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Reentry Trajectory Optimization for Hypersonic Vehicles

Using Fuzzy Satisfactory Goal Programming Method
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Abstract: Constrained reentry trajectory optimization for hypersonic vehicles is a challenging job. In particular, this problem

becomes more difficult when several objectives with preemptive priorities are expected for different purposes. In this paper, a fuzzy

satisfactory goal programming method is proposed to solve the multi-objective reentry trajectory optimization problem. Firstly, direct

collocation approach is used to discretize the reentry trajectory optimal-control problem with nonlinear constraints into nonlinear multi-

objective programming problem with preemptive priorities, where attack angles and bank angles at nodes and collocation nodes are

selected as control variables. Secondly, the preemptive priorities are transformed into the relaxed order of satisfactory degrees according

to the principle that the objective with higher priority has higher satisfactory degree. Then the fuzzy satisfactory goal programming

model is proposed. The balance between optimization and priorities is realized by regulating parameter λ, such that the satisfactory

reentry trajectory can be acquired. The simulation demonstrates that the proposed method is effective for the multi-objective reentry

trajectory optimization of hypersonic vehicles.

Keywords: Reentry trajectory optimization, direct collocation method, multi-objective optimization, fuzzy satisfactory method, goal

programming.

1 Introduction

The aircrafts which have the velocity of Mach 5 or more

are defined as hypersonic vehicles. Obviously, hypersonic

vehicles will play an increasingly important role in the fu-

ture. Therefore, a well-designed trajectory, particularly

in reentry phase, is key to the stable flight of hypersonic

vehicles[1].

The trajectory optimization methods are categorized into

two major types, i.e., direct and indirect methods[2]. Most

early investigators adopt the latter[3]. It is necessary for

the indirect methods to derive the optimality condition

called Hamiltonian boundary value. However, the radius

of convergence is so small that acquiring this condition is

very difficult. Thus, the direct approaches are applied fre-

quently, such as direct shooting method[4], pseudospectral

method[5], direct collocation method[6], etc. For example,

Qu[4] uses multiple shooting technique to calculate the reen-

try trajectory of American shuttle orbit. Huntington and

Rao[7] design the gauss pseudospectral method for the op-

timal control of spacecraft. Bibeau[8] adopt the collocation

method to design the optimal reentry trajectory of a fixed-

trim vehicle.

Generally, the traditional design of reentry trajectory

usually aims at a single objective, such as maximizing the

range, maximizing the terminal velocity, etc. However, the
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expectations for reducing costs and enhancing performance

are increasing gradually; this brings about the development

of multi-objective optimization (MOO) for reentry trajec-

tory. In early times, the method based on weighting factors

is widely used to transform multi-objective problem into

traditional single objective formulation[9]. But it is difficult

to determine the weights. In addition, Chen et al.[10] apply

NSGA-II algorithm to realize a two-objective optimization

design of reentry trajectory, however, the computation bur-

den of iterative optimization is heavy and the importance of

different objectives cannot be reflected directly. Then Yong

et al.[11] use the physical programming (PP) method to de-

termine gliding reentry trajectory. Nevertheless, selecting

the preference function is still difficult, and the formulated

programming model is strongly nonlinear.

Preemptive priorities, as a special case of importance

of objectives, require all the objectives to be solved in se-

quence. For this requirement, different methods have been

attempted, such as lexicographic optimization[12] , varying-

domain optimization[13], and two-step optimization[14]. For

MOO, goal programming (GP), initially introduced by

Charnes and Cooper[15] , is also a promising methodology.

It considers all the objectives with different attainment rela-

tions through minimizing the deviations from the expected

values, which makes it easy to reformulate MOO model with

priorities. Accordingly, a fuzzy satisfactory goal program-

ming (FSGP) method is proposed in this paper. Firstly,

direct collocation method is adopted to discretize the dy-

namic model and constraints of hypersonic vehicles by se-

lecting attack angle and bank angle at each node and col-

location node as control variables. Then the dynamic opti-

mal control problem is transformed into a static nonlinear
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multi-objective programming problem with preemptive pri-

orities. Secondly, all the objectives are fuzzified using mem-

bership functions. Their preemptive priorities are modelled

into a relaxed order of satisfactory degrees according to the

principle that the objective with higher priority has higher

satisfactory degree[16]. Thus, the FSGP model for three

fuzzy relations is designed. By adjusting the parameter,

the optimal reentry trajectory can be generated. It not

only realizes optimization of all the objectives, but also sat-

isfies the requirement of preemptive priorities. Finally, the

simulation demonstrates our method is effective for multi-

objective reentry trajectory optimization of hypersonic ve-

hicles.

Section 2 describes reentry trajectory optimization prob-

lem of hypersonic vehicles. The FSGP method is proposed

in Section 3. Section 4 demonstrates its power by simula-

tion. In Section 5 the conclusions are drawn.

2 Problem formulation

2.1 Reentry dynamics of hypersonic vehi-
cles

The following assumptions are presented:

1) The earth is a uniform sphere.

2) The earth is flat, and its revolution is ignored.

3) The reentry vehicle is considered as a point.

4) The sideslip angle is kept to zero.

Then, the equations of motion are given as follows[17] :

ṙ = v sin γ (1)

φ̇ =
v cos γ sin χ

r cos θ
(2)

θ̇ =
v cos γ cos χ

r
(3)

v̇ = −D

m
− g sin γ (4)

χ̇ =
L sin σ

mv cos γ
+

v

r
cos γ sin χ tan θ (5)

γ̇ =
L cos σ

mv
− g cos γ

v
+

v cos γ

r
(6)

where r, φ, θ, v, χ, γ are state variables, representing

radial position, latitude, longitude, velocity, heading an-

gle, and flight-path angle respectively. Attack angle α and

bank angle σ are control variables. g = μ
r2 is gravity, and

μ = 1.4076539 × 1016 ft3/s2 is gravitational parameter of

the earth; m is mass of the vehicle. L and D are lift and

drag forces respectively which are defined as

L =
1

2
ρv2CLS, D =

1

2
ρv2CDS (7)

where S is reference area of the vehicle. ρ represents atmo-

spheric density, and it is formulated as the following expo-

nential atmosphere model[17]

ρ = ρ0e
−k(r−R0) (8)

where ρ0 = 0.002378 slug/ft3, R0 = 20 902 900 ft is radius

of the earth, and k = 4.20168 × 10−5 /ft. CL and CD are

lift and drag coefficients[17]

CL = CL0 + CL1α (9)

CD = CD0 + CD1α + CD2α
2 (10)

where CL0 = −0.2070, CL1 = 1.676, CD0 = 0.07854, CD1 =

−0.3529, CD2 = 2.040.

2.2 Constraints

In reentry process, the hypersonic vehicle should satisfy

some constraints due to safety and stability, as well as the

requirement of its structure and material. These constraints

mainly contain initial and terminal constraints, path con-

straints and boundary constraints.

2.2.1 Initial and terminal constraints

Initial and terminal constraints specify the requirements

for initial and final states of reentry process. In this paper,

initial constraints about all the states are defined as

[r, φ, θ, v, χ, γ] = [r0, φ0, θ0, v0, χ0, γ0] (11)

and terminal constraints about r, γ, v are written as

[r, γ, v] = [rf , γf , vf ]. (12)

The subscripts “0” and “f” represent initial and final time,

respectively.

2.2.2 Path constraints

In order to prevent the temperature of the hypersonic

vehicle surface from being too high, heat flux at the stag-

nation point should be limited. This is useful to reduce the

weight of heat-resistant material and the cost. Therefore

the heat flux constraint is defined as

Q̇ = (h0 + h1α + h2α
2 + h3α

3) · Cρ0.5v3.07 ≤ Q̇max (13)

where C = 9.289 × 10−9 Btu · s2.07/ft3.57/slug0.5, h0 =

1.067, h1 = −1.101, h2 = 0.6988, h3 = −0.1903.

In addition, it is necessary to restrict dynamic pressure

in order to protect the structure of the vehicle and realize

attitude control. Thus constraint of dynamic pressure q is

formulated as

q =
1

2
ρv2 ≤ qmax. (14)

To ensure flight safety, overload n is also subjected to the

following constraint

n =

√
L2 + D2

mg
≤ nmax. (15)

2.2.3 Boundary constraints

For the hypersonic vehicle, the state variables should be

limited as

rmin ≤ r ≤ rmax θmin ≤ θ ≤ θmax

φmin ≤ φ ≤ φmax vmin ≤ v ≤ vmax

χmin ≤ χ ≤ χmax γmin ≤ γ ≤ γmax (16)

and the boundaries of the control variables are given as

αmin ≤ α ≤ αmax σmin ≤ σ ≤ σmin. (17)
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2.3 Optimization objectives

The maximum cross range, i.e., terminal longitude, is an

important indicator to measure the reentry flying ability of

hypersonic vehicles. Moreover, aerodynamic heating is very

serious and is also a huge challenge to structural design

in the reentry process. Besides, severe oscillation is not

desired for better stability, and a larger terminal velocity

will also provide more kinetic energy for the vehicle. Thus,

the following four objectives should be achieved.

1) Maximizing the cross range:

max f1 = θ(tf ). (18)

2) Minimizing the total aerodynamic heating:

min f2 =

∫ tf

t0

Q̇(t)dt. (19)

3) Minimizing the oscillation:

min f3 =

∫ tf

t0

γ̇2(t)dt. (20)

4) Maximizing the terminal velocity:

max f4 = u(tf ). (21)

2.4 Preemptive priorities of objectives

Considering the promising prospects of hypersonic vehi-

cles in combat and reconnaissance, the primary task is to

achieve a larger flight range and a higher terminal velocity,

which can make the vehicle have larger striking range and

capability. Therefore, the two objectives, “a) maximizing

the cross range” and “d) maximizing the terminal velocity”

are selected as the first level. Then, reducing aerodynamic

heating and oscillation are considered, where the objective

“b) minimizing the total aerodynamic heating” is selected

as the second level, and the objective “c) minimizing the

oscillation” is the third level. That is

Level one: a) and d);

Level two: b);

Level three: c).

Combining the above constraints, objectives and preemp-

tive priorities, the multi-objective reentry trajectory opti-

mization model of hypersonic vehicles can be formulated

as

⎧⎪⎨
⎪⎩

min [P1 (−f1(x, u),−f4(x, u)) ,

P2 (f2(x, u)) , P3 (f3(x, u))]

s.t. (x, u) ∈ G

(22)

where x, u refer to state variables and control variables,

i.e., x = (r, φ, θ, v, χ, γ) ∈ R6, and u = (α, σ) ∈ R2; Pi,

i = 1, 2, 3 represents priority factors of the objectives, and

Pi >> Pi+1. This means the objectives belonging to Pi

have higher priority than those of Pi+1; G is the intersection

of constraints (11)–(17).

3 Reentry trajectory optimization

based on FSGP

Since the MOO model (22) consists of differential mo-

tion equations (1)–(6), its solution is not obtained by gen-

eral algorithm directly. Firstly, direct collocation method

is adopted to transform the differential constraints into al-

gebraic formulations, which transform continuous optimal-

control problem into discrete nonlinear multi-objective pro-

gramming problem with preemptive priorities. Then, the

objectives are fuzzified using different types of membership

functions. The relaxed order of satisfactory degrees is used

to model the preemptive priorities. By introducing GP, the

FSGP model for three fuzzy relations is designed to find

the satisfactory solution.

3.1 Direct collocation method

In direct collocation method[8, 18], state variables and

control variables are discretized firstly. The motion equa-

tions of hypersonic vehicles are approximated by Gauss-

Lobatto polynomials. Then the motion equation con-

straints are transformed into a set of algebraic constraints.

Thus, the reentry trajectory optimization problem is con-

verted to a nonlinear programming problem.

In direct collocation method, different orders of polyno-

mial can be chosen to approximate the dynamics. In this

paper, the third order Simpson method is adopted.

3.1.1 Discretization of time interval

Divide the whole time process [t0, tf ] into N segments

which are expressed by [ti−1, ti], i = 1, 2, · · · , N . The length

of each segment is defined as hi = ti−ti−1. Let s =
(t−ti−1)

hi
,

then s ∈ [0, 1]. The elements of the state variables x are

defined as x1 = r, x2 = φ, x3 = θ, x4 = v, x5 = χ, and

x6 = γ. Similarly, those of the control variables u are u1 =

α and u2 = σ. Select the boundary points of each segment

as nodes, then the state variables and control variables at

nodes are expressed as (x0
j , x

1
j , · · · , xN

j ), j = 1, 2, · · · , 6 and

(u0
k, u1

k, · · · , uN
k ), k = 1, 2 respectively.

3.1.2 Approximation of state variables

The state variables are approximated by the third order

Hermite polynomials on each segment

x = c0 + c1s + c2s
2 + c3s

3. (23)

The boundaries are

xi−1 = x(0), xi = x(1),

ẋi−1 =
dx

ds

∣∣∣∣
s=0

, ẋi =
dx

ds

∣∣∣∣
s=1

.
(24)

By solving (24), the following equations can be achieved

c0 = xi−1

c1 = ẋi−1

c2 = −3xi−1 − 2ẋi−1 + 3xi − ẋi

c3 = 2xi−1 + ẋi−1 − 2xi + ẋi. (25)
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Choose the midpoints of each time segment as collocation

points, and set s = 1
2
. Then substituting (25) into (23), we

can acquire

xci =
xi + xi−1

2
+

hi(d
i−1 − di)

8

ẋci =
3(xi − xi−1)

2hi
− (di−1 + di)

4
(26)

where the superscript “c” represents collocation points; d

is the derivative of state variable at the nodes, which is

derived from the motion equations.

3.1.3 Calculation of defect vectors

Integrating the motion equations by Simpson integral for-

mula in each interval, we can obtain the defect vector

	D = xi−1 − xi +
hi

6
[d(xi−1, ui−1) + 4d(xci, uci) + d(xi, ui)]

(27)

where d(xci, uci) is the derivative of state variable derived

from motion equations evaluated at the collocation points.

In order to make equation (23) meet the change of state

variables, the third order Simpson method requires the

derivatives of state variables derived from polynomials and

motion equations are equal, which can be achieved by let-

ting Defect vector be equal to zero.

By the above approach, the motion equation constraints

have been converted to algebraic constraints. Combining

the constraints mentioned in Section 2.2, objectives men-

tioned in Section 2.3, and priorities in Section 2.4, the tra-

jectory optimization problem is transformed into a nonlin-

ear programming problem with the state variables and con-

trol variables at nodes and control variables at collocations

being optimization variables.

3.2 FSGP method

For multiple objectives, an optimal solution meeting all

of them simultaneously can be hardly found because of con-

flicts. Especially, it becomes more difficult when the pre-

emptive priorities to divide the objectives into different lev-

els are required.

Due to the difficulty of quantifying the optimization de-

gree and priorities of objectives, we introduce fuzzy opti-

mization, and use the concept of satisfactory degree to ex-

press optimization extent.

3.2.1 Fuzzy goals

Generally, different fuzzy goals can be defined for the

objectives. This formulates fuzzy decision often presented

as[12]{
Find (x, u)

s.t. fi(x, u) → f∗
i , i = 1, · · · , m, (x, u) ∈ G

(28)

where fi(x, u) is the i-th objective function; f∗
i is the per-

spective goal value for fi(x, u); “→” represents different

fuzzy relations containing “≤̃”, “≥̃” and “=̃”. Then we can

define the membership functions for the three fuzzy rela-

tions using triangle-like membership functions.

The fuzzy relation “≤̃” represents the requirement of

fuzzy objective being less than or equal to the expected

value approximately. Its membership function is[19]:

μfi(x, u) =

⎧⎪⎪⎨
⎪⎪⎩

1, fi(x, u) ≤ f∗
i

1 − fi(x, u) − f∗
i

fmax
i − f∗

i

, f∗
i ≤ fi(x, u) ≤ fmax

i

0, fi(x, u) ≥ fmax
i

(29)

with the tolerance interval of (f∗
i , fmax

i ).

The membership function of “≥̃” is

μfi(x, u) =

⎧⎪⎪⎨
⎪⎪⎩

1, fi(x, u) ≥ f∗
i

1 − f∗
i − fi(x, u)

f∗
i − fmin

i

, fmin
i ≤ fi(x, u) ≤ f∗

i

0, fi(x, u) ≤ fmin
i

(30)

where (fmin
i , f∗

i ) is the tolerance interval which means that

the objective is approximately more than or equal to its

desired value.

Similarly, the relation “=̃” denotes that the objective is

in the vicinity of expectation. The tolerance interval is

(fmin
i , fmax

i ). Its membership function is

μfi(x, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, fi(x, u) ≥ fmax
i

1 − fi(x, u) − f∗
i

fmax
i − f∗

i

, f∗
i ≤ fi(x, u) ≤ fmax

i

1, fi(x, u) = f∗
i

1 − f∗
i − fi(x, u)

f∗
i − fmin

i

, fmin
i ≤ fi(x, u) ≤ f∗

i

0, fi(x, u) ≤ fmin
i .

(31)

For the membership functions established above, the per-

spective goal value f∗
i can be computed by single objective

optimization. The lower and upper tolerance limits fmin
i

and fmax
i can be determined using the following payoff ta-

ble constructed by optimal solution of single objective op-

timization (Table 1).

Table 1 Payoff table

f1 f2 f3 · · · fm

Opt f1(x, u) f1(x
∗
1 , u∗

1) f2(x
∗
1 , u∗

1) f3(x
∗
1 , u∗

1) · · · fm(x∗
1, u∗

1)

Opt f2(x, u) f1(x
∗
2 , u∗

2) f2(x
∗
2 , u∗

2) f3(x
∗
2 , u∗

2) · · · fm(x∗
2, u∗

2)

Opt f3(x, u) f1(x
∗
3 , u∗

3) f2(x
∗
3 , u∗

3) f3(x
∗
3 , u∗

3) · · · fm(x∗
3, u∗

3)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Opt fm(x, u) f1(x∗
m, u∗

m) f2(x∗
m, u∗

m) f3(x∗
m, u∗

m) · · · fm(x∗
m, u∗

m)

For instance, (x∗
j , u

∗
j ) represents the optimal solution of

the j-th single objective optimization, then fmax
i can be

achieved by

fmax
i = max

j=1,··· ,m
fi

(
x∗

j , u
∗
j

)
, i = 1, · · · , m. (32)

The value of the membership function is also called sat-

isfactory degree in this paper.
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3.2.2 Relaxed order of satisfactory degrees

Generally, preemptive priorities require the objectives be

optimized in sequence. However, this may result in opti-

mization of only a few objectives, not all the objectives,

with a heavy computation burden.

Based on satisfactory optimization, preemptive priori-

ties can be expressed by satisfactory degrees according to

the principle that the objective with higher priority has

higher satisfactory degree. For example, the requirement

that ft(x, u) has a higher priority than fs(x, u) can be de-

scribed by

μfs (x, u) ≤ μft(x, u), s, t ∈ {1, · · · , m} , s �= t. (33)

However, in some cases, (33) as a constraint is too strict

to ensure the optimization problem feasible. In other cases,

the satisfactory solution may not be acquired since some

satisfactory degrees belonging to different priorities are

equal. Therefore, it is necessary to introduce the param-

eter γ to relax the order of satisfactory degrees (33), i.e.,

μfs(x, u) − μft(x, u) ≤ γ, s, t ∈ {1, · · · , m} , s �= t (34)

where −1 ≤ γ ≤ 1. When γ ≤ 0, it means that the re-

laxed order of satisfactory degrees conforms to the basic

preemptive priorities. On the contrary, the requirement of

preemptive priorities cannot be guaranteed.

3.2.3 FSGP model and algorithm

For MOO, GP is a powerful tool. Its formulation is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
k∑

i=1

(pi + ni)

s.t. fi(z) + ni − pi = f∗
i , i = 1, · · · , k,

ni, pi ≥ 0, ni · pi = 0

z ∈ G

(35)

where pi, ni are the positive and negative deviational vari-

able. According to (35), the objectives are transformed

respectively in this paper.

Firstly, the three fuzzy relations “≤̃”, “≥̃” and “=̃” are

expressed into the new formulations using GP strategy.

For “≤̃”

fi(x, u) − pi = f∗
i , i = 1, · · · , m. (36)

Then its membership function (29) is rewritten as

μfi(x, u) = 1 − pi

fmax
i − f∗

i

. (37)

For “≥̃”

fi(x, u) + ni = f∗
i , i = 1, · · · , m. (38)

And

μfi(x, u) = 1 − ni

f∗
i − fmin

i

. (39)

For “=̃”, we also have

fi(x, u) + ni − pi = f∗
i , i = 1, · · · , m

μfi(x, u) =

⎧⎪⎨
⎪⎩

1 − pi

fmax
i − f∗

i

1 − ni

f∗
i − fmin

i

.
(40)

Suppose the case that the priority of fj(x, u) is higher

than fs(x, u), and is lower than fi(x, u). Simultaneously,

they have the following fuzzy relations

fi(x, u)≤̃f∗
i , i = 1, · · · , m1

fj(x, u)≥̃f∗
j , j = m1 + 1, · · · , m2

fs(x, u)=̃f∗
s , s = m2 + 1, · · · , m. (41)

Then, by substituting (37), (39), (40) into (34) according

to the above priorities, the following relaxed orders of sat-

isfactory degrees are constructed respectively to model pre-

emptive priorities

pi

fmax
i − f∗

i

− nj

f∗
j − fmin

j

≤ γ

nj

f∗
j − fmin

j

−
[

ns

f∗
s − fmin

s

+
ps

fmax
s − f∗

s

]
≤ γ. (42)

Combining (35)–(42), the generalized FSGP model can be

formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1

m

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1∑
i=1

pi
fmax

i −f∗
i
+

m2∑
j=m1+1

nj

f∗
j
−fmin

j

+

m∑
s=m2+1

(
ns

f∗
s −fmin

s
+

ps
fmax

s −f∗
s

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ λ · γ

s.t. fi(x, u) + ni − pi = f∗
i , i = 1, · · · , m1

fj(x, u) + nj − pj = f∗
j , j = m1 + 1, · · · , m2

fs(x, u) + ns − ps = f∗
s , s = m2 + 1, · · · , m

pi
fmax

i
−f∗

i
− nj

f∗
j
−fmin

j

≤ γ

nj

f∗
j
−fmin

j

−
(

ns

f∗
s −fmin

s
+

ps
fmax

s −f∗
s

)
≤ γ

nj ≤ f∗
j − fmin

j , pi ≤ fmax
i − f∗

i

ns ≤ f∗
s − fmin

s , ps ≤ fmax
s − f∗

s

ni, pi, nj , pj , ns, ps ≥ 0

ni · pi = 0, nj · pj = 0, ns · ps = 0

−1 ≤ γ ≤ 1, (x, u) ∈ G

(43)

where the first part of the optimization objective of (43) is

to optimize all the objectives by minimizing the deviations

to aspiration values. The purpose of minimizing λ · γ is to

maximize difference of priorities as far as possible. These

two parts reflect the compromise between optimization and

priorities. λ is regulating parameter, it is equivalent to the

weight of priorities. Its increase means the requirement

of preemptive priorities will be strengthened. Otherwise,

the minimization of deviations will be emphasized. That

is, if γ > 0, the priorities are not satisfied, then λ needs

to be increased till γ ≤ 0 and the results are satisfactory.

Therefore, how to balance optimization and priorities can

be realized by changing λ.
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According to the proposed FSGP method, the following

algorithm is given as follows:

Step 1. Formulate the optimization model (43) based on

the type of fuzzy relations and preemptive priorities of the

objectives of the reentry trajectory optimization problem.

Step 2. Determine initial value of λ and solve the opti-

mization model established in Step 1.

Step 3. If γ > 0, the priorities are not satisfied, go

to Step 4. If γ ≤ 0, determine the satisfaction of solu-

tions: when the current solution is satisfactory, optimiza-

tion stops; otherwise, go to the next step.

Step 4. Increase λ and solve the optimization model

again, then go back to Step 3 and continue.

3.3 Analysis of optimization method

From the proposed FSGP algorithm, we know that the

satisfactory result can be acquired by regulating the pa-

rameter λ. Thus, iteration may happen during solving (43),

which increases the computation of the algorithm. However,

it can be concluded that the number of iterations is limited.

According to Hu[20], there must exists λ∗. When λ > λ∗,
the solution of (43) γ will remain unchanged. Then itera-

tion stops. Therefore, the computation burden depending

on iteration is not heavy. λ∗ can be determined by combin-

ing model (43) with Kuhn-Tucker (K-T) condition. Firstly,

the maximum difference of priorities γ∗ is obtained by the

following model

{
min γ

s.t. constraints of (43).
(44)

Then, combining γ∗ and the K-T condition, the Lagrange

function F (x, u, n, p, γ) is constructed and differentiated.

Finally, λ∗ can be acquired through solving (45).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min λ

s.t.
∂F

∂ (x, u, n, p, γ)
= 0

Lagrange multipliers equations

λ ≥ 0.

(45)

Considering the whole reentry trajectory approach, the

optimization procedure can be summarized as follows:

1) Formulate the discrete nonlinear multi-objective pro-

gramming problem with preemptive priorities using direct

collocation method.

2) Solve the multi-objective programming problem by

FSGP algorithm to acquire the satisfactory reentry trajec-

tory.

4 Simulation

4.1 Parameters of simulation

The mass and reference area of the vehicle are given as

m = 7008 slugs and S = 2690 ft2; the maximum values

of heat flux, dynamic pressure and overload are Q̇max =

200 Btu/ft2/s, qmax = 280 lb/ft2 and nmax = 2.5; the initial

and terminal data of reentry process and boundary con-

straints of state and control variables are shown in Table 2.

Table 2 Initial and terminal constraints and boundary

constraints

Initial Terminal Minimum Maximum

r (ft) 21 162 900 20 982 900 20 902 900 21 202 900

θ (deg) 0 −90 90

φ (deg) 0 −89 89

v (ft/s) 25 600 ≥2 000 1 30 000

χ (deg) 90 −180 180

γ (deg) −1 −5 −89 89

α (deg) 17.42 −10 30

σ (deg) −75 −80 80

Set the whole reentry flight time as 2 010 s, and divide the

whole time into 20 segments, so that 21 nodes are selected

including the initial points.

4.2 Results and analysis

Firstly, we get the optimization result of single objective

reentry trajectory according to the motion equations, ob-

jectives and constraints given in Section 2. The results are

shown in Figs. 1–4.

Fig. 1 Radial position profile of single objective

Fig. 2 Longitude profile of single objective
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Fig. 3 Velocity profile of single objective

From Fig. 1 to Fig. 4, we can see that the optimal values

for different objectives are not consistent. This indicates

that conflicts exist among objectives. So it is impossible to

find a solution optimizing each objective.

Thus, the proposed reentry trajectory optimization

method based on FSGP is adopted.

Firstly, determine the perspective goal value and the

lower and upper tolerance limits of each objective by the

above optimization results of single objective cases. The

payoff table is established as Table 3.

Fig. 4 Heat flux profile of single objective

Table 3 Payoff table of reentry trajectory with MOO

f1 f2 f3 f4

max f1(x, u) 0.5989 184.4798 0.3877 0.0771

min f2(x, u) 0.1881 78.7396 1.6598 0.0771

min f3(x, u) 0.3365 148.2756 1.0311 × 10−7 0.0863

max f4(x, u) 0.3889 154.9605 1.8119 0.1004

From payoff table, it is concluded that

f∗
1 = 0.5989 fmin

1 = 0.1881

f∗
2 = 78.7396 fmax

2 = 184.4798

f∗
3 = 1.0311 × 10−7 fmax

3 = 1.8119

f∗
4 = 0.1004 fmin

4 = 0.0771.

Then, the following FSGP model as (43) is established

with the given preemptive priorities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 1
4

⎛
⎜⎜⎜⎝

n1
0.5989−0.1881

+
p2

184.4798−78.7396
+

p3
1.8119−0

+
n4

0.1004−0.0771

⎞
⎟⎟⎟⎠ + λ · γ

s.t. θ(tf ) + n1 − p1 = 0.5989∫ tf

t0
Q̇(t)dt + n2 − p2 = 78.7396∫ tf

t0
γ̇2(t)dt + n3 − p3 = 1.0311 × 10−7

u(tf ) + n4 − p4 = 0.1004
n1

0.5989−0.1881
− p2

184.4798−78.7396
≤ γ

n4
0.1004−0.0771

− p2
184.4798−78.7396

≤ γ
p2

184.4798−78.7396
− p3

1.8119−0
≤ γ

n1 ≤ (0.5989 − 0.1881), p2 ≤ (184.4798 − 78.7396)

p3 ≤ (1.8119 − 0), n4 ≤ (0.1004 − 0.0771)

n1 · p1 = 0, n2 · p2 = 0, n3 · p3 = 0, n4 · p4 = 0

n1, p1, n2, p2, n3, p3, n4, p4 ≥ 0,−1 ≤ γ ≤ 1

Q̇ =

(
h0 + h1α+

h2α
2 + h3α

3

)
· Cρ0.5v3.07 ≤ 200 Btu/ft2/s

ρv2

2
≤ 280 lb/ft2√

L2 + D2 ≤ 2.5 mg

(11), (12), (16), (17) combining with Table 2.

Regulating λ and solving the above model, different γ and

satisfactory degrees of the objectives are achieved. They are

listed in Table 4.

Table 4 Optimization results for different λ

λ γ
Satisfactory degrees of objectives

(μf1 , μf2 , μf3 , μf4 )

0.35 0.1009 (0.7081, 0.8090, 0.9098, 1.0000)

0.4 0.0698 (0.7234, 0.7932, 0.8630, 1.0000)

0.45 −0.0353 (0.7687, 0.7334, 0.6981, 1.0000)

0.5 −0.2170 (0.8331, 0.6161, 0.3991, 1.0000)

From Table 4, it can be concluded that with the change

of parameter λ, the satisfactory degree of each objective

changes along the direction of priority. When λ = 0.35 and

λ = 0.4, γ > 0, and the order of priorities is not satisfied

according to satisfactory degrees. With the increase of λ,

the satisfactory degree of the objective a) is raising. But the

satisfactory degrees of the objective b) and the objective c)

are decreasing gradually. The declining rate of the latter

is higher than that of the former because the objective b)

has the higher priority than the objective c). When λ =

0.5, the satisfactory degree of the objective c) has declined

to 0.3991, denoting that this objective is optimized badly.

On the other hand, the objective a) has obtained a better

result, which proves the fact that there exist conflicts among

the objectives. In particular, the satisfactory degree of the

objective d) maintains 1.000 for all λ. This denotes that

this objective can always be optimized enough using our

approach.

The corresponding trajectories for different λ are shown

in Figs. 5−15.
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Fig. 5 Radial position profile with different λ

Fig. 6 Latitude profile with different λ

Fig. 7 Longitude profile with different λ

Latitude and longitude shown in Figs. 6 and 7 increase

smoothly, and terminal longitude reflects the changes of the

objective a), i.e., it grows with the increase of λ. Velocity

and heading angle shown in Figs. 8 and 9 decrease smoothly,

and terminal velocity is keeping around 2 600 ft/s. Flight-

path angle shown in Fig. 10 maintains the trend of smaller

oscillation when λ decreases. Shown as Fig. 5, the oscilla-

tion amplitude of radial position attenuates gradually. At-

tack angle shown in Fig. 11 maintains greater values in the

early reentry, which can reduce the aerodynamic heating

and help stabilize the trajectory. But it decreases in the

later phase to achieve a larger range. Bank angle profile

shown in Fig. 12 has a large vibration in the early stage

and tends to zero gradually. The path constraints shown

in Figs. 13−15 are all limited in the maximum permissible

values.

Fig. 8 Velocity profile with different λ

Fig. 9 Heading angle profile with different λ

Fig. 10 Flight-path angle profile with different λ
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Fig. 11 Attack angle profile with different λ

Fig. 12 Bank angle profile with different λ

Fig. 13 Heat flux profile with different λ

From the above results, it is known that when λ = 0.45,

not only preemptive priorities among the objectives are

proper, but also the objectives of maximum cross range and

maximum terminal velocity are optimized enough. This sat-

isfies the actual requirement. Therefore, the corresponding

trajectory with λ = 0.45 is selected as the optimal trajec-

tory.

Fig. 14 Dynamic pressure profile with different λ

Fig. 15 Overload profile with different λ

For validating the effectiveness of the proposed method,

the traditional weighted approach is adopted to solve the

reentry trajectory with MOO problem. By selecting some

different combinations of weights, we can get different op-

timization results, listed in Table 5.

From Table 5, we can know that even though the weights

are given according to the priorities, the satisfactory degrees

do not fully conform to the priorities. For example, in the

first case, the satisfactory degree of the objective a) is lower

than that of the objective c). In the second and the fourth

case, the satisfactory degree of the objective c) is higher

than b), which also destroys the priorities. Although the

result of the third case satisfies the order of preemptive

priorities, the solution is inferior and it is not taken as the

optimization solution of MOO.

Table 5 Optimization results for weighted method

Weights
Satisfactory degrees of objectives

(μf1 , μf2 , μf3 , μf4 )

(0.3, 0.25, 0.15, 0.3) (0.7898, 0.6638, 0.9686, 1.0000)

(0.35, 0.2, 0.1, 0.35) (0.5260, 0.3463, 0.4303, 0.8324)

(0.4, 0.15, 0.05, 0.4) (0.5059, 0.3640, 0.0685, 0.8574)

(0.45, 0.099, 0.001, 0.45) (0.9592, 0.2587, 0.9083, 1.0000)
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Compared with the method based on weighting factors,

the FSGP method has its advantages. Firstly, the priorities

can be satisfied strictly in the FSGP approach when γ ≤ 0,

however, the weighted one cannot ensure this. Secondly,

in the FSGP method, different satisfactory degrees of the

objectives are obtained by adjusting the parameter, it is

much simpler than the determination of multiple weights.

Thirdly, the inferior solution does not exist for the FSGP

method. Nevertheless, it is not guaranteed using weighting

factors.

Remark 1. In multi-objective reentry trajectory opti-

mization problem, attack angle may approach its boundary

because it can reduce aerodynamic heating of the vehicle es-

pecially when the total aerodynamic heating is considered

as the optimization objective. Simultaneously, the bound-

ary of attack angle can be taken as soft constraint in the

reformulated MOO model. Thus, its boundary can be reg-

ulated in order to avoid the infeasibility resulted from high

attack angle. The optimization result is still suitable for

reentry trajectory optimization.

5 Conclusions

In this work, the reentry trajectory design problem of hy-

personic vehicles with multiple objectives and constraints

is solved by FSGP method. The original continuous tra-

jectory optimization problem is transformed into discrete

static nonlinear programming problem by direct colloca-

tion method. For the preemptive priorities among ob-

jectives, the relaxed order of satisfactory degrees is con-

structed. Based on this, the fuzzy satisfactory goal pro-

gramming model is formulated to compromise the conflicts

among the objectives and balance optimization and priori-

ties. This method can not only avoid strong nonlinearities

and complex calculations in traditional MOO methods, but

also obtain the satisfactory reentry trajectory meeting the

requirements of optimization and priorities.
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