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Abstract: A new approach to model and control an unknown system using subjective uncertain rules is proposed. This method

is established by combining the grey system theory and the qualitative simulation method. The proposed approach mainly contains

three steps. In the first step, subjective uncertain rules are accumulated gradually during cognizing the system; the mapping relations

between the system inputs and outputs are built and represented using the grey qualitative matrix in the second step; in the third step,

the generalized whitening function is defined to realize the transformation between qualitative and quantitative information. Besides

the theoretical results, two sets of simulations based on a water level control system are conducted comparatively to demonstrate the

effectiveness of the proposed method. The water level expectation is set to be constant in the first set, while it changes in the second

set. The simulation results show that the proposed method tracks the water level expectation well. By combining the proposed method

with proportional-integral-derivative (PID) or fuzzy logic controller (FLC), it can be concluded that the system can reach the stable

state more quickly and the overshoot can also be reduced compared to using PID or FLC alone.
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1 Introduction

The lack of information makes it difficult to build

an accurate mathematical model of uncertain systems.

Thus, fuzzy logic[1−6], qualitative simulation[7−11], grey sys-

tem theory[12, 13] etc., are proposed to solve the problem.

Fuzzy logic based methods are interested in establishing

fuzzy relationships between system states x and y[14, 15]:

If x is Ai, then y is Bi, i = 1, 2, · · · , k

where Ai and Bi are fuzzy concepts defined by fuzzy sets,

respectively. However, to model and control a system us-

ing fuzzy methods, we need fuzzy rules and membership

functions to describe behaviors of the system. Usually, we

acquire them by adopting experts′ experiences or through

experiments[15]. However, such information cannot always

cover the overall properties of the system. Worse still,

we may only obtain a small amount of information. The

grey system theory[16], proposed by Deng, originally tries

to solve such problems. In the grey system theory, by con-

sidering the uncertainty, we can represent system states or

observations using grey numbers. The whitening function

is built in case the representative value of the grey number

is needed. By means of the theory, we can use just a small

amount of data to model the system. However, the rela-

tions between states or observations are usually quantita-

tive rather than qualitative, which is not intuitive to human.

On the contrary, the qualitative simulation methods define

the system qualitative states using a set of landmarks, and

study how to predict the qualitative states based on current
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qualitative states and the qualitative difference equations of

the system. However, singular inference branches will arise

if we use only qualitative information. Kuipers[7, 8] tried

to reduce the branches by adopting quantitative informa-

tion to extend the landmarks from qualitative symbols to

quantitative intervals. In this paper, we are interested in

combining the advantages of both the grey system theory

and qualitative simulation to model and control a system.

Let us consider a water level control system shown in

Fig. 1. Generally, we can obtain k rules between input x

and output y through experiments:

If x ∈ Pi, then y ∈ Qi, i = 1, 2, · · · , k

where Pi and Qi are classical sets on real number domain X

and Y . The uncertainty of these rules originates from the

incomplete cognition of the system, i.e., we have to cog-

nize the system gradually, with a small amount of informa-

tion each step. This kind of uncertainty is usually caused

by personal cognitive capacity. Therefore, it is subjective

uncertainty[17], and the corresponding system is a subjec-

tive uncertain system. We call them subjective uncertain

rules because they are different than fuzzy rules as Pi and

Qi are classical sets rather than fuzzy sets. Meanwhile, Pi

and Qi may be different even for the same input and output

because of the personal preference.

Inspired by the grey system theory, we try to use only

a small number of subjective uncertain rules to model and

control systems. Meanwhile, we use the interval boundaries

in the subjective uncertain rules as landmarks to partition

the states or observations universe, just like what they do

in qualitative simulation methods. Accordingly, by com-

bining the grey qualitative simulation methods published

earlier[18−20] , we propose the grey qualitative modeling and

control method for subjective uncertain systems. First, we
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come up with a structure to represent the subjective un-

certain information; second, the boundaries of the sets in

subjective uncertain rules are used as landmarks to subdi-

vide the related universes. Each subdivision is a qualitative

state of the system. Then, we transform the reasoning rela-

tions between rules into relations between subdivisions by

integrating the rules, namely building a one-to-one mapping

between qualitative sates. At last, we use the whitening

function defined on each subdivision to transform qualita-

tive information into quantitative information. For the wa-

ter level control system shown in Fig. 1, the grey qualitative

controller (GQC) is built up based on subjective uncertain

rules to model and control the system. The GQC mainly

contains three parts: the“accumulating” block in Fig. 1 in-

dicates the accumulation of subjective uncertain rules; the

“rule integration” block defines how to integrate the rules to

model and control the system; the “whitening” block defines

the whitening function. In addition, we can also improve

the performance of proportional-integral-derivative (PID)

or the fuzzy logic controller (FLC) by combining them with

the GQC. The schematic diagram is shown in Fig. 1.

Fig. 1 Subjective uncertain system modeling and control dia-

gram. x is the expectation input level, y is the output, and

e = x − y. The dashed box at the left bottom contains the con-

trollers we adopt, which will be introduced in detail later. The

dashed box at the right bottom shows the main parts of GQC

The remainder of the paper is organized as follows: Sec-

tion 2 is a short description of the problem to be solved.

Section 3 provides details of the grey qualitative modeling

and control method we propose. The water level control

simulations are carried out in Section 4 to verify the pro-

posed method, and Section 5 concludes our work.

2 Problem descriptions

Suppose that we obtain the following subjective uncer-

tain rules after exploring an unknown system:

If x ∈ Pi, then y ∈ Qi, i = 1, 2, · · · , k (1)

where x and y are the input and output, respectively, Pi

and Qi are classical sets on X and Y . To simplify the prob-

lem, we assume that Pi, Qi and P =
⋃

Pi, Q =
⋃

Qi are all

connected and bounded sets. If they are not, we can convert

them into multiple connected sets and analyze them one by

one. Besides, suppose that the response function of the sys-

tem is a one-to-one mapping, i.e., for a given system input

x, there is only one corresponding output y. Based on the

assumptions, the problem to be solved includes: 1) Model

and control an uncertain system based on subjective uncer-

tain rules; 2) Reduce the uncertainty by integrating subjec-

tive uncertain rules. As the uncertain rules are obtained in

the cognitive process, conflict rules may arise. For example,

suppose that we acquire Pi1 , Pi2 and Pi1

⋂
Pi2 �= ϕ. Thus,

if input x ∈ Pi1

⋂
Pi2 , it is confused to decide which rule to

use. Therefore, we should integrate the rules, such that for

a given input, we can get a unique output.

3 Grey qualitative method

3.1 Representation of subjective uncer-
tain information

In this subsection, we start with a brief introduction to

the grey system theory and the qualitative simulation, and

then we give basic concepts related with our new method.

1) Grey system theory

The grey system theory mainly focuses on modeling a

system using “small sample” information. Considering the

uncertainty, information is usually represented using grey

numbers, which are usually intervals. For example, given

an observation y of a system output, the grey system theory

researchers prefer to represent it using a grey number
[
y, y

]
.

It means that the true value of the output is in
[
y, y

]
, but

we do not know exactly which one it is. To obtain the exact

value, a whitening function is usually defined on the grey

number to indicate the observer′s preference of the values

in the interval.

2) Qualitative simulation

In the qualitative simulation, researchers are interested

in describing quantities qualitatively. Normally they de-

scribe the quantities in terms of their ordinal relations with

a small set of landmark values. Brown and De Kleer[21]

took the only landmark to be zero, thus the qualitative

values were defined as {+, 0,−}. Kuipers defined a quan-

tity space as a partially ordered set of landmark values, so a

quantity was described in terms of its ordinal relations with

the landmarks. In the Kuipers′ approach, new landmarks

are allowed to be discovered and inserted to avoid missing

important qualitative distinctions.

Our method inherits the advantages of the two meth-

ods, i.e., we try to use a small amount of subjective rules

to model the system; meanwhile, new subjective uncertain

rules are always accumulated and integrated with the rules

already obtained to reduce the uncertainty.

3) Basic concepts in the proposed method

Definition 1. Suppose P = {pi|i = 1, 2, · · · , n} is a non-

empty set and ⊗(P ) is the convex hull of P . Then we call

⊗(P ) a grey number defined on P . For clarity, we can

denote ⊗(P ) as ⊗.

Definition 2. If ⊗ is a grey number defined on P and



72 International Journal of Automation and Computing 12(1), February 2015

B (⊗) indicates the boundary of ⊗, then K = P
⋂

B (⊗) is

called the key point set of ⊗.

Definition 3. Suppose S is a continuous domain and q

is a subjection mapping such that q : S → S̃, S̃ = {⊗i|i =

1, 2, · · · , n},⊗i ∩ ⊗j = φ, i �= j. Then S̃ is named a grey

qualitative space of S, and ⊗i is the grey qualitative element

in S̃.

Definition 4. Suppose R ⊆ S̃ × S̃; then R is called a

grey qualitative relationship in S̃.

Definition 5. Suppose K = {k1, k2, · · · , km} is the key

point set of ⊗ and f : K → R is a mapping from K to

R. Then f (k1) , f (k2) , · · · , f (km) are the grey qualitative

characteristic values of ⊗.

Definition 6. Suppose the grey qualitative characteris-

tic values of ⊗ are f (k1) , f (k2) , · · · , f (km). ∀p ∈ ⊗, we

define the generalized whitening function of ⊗ as

f (p) = λ1f (k1) + λ2f (k2) + · · · + λmf (km) (2)

where λ1, λ2, · · · , λm can be uniquely determined by the

relative position of p.

The grey qualitative characteristic value is the key quan-

titative information of the grey qualitative element. By

using the generalized whitening function, we can obtain all

the quantitative information needed.

In the grey system theory, f (p) indicates the preference

of taking p as the representative value of the grey num-

ber. In our method, the preference of taking f (p) as the

representative value of the grey number is determined by

λ1, λ2, · · · , λm and f (k1) , f (k2) , · · · , f (km). The mean-

ing of f (p) depends on how f (ki) , i = 1, · · · , m are defined.

Thus, the generalized whitening function inherits the idea

of the traditional whitening function on the one hand; it

expands the meaning of the traditional whitening function

on the other hand.

3.2 Integrating subjective uncertain rules

Assume that “If x ∈ Pi, then y ∈ Qi, i = 1, · · · , k”

are k subjective uncertain rules obtained. Let ai = inf Pi,

bi = supPi, where i = 1, 2, · · · , k, and a = inf
⋃

Pi,

b = sup
⋃

Pi. Meanwhile, let ci = inf Qi, di = sup Qi,

i = 1, 2, · · · , k, and c = inf
⋃

Qi, d = sup
⋃

Qi. Then,

a, ai, bi, b, c, ci, di, d, i = 1, · · · , k can be used as land-

marks of X and Y . For convenience, we arrange a, ai, bi, b

and c, ci, di, d, i = 1, · · · , k incrementally, resulting in

p0, p1, · · · , pm and q0, q1, · · · , qn, where p0 < p1 < · · · < pm

and q0 < q1 < · · · < qn. Let ⊗i
1 = [pi−1, pi) (or (pi−1, pi]),

i = 1, 2, · · · , m; then S̃1 =
{⊗i

1|i = 1, 2, · · · , m
}

is the grey

qualitative space determined by p0, p1, · · · , pm. Similarly,

we call S̃2 =
{⊗j

2|j = 1, 2, · · · , n
}

the grey qualitative space

determined by landmarks q0, q1, · · · , qn.

Based on the process above, we can get the following

lemma intuitively.

Lemma 1. ∀Pi, ∃⊗i1
1 ,⊗i2

1 , · · · ⊗it1
1 ∈ S̃1, such that Pi =

⋃t1
k=1 ⊗ik

1 ; ∀Qj , ∃⊗j1
2 ,⊗j2

2 , · · · ⊗jt2
2 ∈ S̃2, such that Qj =

⋃t2
k=1 ⊗jk

2 .

R ⊂ S̃1 × S̃2 is called a grey qualitative reasoning rela-

tionship on S̃1 and S̃2, if and only if there exists a subjec-

tive uncertain rule “If x ∈ ⊗i
1, then y ∈ ⊗j

2”, such that(⊗i
1,⊗j

2

) ∈ R.

Definition 7. Suppose that R ⊂ S̃1 × S̃2 is a grey qual-

itative relation on S̃1 and S̃2. Let

rij =

{
1 , (⊗i

1,⊗j
2) ∈ R

0, (⊗i
1,⊗j

2) /∈ R
, i = 1, 2, · · ·m, j = 1, 2, · · · , n.

Then R = (rij)m×n is called a grey qualitative matrix of

R, and R is the grey qualitative relation determined by

R = (rij)m×n.

The integration of subjective uncertain rules is to de-

termine the grey qualitative matrix R, with each row sum

equals to 1. It means that for a given subdivision in the

input domain, there is only one response subdivision in the

output domain. Thus, the second question in Section 2 can

be solved.

To prove the existence of R, let us begin with construct-

ing the following four row vectors:

1) Ai = (ai1, ai2, · · · , aim) , if Mj ⊆ Pi, then aij = 1,

otherwise aij = 0, where i = 1, 2, · · · , k, j = 1, 2, · · ·m.

2) Bi = (bi1, bi2, · · · , bin) , if Nj ⊆ Qi, then bij = 1,

otherwise bij = 0, where i = 1, 2, · · · , k, j = 1, 2, · · ·n.

3) mi = (0, · · · , 1, · · · , 0) , in which the i-th element is 1,

and others are 0, where i = 1, 2, · · · , m.

4) nj = (0, · · · , 1, · · · , 0) , in which the j-th element is 1,

and others are 0, where j = 1, 2, · · · , n.

“If x ∈ Pi, then y ∈ Qi” means that there exists an m×n

0-1 matrix R∗, which satisfies AiR
∗ = Bi. If the row sum

of R∗ is 1, and it satisfies the following equation set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A1R
∗ = B1

A2R
∗ = B2

· · ·
AkR∗ = Bk.

(3)

Then one subdivision in the input domain is related with

only one subdivision in the output domain. Therefore, the

subjective rules are well integrated. However, the process

of acquiring subjective uncertain rules is quite complex, so

matrix R∗ may not be found. To solve the problem, we

adopt a weaker equation set shown in (4).

Definition 8. Given two row vectors Ai =

(ai1, ai2, · · · , ain) and Aj = (aj1, aj2, · · · , ajn) with the

same dimension, we define Ai ≤ Aj or Aj ≥ Ai, if ajr = 1

can be deduced from air = 1, r = 1, 2, · · · , n.

Given the equation set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A1R0 ≤ B1

A2R0 ≤ B2

· · ·
AkR0 ≤ Bk

(4)

where matrix R0 is an m×n 0-1 matrix with row sum equals

to 1, we can obtain the following theorem.

Theorem 1. There exists a 0-1 matrix R0, which satis-

fies (4), with each row sum equals to 1.
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Proof. Let us denote S̃1 =
{⊗i

1|i = 1, 2, · · · , m
}

as the

grey qualitative space of S1, and “If x ∈ Pl, then y ∈ Ql”

is a known subjective rule.

Suppose that ∃i, s.t. x ∈ ⊗i
1, and ⊗i

1 ⊂ Pl. Thus “If

x ∈ ⊗i
1, then y ∈ Ql” is satisfied.

Based on Lemma 1, we known that ∀Ql,

∃⊗l
q
1
2 ,⊗l

q
2
2 , · · · ⊗l

q
t2
2 ∈ S̃2, s.t. Ql =

⋃t2
k=1 ⊗

l
q
k
2 . There-

fore, “If x ∈ ⊗i
1, then y ∈ ⋃t2

k=1 ⊗
l
q
k
2 ” is tenable.

Because the response function of the system is supposed

to be a one-to-one mapping, there exists a unique ki satis-

fying “If x ∈ ⊗i
1, then y ∈ ⊗l

q
ki
2 ”, where lqki

is only relevant

to i. For clarity, we denote lqki
as lqi .

Since x is arbitrarily selected, the aforementioned rules

are thus reasonable for all ⊗i
1 ∈ S̃1, i = 1, 2, · · · , m.

Construct a 0-1 matrix R0 = (rij)m×n, where ri,l
q
k

= 1,

i = 1, 2, · · · , m, while other entries remain zero. Obviously,

the row sum of R0 is 1, and we have mi · R0 = nl
q
i
, i =

1, 2, · · · , m.

Based on the definitions of Ai and mi, we know that if

Pl =
⋃t1

k=1 ⊗
l
p
k
1 , then Al =

∑t1
k=1 ml

p
k
.

Thus, we have AlR0 =
∑t1

k=1 ml
p
k
R0 =

∑t1
k=1 nl

q
k
.

Now, we just need to prove
∑t1

k=1 nl
q
k
≤ (bi1, bi2, · · · , bin).

If it is not satisfied, then ∃⊗l
p
k
1 , s.t. x ∈ ⊗l

p
k
1 and

y /∈ Ql, but y ∈ ⋃t2
k=1 ⊗

l
q
k
2 . As we already known that

Ql =
⋃t2

k=1 ⊗
l
q
k
2 , which conflicts with the aforementioned

conclusion. Thus, the inequality is sound, and the 0-1 ma-

trix R0 satisfies (4). �
Based on the aforementioned process, we can obtain the

following theorem.

Theorem 2. If m subjective uncertain rules “If x ∈ ⊗i
1,

then y ∈ ⊗li
2 , (i = 1, 2, · · · , m)” are tenable, then the rule

described in (1) is satisfied.

Definition 9. The subjective uncertain rules defined

by R0, i.e., “If x ∈ ⊗i
1, then y ∈ ⊗li

2 , i = 1, 2, · · · , m”, are

called subjective uncertain rules integrated from rules rep-

resented by (1).

Theorem 1 proves the existence of matrix R0, which

means that we can find a one-to-one mapping between the

input and output subdivisions.

4 Model of the system

After the integrating process, we can obtain the following

subjective uncertain rules:

If x ∈ ⊗i
1, then y ∈ ⊗li

2 , i = 1, 2, · · · , m.

Based on these rules, we can know that if input x ∈ ⊗i
1

then output y ∈ ⊗li
2 . However, in real applications, we

need a quantitative value to represent the intervals as the

traditional controller can only handle single values rather

than intervals. In the new modeling and control method,

we define the generalized whitening function to transform

qualitative information (represented by grey qualitative ele-

ments) into quantitative values. The realization of the gen-

eralized whitening function depends on the specific prob-

lem.

If we know output y ∈ ⊗li
2 , we would carefully select p ∈

⊗li
2 such that f (p) is the maximum value of the generalized

whitening function on ⊗li
2 . Then we will choose p as the

representative value of y on ⊗li
2 . The specific form of the

generalized whitening function we use is defined in Section

4.

Based on the analyses above and Fig. 1, the modeling

and control procedure of a system of our method mainly

contains three steps. 1) Accumulate subjective uncertain

rules. Essentially, it is the procedure of transforming the

quantitative information into qualitative information. We

obtain the subjective rules by searching the grey qualitative

elements ⊗i
1 and ⊗li

2 which input x and output y belong to.

2) Integrate the subjective rules: integrate the subjective

rules we have obtained and build the grey qualitative matrix

R dynamically. 3) Compute the quantitative output using

the generalized whitening function. In our method, the

output is defined as y = arg
y ∈⊗li

2
max f (y).

5 Simulation and analysis

5.1 Simulation descriptions and settings

Simulation-based performance analysis of the water level

control system shown in Fig. 2 is provided to verify the

method proposed in the paper. We assume that the corre-

sponding real system consists of a tank, a liquid level sensor,

two valves controlling water flows in and out of the tank,

and a controller. Fig. 3 shows the Simulink (Version 2009a)

simulation model of the system. Details of the blocks can

be found from the “sltank” model in Simulink. We compare

our method with both PID and FLC. Nevertheless, we have

to proclaim that due to the limits of the cognition capac-

ity, we may not collect enough subjective uncertain rules.

Thus, the performance of GQC may not always be as good

as PID or FLC. However, the control errors or overshoots

etc. can be significantly reduced by combining GQC with

PID or FLC.

Fig. 2 The water level control system. The amplifier in the

simulation experiment is actually a proportional integrator which

can be found from “sltank” in Simulink (Version 2009a), and the

controller includes GQC, PID, FLC, GQC with PID and GQC

with FLC
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Fig. 3 Simulink model of the system. Parameters of GQC are

given later. Details of other blocks can be found from “sltank” in

Simulink (Version 2009a). Blocks in the solid line box are used

in GQC, blocks in the dotted line box are used in GQC with

PID, and these in the dash line box are used in GQC with FLC

Two sets of simulations under Simulink were conducted.

In the first set, the expectation of the water level was set to

be 1m, and the expectation was changing around 1m with

variance 0.01 in the second set. GQC, PID, FLC, GQC

with PID, GQC with FLC were used to control the system

in both sets. Parameters of GQC, PID and FLC are given

below.

1) PID. In the simulations, the PID controller is in the

form of “P + I
s
+ Ds

( 1
Ns

+1)
”. We set P = 2, I = 0, D = 1 and

N = 100. P , I and D are the gains of the corresponding

control blocks, and N is the derivative divisor.

2) FLC. The water level error and the change of water

level error are taken as inputs to the FLC. The water level

error is defined on [−1, 1], and the change of water level

error is limited on [−0.1, 0.1]. The output, which indicates

the actual water level, is also defined on [−1, 1]. Member-

ship functions and defuzzication details of the FLC can be

found from “sltank” in Simulink (Version 2009a).

3) GQC. In GQC, the subjective uncertain rules are accu-

mulated and integrated to build the grey qualitative matrix.

The following are four examples of the subjective uncertain

rules, in which h (t) is the water level observed at time t

and in (t + 1) is the amount of water flows into the tank at

t + 1:

a) If h (t) ∈ [1, +∞), then in (t + 1) = 0.

b) If h (t) ∈ [0, 0.25], then in (t + 1) ∈ (0.7, 1].

c) If h (t) ∈ [0, 0.5], then in (t + 1) ∈ (0.5, 1].

d) If h (t) ∈ [0, 0.75], then in (t + 1) ∈ (0.3, 1].

We must proclaim that these subjective uncertain rules

are different from fuzzy rules. Unlike the membership func-

tions used in the fuzzy logic to describe the membership of a

value to a fuzzy concept, the subjective uncertain rules only

state that the input or output belongs to a grey qualitative

element, but the actual value is unknown.

To improve the performance, we have to accumulate more

subjective rules besides the four rules aforementioned, and

integrate them to build the grey qualitative matrix R, which

is the core of GQC. However, it may not be unique. The

dimension and realization of R depend on the cognition

capacity. The parameters of GQC we used are as follows.

Input: p0, p1, · · · , pm and step s, which can be constant

or variable. For clarity, we set s to be constant. We also set

p0 = −1.4, pm = 1.4 and pi = pi−1 + s, i = 1, · · · , m − 1.

Output: q0, q1, · · · , qn, and step s. We set q0 = −1.4,

pm = 1.4, and qj = qj−1 + s, j = 1, · · · , n − 1.

The grey qualitative matrix R: rij = 1 if ⊗i
1 and ⊗j

2 are

related with a subjective uncertain rule, otherwise, rij = 0.

The generalized whitening function: For a given ⊗ =

[a, b], we define f(a) = a, and f(b) = b. Thus, ∀p ∈ ⊗, the

generalized whitening function f(p)=λ1f (a) + λ2f (b) =

λ1a + λ2b. According to the definition, f(p) should satisfy

p = arg
p∈⊗

max f (p), which is usually the optimal case and

hard to achieve. In our paper, we adopt the suboptimal

solution, i.e., we select λ1 (or λ2) uniformly in [0, 1], and

λ1 + λ2 = 1.

5.2 Results and analysis

Fig. 4 shows the results using only GQC. The step s is

set to be 0.1 m, 0.05 m and 0.01 m, respectively, which im-

plies that subjective uncertain rules are accumulated and

integrated gradually. From Fig. 4 (a), we can conclude that

GQC can track the constant expectation level. If the ex-

pectation level is changing around 1 m, the tracking results

are still good, as shown in Fig. 4 (b). The total tracking

errors in 100 s are 6.700 m, 6.638 m, and 6.595 m for step

0.1 m, 0.05 m and 0.01 m, respectively. However, the results

are not good enough due to the cognition limits. Thus,

we combine GQC together with PID and FLC separately,

and compare the results with traditional PID and FLC.

Fig. 5 (a) shows that the overshoot is reduced and the sys-

tem becomes stable faster by combining GQC with PID

than using PID alone. Fig. 5 (b) is the tracking results of

GQC with PID and PID alone, the total tracking errors are

6.834 m for GQC with PID and 7.004 m for PID. The track-

ing results are improved. From Fig. 6 (a), we can see that

the overshoot of FLC is quite significant, while by combin-

ing GQC with FLC, the overshoot is eliminated. Fig. 6 (b)

shows that by combining GQC with FLC, the tracking re-

sults are also improved, with total tracking errors being

8.092 m for FLC and 8.058 m for GQC with FLC, respec-

tively.

(a) The expectation level is set to 1m
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(b) The expectation level is set to change around 1m

Fig. 5 Results of GQC with different steps

From the simulation results and the theoretical basis, we

can conclude that the proposed method could model and

control the system well. At the same time, by combining

GQC with PID and FLC respectively, their performances

are also significantly improved.

6 Conclusions

Subjective uncertain rules can be obtained along with

the exploration of unknown systems, and they can be used

to model and control the systems. However, there is lit-

tle study on how to represent, accumulate and apply these

rules from the perspective of the machine intelligence. In

this paper, we propose a novel grey qualitative method for

subjective uncertain system modeling and control by com-

bining the grey system theory and the qualitative simula-

tion.

We begin with obtaining subjective uncertain rules and

generate the qualitative states, which are represented by the

grey qualitative element of the system based on these rules.

The grey qualitative matrix is then defined by integrating

the subjective uncertain rules gradually. This, on the one

hand, improves the description accuracy of the system, on

the other hand, avoids the conflicts among different rules.

(a) The expectation level is set to 1m

(b) The expectation level is set to change around 1m

Fig. 5 Comparisons with PID controller

(a) The expectation level is set to 1m

(b) The expectation level is set to change around 1m

Fig. 6 Comparisons with FLC

Thus, the grey qualitative matrix determines a one-to-one

mapping between the input and the output, which are

represented by using grey qualitative elements of the sys-

tem. To obtain the representative value of the grey qualita-

tive element, the generalized whitening function is defined

to transform the qualitative information into quantitative
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information. Theoretical analysis, together with simula-

tions compared to PID and FLC, shows that the proposed

method can model and control uncertain systems with sub-

jective uncertain rules.

In spite of the effectiveness of our method, it is still a pre-

liminary work of using subjective uncertain rules to model

and control systems. The future work will further extend

our method both theoretically and experimentally.
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