

∂αi−1,k

∂xj,k
ϕj,k.

Because ϕ1,k, · · · , ϕi,k are known smooth functions, there
exist smooth function ϕ̄i,k(x1,k, · · · , xi,k, η̂k, Ŝk) > 0 such

that |δT(t)(ϕi,k − ∑i−1
j=1

∂αi−1,k

∂xj,k
ϕj,k)| � ‖δT(t)‖ϕ̄i,k �

sϕ̄i,k. Denote zi+1,k = xi+1,k − αi,k − y
(i)
r,k, τi,k = τi−1,k +

Γ1φ(t)ωi,kzi,k, νi,k = νi−1,k + Γ2
1

Δk
ϕ̄2

i,kz
2
i,k. Then the time

derivative of zi,k is given as

żi,k = zi+1,k + αi,k + ηTφ(t)ωi,k + δT(t)ωi,k−
∂αi−1,k

∂t
−

i−1∑

j=1

∂αi−1,k

∂xj,k
xj+1,k−

∂αi−1,k

∂η̂k

˙̂ηk − ∂αi−1,k

∂Ŝk

˙̂
Sk. (11)

Take virtual controller as

αi,k = − zi−1,k − cizi,k − η̂T
k φ(t)ωi,k +

∂αi−1,k

∂t
+

i−1∑

j=1

∂αi−1,k

∂xj,k
xj+1,k +

∂αi−1,k

∂η̂k
τi,k + ϑi,k+

∂αi−1,k

∂Ŝk

νi,k + ψi,k − Ŝk
1

Δk
ϕ̄2

i,kzi,k (12)

where ϑi,k =
∑i−2

j=1

∂αj,k

∂η̂k
Γ1φ(t)ωi,kzj+1,k, ψi,k =

∑i−2
j=1

∂αj,k

∂Ŝk
Γ2

1
Δk
ϕ̄2

i,kzi,kzj+1,k.

Choose the following nonnegative function:

Vi,k(zk, η̂k, Ŝk) =
i∑

j=1

1

2
z2

j,k +
1

2
η̃T

k Γ−1
1 η̃k +

1

2
Γ−1

2 S̃2
k. (13)

The time derivative of Vi,k along systems (11) is given, and
(12) is substituted into it. We have

V̇i,k �zi,kzi+1,k −
i∑

j=1

cjz
2
j,k+

(
i−1∑

j=1

∂αj,k

∂η̂k

)
zi,k(τi,k − ˙̂ηk)+

(
i−1∑

j=1

∂αj,k

∂Ŝk

)
zi,k(νi,k − ˙̂

Sk)+

η̃T
k Γ−1

1 (τi,k − ˙̂ηk)+

S̃kΓ−1
2 (νi,k − ˙̂

Sk) + i
1

4
Δk. (14)

Step n. Let ωn,k = ϕn,k − Σn−1
j=1

∂αn−1,k

∂xj,k
ϕj,k. Be-

cause ϕ1,k, · · · , ϕn,k are known smooth functions, there ex-
ist smooth function ϕ̄n,k(x1,k, · · · , xn,k, η̂k, Ŝk) > 0 such

that |δT(t)(ϕn,k − ∑n−1
j=1

∂αn−1,k

∂xj,k
ϕj,k)| � ‖δT(t)‖ϕ̄n,k �

sϕ̄n,k. Denote τn,k = τn−1,k + Γ1φ(t)ωn,kzn,k and νn,k =
νn−1,k + Γ2

1
Δk
ϕ̄2

n,kz
2
n,k. Then the time derivative of zn,k is

given as

żn,k = uk − y
(n)
r,k + ηTφ(t)ωn,k(x̄n,k) + δT(t)ωn,k(x̄n,k)−

∂αn−1,k

∂t
−

n−1∑

j=1

∂αn−1,k

∂xj,k
xj+1,k−

∂αn−1,k

∂η̂k

˙̂ηk − ∂αn−1,k

∂Ŝk

˙̂
Sk. (15)

Take the following controller and adaptive iterative learn-
ing laws:

uk = αn,k + y
(n)
r,k (16)

˙̂ηk = τn,k (17)

˙̂
Sk = νn,k. (18)

Choose the following nonnegative function:

Vn,k(zk, η̂k, Ŝk) =
n∑

j=1

1

2
z2

j,k +
1

2
η̃T

k Γ−1
1 η̃k +

1

2
Γ−1

2 S̃2
k. (19)
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The time derivative of Vn,k along systems (15) is given,
and after (16)–(18) are substituted into it, we have

V̇n,k � −
n∑

j=1

cjz
2
j,k + n

1

4
Δk. (20)

For the setting of the initial state, we give the following
assumptions condition.

Assumption 1. For any k, when t = 0, x1,k(0) =

yr,k(0); xi+1,k(0) = αi,k(0) − y
(i)
r,k(0), i = 1, · · · , n − 1;

η̂k(0) = η̂k−1(T ); Ŝk(0) = Ŝk−1(T ); y
(i)
r,k(0) = y

(i)
r,k−1(T ),

i = 1, · · · , n.

3.2 Stability and convergence analysis

Theorem 1. For nonlinear system (1) with assumption
1, we design controller (16) and parameter adaptive laws
(17) and (18). Then all signals of closed loop system are
bounded on [0, T ], and we have

lim
k→∞

zj,k(t) = 0, j = 1, 2, · · · , n. (21)

Proof. According to Assumption 1, we have ‖zk(0)‖2 =
0 � ‖zk(T )‖2. By (19), we obtain

Vn,k(zk(0), η̂k(T ), Ŝk(T )) �Vn,k(zk(0), η̂k(0), Ŝk(0))+
∫ T

0

V̇n,kdt. (22)

Substitute (20) into (22), then

Vn,k(zk(0), η̂k(T ), Ŝk(T )) �Vn,1(z1(0), η̂1(0), Ŝ1(0))−
k∑

i=1

n∑

j=1

∫ T

0

cjz
2
j,idt+

n(
1

4
)T (

k∑

i=1

Δi). (23)

Denote V0(k) = Vn,1(z1(0), η̂1(0), Ŝ1(0))+n( 1
4
)T (

∑k
i=1 Δi),

then (23) can be rewritten as

k∑

i=1

n∑

j=1

∫ T

0

cjz
2
j,idt � V0(k) − Vn,k(zk(0), η̂k(T ), Ŝk(T )).

(24)

By (6), we have limk→∞V0(k) � Vn,1+2an( 1
4
)T , then V0(k)

is bounded, and Vn,k(zk(0), η̂k(T ), Ŝk(T )) � 0, so

lim
k→∞

n∑

j=1

∫ T

0

cjz
2
j,kdt = 0. (25)

By (19), for any k, Vn,k(t) = Vn,k(0) +
∫ t

0
V̇n,k(τ )dτ . Sub-

stitute (20) into the previous equations, then

Vn,k(t) � Vn,k(0) −
n∑

j=1

∫ t

0

cjz
2
j,k(τ )dτ + tn(

1

4
)Δk. (26)

By (25),
∑n

j=1

∫ t

0
cjz

2
j,k(τ )dτ is bounded. According to Def-

inition 1, Δk is bounded, and t ∈ [0, T ], so tn( 1
4
)Δk is also

bounded. And also η̂k(0) = η̂k−1(T ), Ŝk(0) = Ŝk−1(T ).

By (23), for any k, Vn,k(0, η̂k(T ), Ŝk(T )) is bounded, so
Vn,k(0, η̂k(0), Ŝk(0)) = Vn,k−1(0, η̂k−1(T ), Ŝk−1(T )) is also
bounded. From all above, for any k, Vn,k(t) is bounded,
then we have xi,k, η̂k(t) and Ŝk(t) are bounded. By (16), uk

is bounded. By (11), żi,k is bounded. So zi,k is continuously
uniform, thus we get the conclusion of (21). �

4 An illustrative example

In this section, an example is presented to show the ef-
fectiveness of the proposed adaptive iterative learning con-
troller.

Consider the following second-order strict feedback non-
linear system:

ẋ1,k = x2,k + θ(t)x2
1,k

ẋ2,k = uk(t)

yk = x1,k (27)

where t ∈ [0, 1], θ(t) is systems uncertain periodical time-
varying parameter. After it is expanded by Fourier series,
system (27) can be described as

ẋ1,k = x2,k + ηTφ(t)x2
1,k + δT(t)x2

1,k

ẋ2,k = uk(t)

yk = x1,k (28)

where x1,k and x2,k are state variables, uk(t) is the
input variable. η = [η1, η2, η3, η4, η5]

T, φ(t) =
[1, sin(t), cos(t), sin(2t), cos(2t)]T, ‖δ(t)‖ � s, where s is
an unknown constant. In order to simulate, we suppose
θ(t) = sin(2πt) in the actual system. Choose the reference
trajectory yr,k = gksin(2πt) with difference amplitudes. For
the non-uniform trajectory case, we choose gk = −0.2 when
k is even, and gk = 0.1 when k is odd.

Step 1. Let z1,k = x1,k − yr,k, z2,k = x2,k − α1,k − ẏr,k,
where the virtual control is taken as α1,k = −c1z1,k −
η̂kφ(t)x2

1,k − 1
Δk
Ŝkx

4
1,kz

2
1,k, Δk = a

k2 , τ1,k = Γ1φ(t)x2
1,kz1,k,

ν1,k = Γ2
1

Δk
x4

1,kz
2
1,k.

Step 2. Design the controller uk(t) = −z1,k − c2z2,k +

y
(2)
r,k − η̂T

k φ(t)| − ∂α1,k

∂x1,k
x2

1,k| +
∂α1,k

∂x1,k
x2,k +

∂α1,k

∂η̂k
τ2,k +

∂α1,k

∂Ŝk
ν2,k − η̂T

k φ̇(t)x2
1,k − Ŝk

1
Δk

| − ∂α1,k

∂x1,k
x2

1,k|2z2,k, where

Δk = a
k2 , τ2,k = τ1,k + Γ1φ(t)| − ∂α1,k

∂x1,k
x2

1,k|z2,k, ν2,k =

ν1,k+Γ2
1

Δk
(|− ∂α1,k

∂x1,k
x2

1,k|)2z2
2,k. Design the parameter adap-

tive laws: ˙̂ηk = τ2,k,
˙̂
Sk = ν2,k.

Choose the following parameters and the initial values of
states and the estimated parameters: a = 100

3
, c1 = c2 =

0.1, Γ1 = diag{0.1}, Γ2 = 0.1, x1,k(0) = 0, x2,k(0) = −0.4,
η̂k(0) = [0, 0, 0, 0, 0]T, Ŝk(0) = 0. For the iteration index
k = 80, the simulation results are shown in Figs. 1−5.

Simulation results in Figs. 1−5 show the effectiveness of
the developed control scheme for system (27). From Figs. 1
and 2, it can be seen that good tracking performance is
obtained, that is to say, the tracking error can converge
to zero. Moreover, The boundedness of the control signal
‖uk‖ is illustrated on the interval [0, 1] in Fig. 3. Parameter
estimations ‖η̂k‖, ‖Ŝk‖ are also bounded as given in Figs. 4
and 5.
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Fig. 1 Change of ‖z1,k‖ with iteration index

Fig. 2 Change of ‖z2,k‖ with iteration index

Fig. 3 Change of ‖uk‖ with iteration index

Fig. 4 Change of ‖η̂k‖ with iteration index

Fig. 5 Change of ‖Ŝk‖ with iteration index

5 Conclusions

This paper deals with the non-uniform trajectory track-
ing problem of a class of high-order nonlinear systems
with unknown time-varying parameters. An adaptive it-
erative learning controller is designed for nonlinear sys-
tems with unknown time-varying parameters to realize the
non-uniform trajectory tracking perfectly. Then, based on
the Lyapunov stability theory, the asymptotic tracking of
the controlled nonlinear system is proved. Simulation re-
sults demonstrate the effectiveness of the proposed con-
trol method. The future work is how to design the itera-
tive learning controller for nonlinear systems with unknown
time-varying parameters and uncertain control direction.
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