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Abstract: This paper puts forward a method for abdomen panorama reconstruction based on a stereo vision system. For the purpose

of recovering the abdomen completely and accurately under the condition of actual photographing with illumination variance and blur

noise, some innovative combined feature descriptors are presented on the basis of Hu-moment invariants. Furthermore, considering the

study on the abdomen surface reconstruction, a circle template which is divided into 6 sectors is designed. It is noted that a descriptor

merely using gray intensity is not able to provide sufficient information for feature description. Consequently, the sector entropy which

denotes the structure characteristics is drawn into the feature descriptor. By means of the combined effect of the gray intensity and

the sector entropy, the similarity measurement is conducted for the final abdomen reconstruction. The experimental results reveal that

the proposed method can acquire a high precision of abdomen reconstruction similar to the 3D scanner. This stereo vision system has

wide practicability in the field of clothing.

Keywords: Stereo vision system, illumination-robust and anti-blur combined invariant, sector entropy, circle template, feature match-

ing, 3D reconstruction.

1 Introduction

The technology of 3D abdomen model reconstruction is

crucial to personalized garment design, health care, man-

machine engineering, etc. The common problem we con-

front is how to recover the abdomen model realistically and

efficiently.

Mostly, the laser or structured light scanner is used in the

body surface imaging, such as America artec 3D scanner,

3D CaMega DCS made in Beijing Boweihengxin Company,

etc. Baek and Lee[1] captured the body data by 3D scan-

ner and extracted semantic parameters, then established

a correlation between body model and body size by sta-

tistical analysis, finally they created a realistic 3D human

body model. In this method, a 3D scanner is utilized. This

method has a high data acquisition speed and precision,

while its disadvantages also exist (e.g., the extremely high

cost, the strict constraints to the camera′s positions and the

subject, and the additional operations like filling role, re-

moving noise point, data splicing, etc.), which limit its wide

extension. In order to overcome these problems, Li et al.[2]

proposed a template-based method with parameters gath-

ered from the 4 images in orthogonal views. This method

is of low cost, but depends on image processing at early

stage. Amstutz et al.[3] introduced a multiple camera-based

method to reconstruct the 3D human foot. The standard
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foot model in database is adjusted for fitting the real foot

according to multiple foot images.

Recently, a new stereo vision method based on multiple-

camera system has been widely applied to 3D reconstruc-

tion. Yu and Xu[4] developed a compact and economical

configuration for imaging and completing the whole body

based on stereo vision technique. The foot recovery is

achieved by stereo vision method[5, 6]. Stereo vision plays

an important role in body model reconstruction in virtue

of its simple, safe and reliable equipment, low cost, and the

fast reconstruction speed.

Feature matching is an extremely crucial technique in

3D reconstruction and its accuracy is directly related to

the precision of the final reconstruction model. The fea-

ture matching algorithms mainly fall into two categories:

global matching based on region gray[7] and local matching

based on image feature[8, 9]. On account of its great compu-

tational load, the global matching algorithm is unsuitable

to real-time system[10]. Therefore, in this paper, the local

matching method is implemented. Local matching com-

prises the feature detection and description. Harris and

Stephens[11] proposed the Harris detection algorithm based

on Moravec. The Harris is extremely effective, which is ro-

bust to the image noise, image translation and rotation, and

variances of gray level and illumination[12] . The corners ex-

tracted are stable, well-distributed and of high location ac-

curacy. D. Lowe first proposed scale-invariant feature trans-

form (SIFT) in 1999, and perfected it in 2004, which is one

of the most widely used feature detection algorithms[13, 14].

SIFT is invariant to the changes of image scale, rotation,

illumination and sight angle. But when the angle exceeds

35◦, the viewpoint invariance is difficult to be guaranteed.

Furthermore, it is inapplicable to the nonlinear gray change.
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Speed-up robust features (SURF) is an improved version on

SIFT. In most cases, its performance is similar to SIFT, but

the running speed is 3−7 times faster than that of SIFT.

Maximally stable extremal region (MSER)[15] is an affine

invariant algorithm, which was put forward by Matas based

on watershed image segmentation method. It has nice anti-

noise and affine invariance, however, it is sensitive to fuzzy

image. With the boundary becoming blurred, MSER is

incapable of obtaining accurate segmentation, hence its re-

peatability deteriorates rapidly.

Float descriptors include SIFT, SURT, moment invari-

ants and dense wide-baseline stereo matching effectively

(DAISY), etc.[16] DAISY is an efficient local image de-

scriptor for dense feature extraction, the ideology of which

is the same as SIFT. The difference is that DAISY con-

ducts block convergence of gradient direction histogram by

Gauss convolution. Generally speaking, there are short-

comings, such as slow calculation speed and the usage of

large memory, though the matching performance is quite

nice. In recent years, scholars have brought forward bi-

nary descriptors. Binary robust invariant scalable keypoints

(BRISK)[17] extracts feature points with the adaptive and

generic corner detection based on the accelerated segment

test (AGAST)[18], which employs sampling mode for fea-

ture detection, and then conducts gray comparison test.

However, the sampling points selected are highly correlated

without uniqueness. After that, Alahi et al.[19] proposed

the fast retina keypoint (FREAK) algorithm. FREAK con-

structs a sampling mode which is similar to the neural

retina, i.e., the nearer the center of the image area, the

more intensive the sampling is, while sparse sampling is in

peripheral areas. Although this strategy reduces the train-

ing complexity, the fixed sampling does not necessarily con-

tain the optimal point. The identifications of BRISK and

FREAK are affected by the number and the locations of the

sampling points, which are difficult to achieve satisfactory

matching results. Binary descriptors have high efficiency,

but under the consideration of the same resolution for each

descriptor, it results in distance error. Its robustness is in-

ferior to float descriptors.

In the course of capturing image, the captured image is

often influenced by bright variance and fuzzy noise. The for-

mer is due to the illumination variance and/or the camera′s
uneven exposure, and different optical properties from mul-

tiple cameras. All these result in the different brightness in

the images of the same object when imaging at the same

time. The latter is because of imaging system aggregation

and/or atmospheric turbulence, which make image blurred.

In order to overcome the difficulties from the illumination

variance and blur noise, a new way is designed to achieve

image matching through a 32-dimensional feature descrip-

tor generated from context histogram[20]. The new descrip-

tor is invariant to illumination and blurred change, but its

stability decreases. In a word, it is extremely crucial to

explore an improved method with higher matching effect

as well as being invariant to illumination change and fuzzy

noise.

Image moment invariants are highly concentrated fea-

tures and have been widely applied to image matching. The

classical moment invariants include Hu invariant moments,

Legendre moment, Zernike moments, composite moments,

etc. A 6-dimensional moment invariant which is insensitive

to any kind of compound transformations is developed in

[21]. Miao et al.[22] combined Radon and polar harmonic

transforms (PHTS) so as to produce three new moment in-

variants which are highly robust to noise. Fuzzy moment

invariant was first presented, which was successfully utilized

in satellite image detection[23]. However, all of the exist-

ing moment invariants have no consideration of the factors

including both illumination and blur, which limit their ap-

plications in practice. The proposed combined invariant is

invariant to the changes of image scale, rotation, and sight

angle owing to the construction based on the Hu moments.

Furthermore, it is more important that the conjunction of

illumination and blur factors is involved in the new invari-

ant creation. Therefore, it has the illumination invariance

and fuzzy robustness. In addition, the new combined in-

variant is a 3-dimensional vector, which is superior to other

features in time and computation complexities.

The rest of the paper is organized as follows. The de-

tailed construction of the new illumination-robust and anti-

blur combined invariants is presented in Section 2. The

improved strategies concerning the circle template and a

creative combined feature vector involving sector entropy

are expounded in Section 3. Numerical experiments and

tests are conducted and the results are discussed in Section

4. Finally, conclusions are drawn in Section 5.

2 New illumination-robust and anti-

blur combined invariants

Hu[24] first presented the definition of continuous func-

tion moments and pioneered the research concerning mo-

ment invariant. Many scholars have done a lot of improve-

ments on it, which have been applied to image recognition,

matching, etc. Hu combined the second-order central mo-

ment with the third-order one as the result of producing

7 expressions for invariant moments (termed Hu-moment),

which involve the invariance about rotation, scaling, con-

trast and translation. Notably, in the discrete case, Hu-

moment has no invariant performance mentioned above. So

it is indispensable to explore a set of new and applicable in-

variant descriptors.

2.1 New combined invariants on Hu-
moment

We denote (x, y) and (x′, y′) as the coordinates of a pixel

before and after the transformation. Similarly, f(x, y) and

f ′(x′, y′) mean the pixel gray level intensities before and

after the transformation. Let ε be a scale factor, and λ be

a contrast factor. There exist relations that may be of the

3 basic types as

[
x′

y′

]
= ε

[
x

y

]
, ε > 0 (1)
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f ′(x′, y′) = λf(x, y), λ > 0. (2)

We assume that μpq and μ′
pq mean the central mo-

ments before and after transformation. Similarly, (x, y)

and (x′, y′) mean the barycentric coordinates before and

after transformation. The relation between them can be

expressed as

μ′
pq =

M∑
i=1

N∑
j=1

(x′ − x′)p(y′ − y′)qf ′(x′, y′) =

M∑
i=1

N∑
j=1

λεp+q(x− x)p(y − y)qf(x, y) =

λεp+qμpq . (3)

The relation between the normalized central moments

can be defined by

η′pq =
μ′

pq

μr′
00

=
λεp+qμp+q

(λμ00)r
=

εp+q

λ
p+q
2

× μp+q

μr
00

=

(
ε2

λ

) p+q
2

ηpq = Q
p+q
2 ηpq (4)

where ηpq and η′pq mean the central moments before and

after transformation. Set r = p+q+2
2

and Q = ε2

λ
.

Equality (4) is substituted into Hu-moment formulas,

and the derivatives are obtained as

φ′
1 = Qφ1, φ′

2 = Q2φ2, φ′
3 = Q3φ3, φ′

4 = Q3φ4,

φ′
5 = Q6φ5, φ′

6 = Q4φ6, φ′
7 = Q6φ7

where φ1, · · · , φ7 and φ′
1, · · · , φ′

7 indicate Hu-moment in-

variants before and after transformation, respectively.

We combine some new formulas among all of the above

equations related by

ψ1 =

√
φ2

φ1
, ψ2 =

φ4

φ3
, ψ3 =

φ7

φ5
,

ψ4 =
φ3

φ2φ1
, ψ5 =

φ5

φ3φ4
, ψ6 =

φ6

φ4φ1
(5)

where ψ′
1, · · · , ψ′

6 are the transformed invariants. For ex-

ample, the relation between ψ1 and ψ′
1 is denoted by

ψ′
1 =

√
φ′

2

φ′
1

=

√
Q2φ2

Qφ1
=

√
φ2

φ1
= ψ1. (6)

From (6), we can recognize that ψ1 is equivalent to ψ′
1, and

ψ′
2, · · · , ψ′

6 are equivalent to ψ2, · · · , ψ6, respectively.

2.2 Combine anti-blur with the new in-
variants

Due to the influence of some factors, such as the cam-

era defocus, atmospheric turbulence and sensor and/or ob-

ject motion, the target image is often blurred[25], and the

process is defined as a convolution of the image with the

Gaussian function, i.e.,

f ′(x, y) = f(x, y) ⊗ g(x, y) (7)

where g(x, y) means the 2-dimensional Gaussian function,

g(x, y) = 1
2πσ2 e

− x2+y2

2σ2 .

A pioneer work on this field was done by Flusser and Suk

who derived invariants to the convolution with an arbitrary

centrosymmetric point-spread function (PSF)[26]. From the

geometric point of view, their descriptors are invariant to

translation only. Despite of this, the invariants have found

successful applications in normalizing blurred images into

canonical forms[27], in template to scene matching of satel-

lite images, in blurred digit and character recognition[28],

and in registration of images obtained by digital subtrac-

tion angiography[29]. Flusser et al.[30] proposed a group-

theoretic approach to extend the combined invariant into

3D case. Zhang et al.[31] exploited the combined blur-

rotation invariants. In their studies, the blur invariants

were calculated on the normalized image which was ob-

tained by transforming from the initial image. It is diffi-

cult to ensure the standard form without any blur influence

which causes much complexity.

In the paper, the combined invariants with transfor-

mation and convolution with Gaussian function are intro-

duced. This ideology is simpler without necessity to per-

form geometric normalization and/or image deblurring.

Theorem 1. The central moment blurred by Gaussian

is

μ∗
pq =

p∑
i=0

q∑
j=0

Ci
pC

j
qgigjμp−i,q−j (8)

where

Cm
n =

(
n

m

)
=

n!

m!(n−m)!

gi =
1√
2πσ

∫ +∞

−∞
xi

τe
− xτ

2σ2 dxτ ={
0, i is odd

1, 3, 5, · · · , (i− 1)σi, i is even.
(9)

Some equations can be deduced from (9), such as g1 = g3 =

g5 = g7 = · · · = 0, g0 = 1, g2 = σ2, g4 = 3σ4, g6 = 15σ6,

· · · .
There is a relation between the first Hu-moments derived

from the original image and fuzzy image respectively, which

can be described by

φ∗
1 = η∗20 + η∗02 =

μ∗
20 + μ∗

02

μ2
00

=

μ20 + μ02 + 2σ2μ00

μ2
00

= φ1 +
2σ2

μ00
. (10)

From (10), we find that the values of Hu-moment change

with the growth of 2σ2

μ00
.

Similarly, we find that the later 6 moments φ2, · · · , φ7

can be obtained without any change, i.e., the two values

from the pro-change and post-change are equal for the same
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moment. Each mathematic derivation is listed as

φ2 = φ∗
2 = (η20 + η02)

2 + 4η2
11

φ3 = φ∗
3 = (η30 − 3η12)

2 + (3η21 − η03)
2

φ4 = φ∗
4 = (η30 + η12)

2 + (η21 + η03)
2

φ5 = φ∗
5 = (η30 − 3η12)(η30 + η12)×

[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

φ6 = φ∗
6 = (η20 − η02)[(η30 + η12)

2 − (η21 + η03)
2]+

4η11(η30 + η12)(η03 + η21)

φ7 = φ∗
7 = (3η21 − η03)(η30 + η12)×

[(η30 + η12)
2 − 3(η21 + η03)

2]−
(η30 − 3η12)(η03 + η21)[3(η30 + η12)

2 − (η03 + η21)
2].

When we substitute all the above equations into (5), only

three of those new illumination-robust combined moments

are anti-blur simultaneously, which are

ψ∗
2 =

φ∗
4

φ∗
3

=
φ4

φ3
= ψ2

ψ∗
3 =

φ∗
7

φ∗
5

=
φ7

φ5
= ψ3

ψ∗
5 =

φ∗
5

φ∗
3φ

∗
4

=
φ5

φ3φ4
= ψ5.

In conclusions, ψ2, ψ3 and ψ5 are the illumination-robust

and anti-blur combined moment invariants.

For the sake of the large variation range, we use loga-

rithm to compress the variation range of feature moment.

Since we also take the negative value into account, we take

the absolute value before logarithm. The actual invariant

moments can be defined by

ψ′
k = lg |ψk| , k = 2, 3, 5. (11)

3 An improved combined feature de-

scription

3.1 Circle template

It is noted that producing a description merely accord-

ing to intensity is not able to provide sufficient information

for feature depiction, and may cause a great deal of error

matches. In order to improve the accuracy of identification,

a more distinctive description is demanded. Consequently,

to take the image structure into account, a unit entropy

is proposed in this paper. Meanwhile, to allow for the en-

gineering application of abdomen reconstruction, the tem-

plate is designed as a circle window, as displayed in Fig. 1.

The main direction is decided by the distribution of the

peak gradient direction within the adjacent pixels around

the key point.

m(x, y) =√
(f(x+ 1, y) − f(x− 1, y))2 + (f(x, y + 1) − f(x, y − 1))2

θ(x, y) = atan

(
f(x, y + 1) − f(x, y − 1)

f(x+ 1, y) − f(x− 1, y)

)
(12)

where m(x, y) and θ(x, y) are the gradient and direction of

the point at coordinate (x, y). The peak of the gradient

histogram is defined as the main direction.

Fig. 1 Main direction of the circle

Beginning with the main direction, the circle area is di-

vided clockwise every 60◦. And the total 6 sector regions

can be seen in Fig. 2.

Fig. 2 The distribution of 6 sector regions

3.2 Combined sector entropy by CCA

The canonical correlation analysis (CCA) is that multi-

ple original sets of feature vectors are converted to a few

comprehensive variables.

For two random vectors, x ∈ Rm and y ∈ Rn, we find

a couple of directional projections α and β. If x′ and y′

are equivalent to αTx and βTy, for a maximal correlation

coefficient,

ρ =
αTCxyβ√

αTCxxα× βTCyyβ
(13)

where Cxx and Cyy are the covariance matrixes of x and

y, Cxy means the cross-covariance matrix between x and y.

The obtained canonical correlation variables are regarded

as two groups of feature vectors, i.e.,

X = (αT
1 x1, α

T
2 x2, · · · , αT

mxm)T =

(α1, α2, · · · , αm)Tx = UT
x x

Y = (βT
1 y1, β

T
2 y2, · · · , βT

n yn)T =

(β1, β2, · · · , βn)Ty = UT
y y

where Ux = (α1, α2, · · · , αm) and Uy = (β1, β2, · · · , βn).

Then, another vector is assigned as

J =

(
X

Y

)
=

(
UT

x x

UT
y y

)
(14)

where J is termed combined canonical feature vector.
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In this article, the 3 new combined moments from

pixel gray level intensity are recombined as a vector, i.e.

x = (ψ2, ψ3, ψ5). The 6 feature parameters from sec-

tor entropy are recombined as the other vector, i.e., y =

(e1, e2, e3, e4, e5, e6). By working out parameters α and

β when parameter ρ gets the maximum, the feature vec-

tors with CCA can be gained. We define (α1, α2, α3)
Tx as

IM F , and (β1, β2, β3, β4, β5, β6)
Ty as E. J can be also

expressed as

J =

(
X

Y

)
=

(
(α1, α2, α3)

T x

(β1, β2, β3, β4, β5, β6)
T y

)
=

(
IM F

E

)
. (15)

Making use of CCA, the intensity vector IM F and en-

tropy vector E of each unit sector construct a new feature

vector IM FE shown in Fig. 3. It is significant to explore

feature description by means of synthesizing the above two

individual properties.

Fig. 3 The IM FE, IM F and E

3.3 Similarity measurement

We take the distance between two features as the simi-

larity measurement of the key points as

Si,j = e−|Dl(i)−Dr(j)| (16)

where |Dl(i) −Dr(j)| is termed as a distance measure which

is determined by

|Dl(i) −Dr(j)| =

|IM Fl(i) − IM Fr(j)| × |El(i) − Er(j)| . (17)

A suitable threshold for the similarity is set according to

the requirement of precision in real application. If the sim-

ilarity is greater than the threshold, the pair of matching

points can be accepted. If the ratio of threshold is reduced,

the number of matching points will decrease, but the system

will be more stable.

4 Experiment and analysis

4.1 Verification experiment

4.1.1 Verification of the new combined invariants

For verifying the illumination robustness and the anti-

blur of the new combined invariants, the initial image is

added with levels of blur coefficients defined by (7). More-

over, the illumination darkening coefficients, which made

the initial image become greyer, were also added. In

the test, both blur and illumination darkening coefficients

should ensure the adjusted images to be recognizable shown

in Fig. 4. The left picture in Fig. 4 is the initial one, the

images with different levels of blur noise coefficients are

displayed in the first line, those with different illumina-

tion darkening coefficients are shown in the second line,

and images added with both different blur and illumina-

tion darkening coefficients are exhibited in the third line.

The experiment conditions are Celeron(R) dual-core CPU,

2GHZ, 2GB memory, Windows XP 2002 operating system,

and Matlab7.0 programming environment.

Fig. 4 Fish images with blur and illumination darkening coeffi-

cients

Table 1 lists the values of the 3 combined invariants for

each figure, and there are a total of 13 figures (deduced in

Section 2.2, ψ2, ψ3, ψ5). As can be seen, whether the image

is affected by any factor or by two factors together, the 3

invariants are barely changed. Thus, it is proved that the

new combined invariants are strongly robust to illumination

variance and anti blur noise.

Table 1 3 combined invariants from different fish images

Images ψ2 ψ3 ψ5

Initial image 0.953261 0.0678106 0.999750

Blur (1.0) 0.953261 0.0678106 0.999750

Blur (1.5) 0.953261 0.0678106 0.999751

Blur (2.0) 0.953261 0.0678105 0.999751

Blur (2.5) 0.953262 0.0678105 0.999751

Blur (1.75) 0.953261 0.0678106 0.999750

Blur (3.0) 0.953261 0.0678106 0.999750

Blur (4.5) 0.953261 0.0678105 0.999750

Blur (5.75) 0.953260 0.0678105 0.999751

Light (1.75) + blur (1.5) 0.953261 0.678106 0.999750

Light (1.75) + blur (2.5) 0.953261 0.678106 0.999750

Light (5.75) + blur (1.5) 0.953260 0.678105 0.999751

Light (5.75) + blur (2.5) 0.953260 0.678104 0.999752

4.1.2 Comparison with other features

To further testify the performance of the proposed de-

scriptors, comparison experiments are conducted among

SIFT, SURT, MSER, DAISY, FREAK, BRISK and the
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proposed combined invariants. Due to our main discussion

on the invariance of illumination and blur, the standard

images of the illumination changes of Leuven figures (Leu-

ven1, Leuven2, Leuven3, Leuven4, Leuven5 and Leuven6)

and the blur degrees of Bike figures (Bike1, Bike2, Bike3,

Bike4, Bike5 and Bike6) from the photo gallery of Oxford

are selected. To be fair, Harris is used uniformly to ex-

tract features for all the images in advance. Comparisons

are shown by calculating the matching rate which is got

from the mapping between Leuven1 and Leuven2 (Leuven1

and Leuven3, Leuven1 and Leuven4, Leuven1 and Leuven5,

Leuven1 and Leuven6) in Fig. 5 (a), and the matching rates

from Bike figures (Bike1 and Bike2, Bike1 and Bike3, Bike1

and Bike4, Bike1 and Bike5, Bike1 and Bike6) in Fig. 5 (b).

The higher the matching rate is, the better the performance

is. As can be seen from Figs. 5 (a) and (b), when the illu-

mination changes and fuzzy interferes in different degrees,

the proposed descriptor can still get good matching rates.

In a word, the illumination robustness and anti-blur of the

proposed descriptor are better than those of the others.

4.2 Application to abdomen reconstruc-
tion

The outline of the way to recover a virtual human ab-

domen model is as

1) Extract the feature points between the left and right

images respectively through Harris algorithm.

2) Obtain the correct matches with the new combined

feature descriptorIM FE.

3) Retrieve 3D cloud data for reconstruction in order to

measure the abdominal depth, breadth, and circumference

of the subject.

4.2.1 Experimental set-up

In the section, experiments on the abdomen reconstruc-

tion are conducted by using the proposed methods. The

specific set-up is shown in Fig. 6. A stereo vision system

composed of four complementary metal oxide semiconduc-

tor (CMOS) cameras (Cyber-shot DSC-W30) is arranged

around the model, with a resolution of 2816×2112 pixels

and about 6 003 000 effective pixels. The focal length is

18.9 mm (Converted to the 135 mm camera, the value is

114 mm). The image has 624×363 pixels. Two of the cam-

eras (No.1 and No.2) are located in front of the abdomen

within a pair for an angle of 60◦ for obtaining the abdomen

images, and the other two cameras (No.3 and No.4) are ar-

ranged in the rear of the abdomen with the same angle to

the frontal pair for getting the back abdomen images.

620 markers are separately sewn both in front and at the

back pieces of the tight dress at the abdominal part. In this

section, 3 correlative subsections are arranged correspond-

ing to the three procedures mentioned above in sequence. In

Section 4.2.2, the feature extractions with Harris algorithm

(a) Matching results under illumination variance

(b) Matching results under the fuzzy degree

Fig. 5 Matching effect for illumination and fuzzy images

Fig. 6 Stereo vision system

are carried out. In Section 4.2.3, the stereo matching with

IM FE description is performed and a thorough analysis

about the results is made. Finally, in Section 4.2.4, the 3D

cloud data of the human abdomen is utilized for reconstruc-

tion. In each subsection, we devote ourselves to enough



H. Liu et al. / Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction 475

tests in 4 typical cases depending on different choices of

blur and illumination darkening coefficients. The detailed

instructions are given as follows. Case 1 (Figs. 7 (a) and

(b)) indicates the left and right belly images in the stan-

dard situation. Taking right belly image for example, case

2 (Fig. 7 (c)) is the condition with blur noise of 4.5 in stan-

dard right belly image, case 3 (Fig. 7 (d)) is the state com-

bined with blur noise of 4.5 and light darkening of 6.0 in

the standard right belly image, and case 4 (Fig. 6 (e)) is the

state with blur noise of 5.0 and light darkening of 7.0 in

the standard right belly image. With the increase of the

blur and darkening coefficients, the images become dimmer

and darker. The above 4 situations are representative. It

is not necessary to study those with too large or too small

coefficient on account of no realistic significance.

Fig. 7 Noise added and brightness weakening on right belly im-

age

4.2.2 Experiments on feature points extraction

One of the critical matters we need to solve is how to

extract the accurate markers from the image of the tight

dress, which is directly correlated to the accuracy of the

later stereo matching and reconstruction. Harris is a classic

algorithm commonly used in feature extraction. Its advan-

tages include:

1) Simple calculation: Harris only uses the first order

difference and filter wave.

2) The uniform and reasonable results of feature point ex-

traction: It only needs to calculate the interested value for

each point, and then select the optimum within the neigh-

borhood.

3) Excellent reliability: Thanks to a differential opera-

tion, second-order moment and Gauss scale computations,

it is not sensitive to illumination variation, image rotation,

gray variation, noise influence, or perspective change.

Depending on the practical engineering background and

considering all comprehensive factors, Harris algorithm is

adopted in our work. In case 1, the experiment is performed

in the standard belly images (Figs. 7 (a) and (b)), altogether

629 left and 638 right feature points are successfully tracked

in Figs. 8 (a) and (b).

Figs. 9 (a) and (b) show the results produced by Harris in

case 2 (with blur noise of 4.5). Figs. 10 (a) and (b) are the

results in case 3 (with blur noise of 4.5 and light darkening

of 6.0). Figs. 11 (a) and (b) are yielded from case 4 (with

blur noise of 5.0 and light darkening of 7.0).

Fig. 8 Case 1: feature points detection with Harris algorithm

Fig. 9 Case 2: feature points detection with Harris algorithm

Fig. 10 Case 3: feature points detection with Harris algorithm

Fig. 11 Case 4: feature points detection with Harris algorithm

With the same principle in the above 4 cases, we take the

right abdomen images for example. The results of extract-

ing feature points of the right abdomen images for all of

the above experiments are shown in Table 2. p num indi-

cates the number of the extracting points, ρ is the detection

rate, D x and D y are the deviations between the detec-

tion value and the real value in the x and y coordinates.

Min x, Max x, Mean x and Av x denote the minimum

deviation, the maximum deviation, the average deviation

and the mean square deviation in the x coordinate, respec-

tively. Min y, Max y, Mean y and Av y separately denote

the same meanings in the y coordinate.

From Table 2, we can find that in the former 3 cases,

the detection performance maintains stable with ρ of more

than 90 % in spite of the slight decline, and yet in the 4th

case, ρ drops to less than 70 %. Admittedly, when the im-

pact factors increase to an extreme level, it will substan-

tially worsen the extractive correctness. Actually, to that

extreme degree, the image quality is seriously poor without

any practical value. Besides, regardless of the deviations of

x or y coordinate, the errors from Harris are tiny. All in all,

within an acceptable and reasonable choice of blur and illu-

mination darkening coefficients, Harris is capable of main-

taining good stability and achieving satisfactory results. In

the paper, it is suggested that the blur and darkening co-

efficients should not be more than 5.0 and 7.0 for ensuring

the accuracy of later feature matching.
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Table 2 Point detection of the right belly image in 4 cases by

Harris

Case (right belly image) Case 1 Case 2 Case 3 Case 4

ρ num 638 644 633 557

ρ (%) 98.55 91.94 91.13 66.29

Min x 0 0 0 2

D x (pixel) Max x 1 1 1 4

Mean x 0.0034 0.0068 0.0102 0.1458

Av x 0.0034 0.0067 0.0101 0.1358

Min y 0 0 0 2

D y (pixel) Max y 1 1 1 3

Mean y 0.0022 0.0053 0.0092 0.1291

Av y 0.0018 0.0051 0.0090 0.1225

4.2.3 Experiments on feature matching

In the matching test, reliable matching pairs are obtained

according to the value of similarity S. The specific proce-

dure can be described as: computing the ratio of the near-

est neighbor distance min d to the second nearest neigh-

bor distance sec min d on the basis of feature vectors, and

then taking the logarithm of base e of the ratio, signed as

e
min d

secmin d . If e
min d

secmin d > ε (ε is called similarity threshold,

and is 0.5 in this test), then these two points are considered

as a correct matching pair. Too small a value of ε may af-

fect the number of the correct matches. The general value

is at the range of [0.45 0.55].

The tests on feature points matching are carried out with

the new descriptor vector IM FE. The results of cases 1,

2, 3 and 4 are displayed in Figs. 12 (a), 1,(b), 12 (c) and

12 (d), respectively. The second experiment is performed

for case 2. Similarly, the whole procedures are also realized

again by IM FE. The result is displayed in Fig. 12 (b).

The third test is conducted on images in case 3, and the

results yielded by IM FE are displayed in Fig. 12 (c). The

last test is employed for case 4. The results generated by

IM FE are shown in Fig. 12 (d).

Fig. 12 The matching results in 4 cases

Table 3 lists some parameters of feature matching. In the

list, n f signs the number of the initial matching pairs, n c

indicates the correct number, r means the correct match-

ing ratio, and the time spent in constructing descriptor and

mapping is marked with T . As shown in Table 3, it can be

easily seen that the time is much shorter in virtue of a low

dimensional descriptor derived from the new anti-blur and

illumination-robust combined invariants of gray and sector

entropy with CCA, which can reduce the time for construct-

ing descriptor greatly. Moreover, under the ideal situation

(i.e., case 1), the correct ratio of IM FE can reach more

than 90 %. When the image quality is affected by blur noise

and/or illumination darkening, on account of both the blur

resistance and the illumination variation insensitiveness of

its descriptor, the correct ratio of IM FE still maintains

over 85 % in the former 3 cases within the acceptable error

range in practical application in spite of its merely slight

descending. The little drop is attributed to the decline of

the extracted rate of Harris. But in case 4, the matching

correctness of IM FE is seriously affected with less than

70 % for the failure of the feature point detection by Harris.

In the paper, it is better to control the blur and darkening

coefficients within 5.0 and 7.0 so as to ensure the effective-

ness of IM FE. In conclusion, IM FE is attested to be

greatly stable and robust as long as the blur and darkening

coefficients are within a reasonable range which depends on

the practical application.

Table 3 Parameters about feature matching in 4 cases by

IM FE

Parameters Case 1 Case 2 Case 3 Case 4

n f 67 58 51 42

n e 61 52 45 27

r (%) 91.04 89.66 88.24 64.29

T (s) 0.32 0.28 0.25 0.21

4.2.4 Abdomen reconstruction and analysis of

shape size

Three dimensional cloud data are obtained by the stereo

matching introduced in Section 4.2.3. Table 4 demon-

strates the computational time consumed for the complete

implementation process of abdomen reconstruction by our

method. Here, the computational time is offered at a to-

tal of the 3 effective cases verified in Subsections 4.2.2 and

4.2.3. T D, T M and T R denote the time spent on feature

detection, feature matching and abdomen reconstruction,

respectively. Total T = T D+T M +T R means the total

time exhausted in the whole abdomen reconstruction pro-

cess, and the mean value of the 3 different cases is offered

at the end of the table. As can be seen from the list, the

entire abdomen reconstruction can be completed for a little

more than one minute. Consequently, it is indeed a high

efficient and strong real-time method. Figs. 13 (a) and (b)

illustrate the three-dimensional graphs from different views

about anterior and back belly. Figs. 13 (c) and (d) are the

3 dimensional belly figures.

In order to evaluate the accuracy of our proposed

method, it is tested on a female model by acquiring the ab-

domen size parameters, including the belly circumference,

breadth and depth. We complete the tests on the same

model for 3 independent modeling and measurement pro-

cedures. Each process is from first putting on the tight
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dress to the final measurement of the abdomen shape. Test

points are shown in Fig. 14. With the proposed method

IM FE, the 3D cloud data can be obtained, and then are

imported into PPS which is a piece of parameter measure-

ment software, finally those 3 abdomen size parameters can

be computed automatically. Comparisons of parameters are

made among the above 3 schemes (IM FE, 3D scanner and

manual measurement). As shown in Table 5, all of the data

are the average values from the results in 3 independent

modeling and measurement procedures. Error M&FE is

the mean of errors between manual and IM FE in the 3

valid cases of different blur and darkening coefficients based

on the stereo vision system. Similarly, Error 3D&FE is

the mean of errors between 3D scanner and IM FE. In

comparison with the manual measurement, the differences

between the proposed method and the traditional manual

measurement are small. The largest error is the abdomen

circumference of 0.423 cm, and the smallest error is the ab-

domen depth merely of 0.117 cm. According to the accept-

able error range 0.5–2 cm in clothing, our approach can

Fig. 13 Three-dimensional figures of belly from different views

Table 4 Computational costs of the proposed methods in 3

cases

Time (s) Case 1 Case 2 Case 3

r D 60.649 55.726 52.485

r M 1.483 0.889 0.872

r R 8.565 7.158 7.210

Total T 70.697 63.773 60.567

Mean of time 65.012

completely meet the requirement. Besides, from the analy-

sis of Error 3D&FE, the values with the proposed method

are extremely close to those with 3D scanner, whose error

is 10−2 cm. It shows that the method with practicability

can entirely reach the same precision as 3D scanner.

Fig. 14 Definitions of abdomen size parameters on a female

model

5 Conclusions

In this paper, we propose a human belly modeling

method on the basis of stereo vision system comprised of

only 4 cameras fixed up around the subject. We develop

the new combined invariants as well as involve the sec-

tor entropy that signifies image structure characteristics.

Experiments demonstrate that a highly complete abdomen

shape and accurate abdomen measurement can be obtained

successfully with the help of the feature matching with the

innovative feature descriptor vector, even in the condition of

blur influence and illumination variance. Briefly, it can be

concluded that the distinct advantages of this method are

fast image-acquisition, highly accurate, reliable, portable

and practicable but low-cost.

Still, it is necessary to notice that the deficiencies are the

demand of wearing dress with manual markers and the de-

pendence on the feature extraction algorithm, which limit

its scope of applicability and affect its accuracy to a certain

extent. For this reason, our research group now begins to

conduct the research work about feature extraction algo-

rithm in view of weak texture or no texture. Anyway, all

its preferable and popularized performances make it promis-

ing for application in a large scale anthropometric survey

to collect body dimensions for apparel design. In addition,

many applications can be further extended involving hu-

man engineering, routine use in clinical medicine settings,

rehabilitation training of prostheses, etc.

Table 5 Dimensions of the subject measured by 3 ways

Parameters (cm) Manual 3D scanner
IM FE

Error M&FE (cm) Error3D&FE (cm)
Case 1 Case 2 Case 3

Circumference 78.2 77.78 77.80 77.77 77.76 0.423 0.020

Depth 16.5 16.39 16.39 16.37 16.37 0.117 0.013

Breadth 35.1 34.97 34.98 34.96 0.120 0.010 0.010
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