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Abstract: Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks (WSNs). The main

objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively. This

is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle. The new method offers

distinctive advantages over the existing methods. Firstly, it does not require any distance or density measurement, which reduces

computational burdens significantly. Secondly, considering the spatial correlation characteristic of node deployment in WSNs, local

sub-detector is built in each sensor node, which is broadcasted simultaneously to neighbor sensor nodes. A global detector model is

then constructed by using the local detector model and the neighbor detector model, which possesses a distributed nature and decreases

communication burden. The experiment results on the labeled dataset confirm the effectiveness of the proposed method.
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1 Introduction

Wireless sensor networks (WSNs) have been used in var-

ious applications, such as environment monitoring, habitat

monitoring, health and medical monitoring, industrial mon-

itoring, target tracking, surveillance monitoring, etc.[1−6] In

these applications, the most important problem is how to

guarantee data reliability and availability. However, the

sensor nodes, which are the core component in WSN, are

prone to fail. Therefore, anomalous observation is induced

by considering the following reasons[7]:

1) The intrinsic characteristics of sensor nodes are low

cost and limited resource, such as energy (battery power),

memory, computation capability and communication band-

width, etc.

2) Sensor nodes are usually randomly deployed in a large

and hard area. Therefore, the observations are frequently

susceptible to the environmental effects.

3) There exist common interference and malicious attack

in WSNs. Consequently, the information transmission is

unreliable.

The above mentioned issues may lead to the data with

noise, errors, etc. This makes the data inaccurate and un-
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reliable, which cannot reflect the real situations and thus

affects the final decision. Anomaly detection, as the active

monitoring measure tool, plays an important role in ensur-

ing the data quality. Therefore, effectively and efficiently

identifying anomalies can help to improve the quality of

collected data before transmitting to the station and have

correct decision-making of events of interest.

In WSNs, radio transmission among nodes is the main

reason of quick energy depletion. The energy consump-

tion for transmission of one bit data is significantly more

than to process thousands of bits in sensors network[8]. So

the anomaly detection methods developed for WSNs must

take into account some inherent characteristics, e.g., mas-

sive communication will drain the life of batteries quickly

and shorten the life-span of the whole WSNs.

In this paper, considering the constrained resource char-

acteristic in each sensor node and data spatial correlation

among neighbor sensor nodes, a light-weight distributed

learning technique based on the isolation principle is pro-

posed for the anomalous data detection in WSNs.

The proposed model overcomes the currently existing

models′ disadvantages and has some advantages as follows:

1) It is a distributed anomaly detection algorithm and

can handle the dataset collected in WSNs.

2) It has high detection accuracy and low false alarm

ratio.

3) The proposed detection model does not require any

distance or density measurement, which saves computation

resource.

4) This algorithm can handle the anomaly and events

locally and globally in WSNs.

The main contribution of this paper includes:
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1) Considering the spatial correlations of neighbor nodes

in WSNs, a new distributed anomaly detection method is

proposed based on the ensemble isolation principle.

2) Theoretical analysis and complexity analysis confirm

the efficiency of the proposed method.

The rest of this paper is organized as follows. Section

2 summaries the taxonomy of state-of-the-art anomaly de-

tection methods in WSNs and related works. Section 3

describes the problem of anomaly detection in WSNs and

proposes distributed anomaly detection method based on

isolation principle. Section 4 presents the theory and com-

plexity analysis. In Section 5, the experiments are per-

formed to evaluate the efficiency of the proposed algorithm.

Finally, conclusions and future works are presented.

2 Related works of anomaly detection

in WSNs

Anomaly detection, or outlier detection, or deviation de-

tection, is an activity to measure an observation (or subset

of observations) that appears to be inconsistent with the

remainder of that dataset[9, 10]. In the context of WSNs,

the anomaly is related to those observations which do not

conform to the defined (expected) normal behavior of the

data. Based on this definition, the anomalies always corre-

spond to sensor faults, observation data errors, unexpected

events and some malicious attacks[5, 11]. To some extent,

anomalies also correspond to some interesting events such

as sudden changes in the monitored surrounding that re-

sult in the unusual observations. In WSNs, according to

the scope of anomaly occurrence, anomalies can be at the

level of individual measurements with respect to the other

measurements at the same sensor node, or at the level of

the measurements of one node with respect to other sensor

nodes in the network[12].

There are many anomaly detection methods in WSNs.

From the perspective of techniques employed, the anomaly

detection methods can be categorized into statistical based,

nearest neighbor based, clustering based, classification

based and spectral decomposition based approaches. Sta-

tistical based methods can be further categorized into para-

metric and non-parametric methods based on how the prob-

ability distribution model is built[5]. From the perspective

of using the label information of the training dataset dur-

ing the process of building anomaly detector, these meth-

ods can be categorized as supervised, semi-supervised and

unsupervised[13]. From the topology structure of WSN

deployed, these methods can be classified as hierarchical

method and flat method. For the former, the method can be

further categorized as statistical based method, data mining

and computational intelligence based method, game theory

based method and hybrid method. And for the latter, these

methods can be categorized as rule based method, statis-

tical based method as well as graph based method. From

the perspective of data processing, these methods can be

categorized as online or offline methods. From the perspec-

tive of node data processing behavior, these methods can be

categorized as distributed or centralized, etc. These meth-

ods may have some overlap, and interested reader can fur-

ther review it in [3, 5, 13]. Though these above mentioned

methods have gotten successful applications in many fields,

there are more or less some disadvantages, e.g., statistic

based method requires the knowledge of data distribution

in advance or difficult to handle multi-dimensional dataset,

some density or distance based methods require to calcu-

late the distance or density among observations which re-

quires massive computation resources. Some machine learn-

ing method, such as artificial neural network (ANN) or sup-

port vector machine (SVM), requires massive time to train

the detector model, or some method cannot handle the high

dimensional data in the constrained computation and stor-

age resource, etc.

Recently, based on the ensemble learning[14] , an isola-

tion based method is proposed[15, 16], which purely consid-

ers the intrinsic characteristic of anomalous data to build

detector. As we all known, anomalies are the minority con-

sisting of fewer instances and have attribute values that

are very different from those of normal instances. In other

words, anomalies are “few and different”, which make them

more susceptible to be isolated than normal data points.

This method does not employ any distance or density mea-

sure, fundamentally different from most existing model-

based methods to detect anomalous data. Fig. 1 demon-

strates the initial idea of anomaly detection method based

on the isolation principle.

During the procedure of anomaly detection, random par-

titioning of instances according to the attribute value is re-

peated recursively until all the instances are isolated or they

meet a pre-defined termination criterion. Then those data

points that are easily isolated are regarded as the anoma-

lies (black spot x0) with high possibility. Consequently,

the more easily an observation data point is isolated, the

more probability it carries to be regarded as the anomaly

data point. One of the many advantages of this method is

that the anomaly detection doesn′t require any distance or

density computations. What′s more, unlike these methods

which provided a hard decision for the observation whether

it is anomaly or not, isolation based method assigns an

anomalous score to each of the testing observation. Lo-

cal outlier factor (LOF)[17] is also proposed to denote the

degree of the object being an anomaly. Unfortunately, this

algorithm has complex procedures and needs a high compu-

tation cost, the computation complexity reaches the order

O(n2) under the context of high data dimensions. Conse-

quently, isolation based method may be more valuable in

the real application. Another advantage is that isolation

based anomaly detection employed the ensemble learning

strategy[18]. So instead of wasting much time to train the

strong detector, it only trains multiple weak detector mod-

els and aggregates them into a final ensemble detector with

high performance. Though ensemble learning method is

not a light-weight method, in our proposed method, a dis-

tributed process is employed to overcome this shortcoming

successfully.
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Fig. 1 Anomaly detection based on isolation principle

3 Proposed anomaly detection model

for WSNs

3.1 Problem statement

Sensor nodes in WSNs may be arranged in multiple kind

of topology for different applications. A commonly used

network topology is shown in Fig. 2, which is clustering-

based hierarchal network. Generally, there can be multiple

levels of cluster heads and sensors in the network. In or-

der to make our proposed algorithm more general and can

be adapted to accommodate different contexts as well. We

define a sensor sub-network to describe the problems.

Fig. 2 Topology of typical sensor network

Definition 1. (sensor sub-network). The sensor sub-

network is one of the clusters in the whole network where

the nodes can communicate directly with each other. Its

topology can be modeled as an undirected graph G, G=(N ,

E), where N denotes the node set and E denotes the edge

set. The edge of connecting two nodes exists if the two

nodes in the network are within radio transmission range.

To concisely describe our proposed anomaly detection

method for WSNs, this relatively small sub-network con-

sists of some sensor nodes which are deployed densely, ho-

mogeneously and are time synchronized, where sensor data

tends to be correlated in both time and space. An example

of such sub-network can be illustrated by Fig. 3[7].

Fig. 3 Example of a sensor sub-network

This sub-network is reasonable because it can be easily

extended to other type of networks topologies. For example,

if a cluster-head or sink-head is inserted into this network,

then a clustering-based network topology can be gained,

or if a parent node can be added to take care of his chil-

dren node, then a hierarchical-based network topology can

be made. Consequently, our proposed anomaly detection

method for this sub-network can be extended conveniently

to multiple kinds of networks.

This sub-network, N = {Ni, , Ni,1, · · · , Ni,m}, which rep-

resents a closed neighborhood of node Ni ∈ N , contains

node Ni and its m spatially neighboring nodes. The m spa-

tially neighboring nodes are represented by Ni,j = {Ni,j :

j = 1, · · · , m}. Each sensor node in the sub-network at ev-

ery time interval Δt measures a data vector and each data

vector is composed of multiple attributes. For the sensor

node Ni, the observation is X ′ = (xi
1, x

i
2, · · · , xi

d), where d

denotes the attribute dimension. And for the j-th neigh-

bor node, Ni,j , the observation is Xi
j = (xi

j,1, x
i
j,2, · · · , xi

j,d).

Each node in the sub-network can do the same work as done

by Ni, such as collecting data, communication and anomaly

detection. Our proposed method is to timely identify ev-
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ery new observation of Ni as normal or anomalous based

on the detection model which is trained using the collected

dataset.

3.2 Isolation based anomaly detection
method

The traditional anomaly detection method in the data

mining and machine learning community cannot be em-

ployed in the context of sensor network well. The main

challenge faced by anomaly detection method for WSNs is

how to achieve high detection rate and low false alarm rate

while consuming the minimum resource of WSNs. Conse-

quently, it is necessary to develop a light-weighted anomaly

detection method.

Isolation-based anomaly detection, proposed in [15] as-

sumed that the anomaly data points are always rare and far

from the center of the normal clusters. This is a new and

effective anomaly detection technique by using the binary

tree to build the single detector. Based on the ensemble

learning theory, the detection model consists of multiple in-

dividual detectors, namely, isolation tree. Here, we give the

following definition.

Definition 2 (isolation tree). Let T be a node of an iso-

lation tree, and x be a data point consisted of d attributes

in the current subset, T be either an external node with

no child, or an internal node with one test and exactly two

children nodes (Tl, Tr). A test consists of an attribute q

and a split value p such that the test x.q < p can split the

current subset into Tl and Tr. Moreover, each node keeps

the corresponding intermediate results of the deterministic

space partition process. Tl and Tr. are all the isolation

trees.

The most valuable advantages of this method are as fol-

low:

1) Isolation based method does not require distance or

density measures to detect anomalies. This eliminates ma-

jor computational cost of distance calculation in all the

distance-based methods and density-based methods. It im-

plies that this method is a light-weight method and can save

resources of sensor nodes.

2) Isolation based method has linear time complexity

with low computational and memory requirement, which

implies that this method can detect anomaly fast and save

the memory resource effectively.

Here, we give the simple presentation of this method.

Building the isolation tree process is intuitive and straight-

forward, the interested readers can refer to [15] for further

detail.

Given data set X = {x1, x2, · · · , xn}, xi =

(xi,1, xi,2, · · · , xi,d), to build an isolation tree, we recur-

sively divide X by randomly selecting an attribute q and

a split value p. The creation of binary tree procedure is

ended if one of the following three principles is satisfied:

1) The tree reaches a pre-defined height limit.

2) |x′| = 1, x′ ⊆ x′.
3) All the data in X ′ have the same values, i.e., they are

all identical.

The created isolation tree has characters as:

1) It is a proper binary tree, where each node in the tree

has exactly zero or two children nodes.

2) If each observation in X is distinguishable, the max-

imum number of nodes in the isolation tree is 2n-1, and

the number of internal tree nodes is n-1. Consequently, the

memory requirement is bounded and only grows linearly

with n, namely O(n).

Of course, only a single isolation tree has probably a

poor detection performance, isolation based anomaly de-

tection method is an ensemble learning technique in essen-

tial, which needs to build multiple isolation trees to gain an

aggregate decision. Consequently, ensemble detector is con-

structed for the given dataset at the training stage, which

consists of N individual detectors.

In the anomaly detection phase, the task of anomaly

detection is to find a ranking that reflects the degree of

anomaly for the new observations. Thus, one way to detect

anomalies is to sort data points according to their average

path length or anomaly scores. If the threshold u is pre-

defined, then those observations that are ranked at the top

of list are defined as anomalies. The anomaly scores can be

calculated by

s(x,n) = 2
− E(h(x))

c(n)

E(h(x)) =
1

m

m∑

i=1

h(x)

c(n) = 2H(n − 1) − 2(n − 1)

n

H(n) = ln(n) + 0.5772156649 (1)

where s(x, n) denotes the anomaly score of observation x,

n is the number of the whole dataset, E(h(x)) denotes

the expected isolation path length which can be estimated

by computing the average of the isolation path length ac-

quired from each isolation tree among the isolation for-

est, H(n) is the harmonic number which can be estimated

by ln(n) + 0.5772156649, the number 0.5772156649 is the

Euler′s constant, and c(n) is the average of h(x) given n,

which is used to normalized h(x).

3.3 Distributed anomaly detection
method based on isolation principle
in WSNs considering spatial relation-
ship

In order to avoid massive communication in WSNs, each

node builds a local anomaly detector using its m observa-

tions which is sub-sampled from the training datasets. The

neighbor nodes in the sub network do the similar work. Af-

ter the local detector is built, each node broadcasts its in-

formation of multiple isolated trees, such as tree structures,

split attributes and split value in each created tree node, to

its spatially neighboring nodes. Consequently, every node

in the WSNs receives the local detector information from all

of its neighbors and then combines with itself to build the
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final global decision isolation forest for the anomaly detec-

tion. Another alternative strategy is that if a cluster head

node is deployed in the sub network, each network node can

transmit its local detector information to the cluster head

node. A cluster head combines each node′s local detector in-

formation into the final global detector and then broadcast

this ensemble detector to its children node. Considering

the spatial relationship among the observations in WSNs

and the idea of ensemble learning, this model is relatively

robust. The model can be seen in Fig. 4, and this method

can be described by training phase and testing phase.

3.3.1 Training phase

In the training phase, the normal data samples collected

by each sensor node are used to build multiple isolation

trees for local anomaly detection, the method of building

ensemble anomaly detection model can be seen in Fig. 5.

Fig. 4 Diagram of building distributed anomaly detector based on ensemble isolation principle

Fig. 5 Training phase of modeling distributed anomaly detector based on ensemble isolation principle



Z. G. Ding et al. / An Isolation Principle Based Distributed Anomaly Detection Method in Wireless Sensor Networks 407

3.3.2 Testing phase

When a new observation x arrives at node Ni, its iso-

lation depth in each tree is calculated and finally average

isolation depth is got. Then an anomalous score is calcu-

lated by (1). Three principles are used to detect whether

an observation is anomalous or not.

1) If anomaly score of an observation is very close to 1,

then it is definitely an anomaly.

2) If anomaly score of an observation is much smaller

than 0.5, then it is quite safe to be regarded as normal one.

3) If anomaly score of an observation is approximately

equal to 0.5, then whether it is an anomaly or not, it is

hard to determine.

However, the anomalous score of many observations on

the fringe of data distribution is near 0.5 and hard to iden-

tify. Therefore, in the real applications, some prior knowl-

edge may be used to assist the anomaly detection, e.g.,

anomaly rate, which is predefined by the domain experts.

In most cases, obtaining the real anomaly rate is difficult.

However, giving a vague scope of anomaly rate may be a

relatively easy job. Consequently, the anomaly detection

is performed based on the concept of anomaly score and

anomaly rate. For a given observation, the procedure of

identifying that whether it is an anomaly or not is described

by Fig. 6.

After an observation was identified as an anomaly locally,

it was represented as an error or event based on the rule: If

the anomaly is spatially unrelated to its neighbor nodes, it

is an error, otherwise it is an event.

4 Theoretical and complexity analysis

4.1 Theoretical analysis of isolation prin-
ciple

In this section, we give the theoretical analysis for isola-

tion principle based on the probabilistic explanation. The

more detail can be found in [15, 19].

We firstly assume that the data is one-dimensional. It

is noted that this assumption is mainly for clear presenta-

tion of the isolation principle rather than a limitation of

the theoretical analysis, which can be generalized to multi-

dimensional dataset.

Let X={x|x ∈ R}, for each data point x, h(x) is the

path length traveled from the tree root to x, and the ex-

pected path length E(h(x)) is a summation of a series of

the possible path lengths with probabilistic components. It

can be calculated by

E(h(x)) =
∑

l

P (h(x) = l) × l

∑

l

P (h(x) = l) = l (2)

where P (·) denotes the probability function of path length

and E(·) is the expectation function. For any fringe point

which may have high probability as an anomalous point, the

generalized possible path length is h(x) ∈[1, |X| − 1]. For

any non-fringe point, the generalized possible path length

is h(x) ∈[2, |X| − 1].

Assuming that each possible tree structure (generated

Fig. 6 The testing procedure for an observation x
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randomly) is equally probable, i.e., uniform distribution,

the term P (h(x) = l) can be estimated by

P (h(x) = l) =
tl,m,j

cj

tl,m,j =
n∑

u=0

(
l

u

)
C(m−u)(m−l)C(j−m−l+u)(n−m−l)

Cp =

(
2p

p

)
−

(
2p

p − 1

)

Cpr =

(
p + r

p

)
−

(
p + r

p − 1

)
(3)

where tl,m,j is the total number of possible trees that have

h(xm) = l(m ∈ {0, · · · , j}) with j internal nodes. The av-

erage path length of a data point xm can be calculated by

E(h(x)) =
hm,j

Cj

hm,j =

2

(
2m

m

) (
2j − 2m

j − m

)
(2m + 1)(2j − 2m + 1)

(j + 1)(j + 2)
− Cj

(4)

where hm,j denotes the sum of path lengths for xm in all

possible trees with j internal nodes. For uniformly dis-

tributed data points, the average path length E(h(x)) of

randomly generated binary trees has a dome shape. Conse-

quently, the dome shape reveals that the fringe points have

much lower expected path lengths than those core points.

And these fringe points may be easily isolated and have the

high probability as anomalous data points.

4.2 Algorithm complexity analysis

Complexity analysis is another factor to be taken into

account for evaluating the performance of algorithm, espe-

cially in the application of WSNs. We evaluate our pro-

posed algorithm in terms of communication overhead and

computation and memory complexity.

The communication complexity of our distributed tech-

niques depends on the local transmission of the isolated tree

structure parameter information in each sensor node. Be-

cause the isolation tree is a binary tree, supposing that this

binary tree has m leaf nodes in the worst case, then each

isolation tree has approximately 2m-1 nodes totally. For

each sensor node which owns k isolation trees, the maxi-

mum communication complexity is O (km).

The computational complexity in our proposed algorithm

is mainly composed of two parts: one is computation cost of

creating the k isolation trees for each sensor node, the other

is that each observation calculates the isolation depth and

has the average depth. For the first part, the maximum of

computation complexity is O(km) for each sensor node. For

the second part, acquiring the observation depth is equal

to travel each isolation tree, so the maximum computation

complexity is O(logm
2 ). Therefore, the maximum compu-

tational complexity at each node of creating and traveling

K isolation trees is O(km + Klogm
2 ) (K =

∑
k), the final

computational complexity is O(km).

The memory complexity in our proposed algorithm is

mainly dominated by K isolation trees for each sensor node,

then the maximum memory requirement is O(km).

In the real application, when the values of k and m are

fixed, then the communication complexity is constant. Con-

sequently, our proposed method may have the promising

advantage to fit for the resource constrained WSNs appli-

cations.

5 Experiment and result analysis

The proposed anomaly detection method is evaluated

by using the labeled dataset[12]. Because isolation based

method is an un-supervised method and does not need the

category attributes during the procedure of anomaly detec-

tion, the anomalies′ labels are only used in evaluating the fi-

nal anomaly detection performance. Our experiment goal is

to test the effectiveness of our proposed distributed anomaly

detector based on isolation principle in WSNs. The experi-

ments are conducted on a personal PC with Intel R© CoreTM

2 Duo CPU, P7450@2.13GHZ and 4GB memory. The oper-

ating system is Windows 7 Professional. The algorithms de-

scribed in Section 3 are programmed by the C++ language

with the Visual C++ software platform and the dataset pre-

processing as well as result analysis are done using Matlab

2010 platform.

5.1 Labeled dataset

This dataset is a real humidity-temperature sensor data

which is collected using TelosB motes in a single-hop

WSNs[12]. This dataset is designed and has a controlled

anomalous data, means labeled anomalies. There are two

indoor sensor nodes and two outdoor sensor nodes, respec-

tively. The data consists of temperature and humidity mea-

surements collected over a period of 6 hours in intervals of

5 seconds. The sensors 1 and 2 are deployed in indoor as

well as 3 and 4 outdoor, respectively. In order to simulate

the anomaly occurrence, it is designed by using a hot water

kettle which increases the temperature and the humidity

simultaneously. The detailed information of this dataset is

described in Table 1.

Table 1 Detailed information of labeled dataset

Setting Node Total sample Normal Anomaly Training Testing

Indoor
1 4417 4300 117 2917 1500

2 4417 4417 0 2917 1500

Outdoor
3 5039 5039 0 3339 1700

4 5041 5009 32 3341 1700



Z. G. Ding et al. / An Isolation Principle Based Distributed Anomaly Detection Method in Wireless Sensor Networks 409

In this dataset, the anomalous observations are intro-

duced at nodes 1 and 4, while nodes 2 and 3 have no anoma-

lous data and represent normal observations. The data dis-

tributions for each of these sensor nodes are depicted in

Fig. 7.

5.2 Data pre-processing

Consider the fact that sensor observations collected by

different types of sensors may have different scales in the

real application. These observations are pre-processed

firstly[4]. There are some commonly used data preprocess-

ing methods in the data mining and machine learning com-

munity. For a data vector xi ∈ X, its auto-scaled value is

formulated as

x′
i =

xi − u

σ

where u is the mean of the attribute values and σ is the cor-

responding standard deviation. However, the auto-scaled

values may be sensitive to anomalies in the field of anomaly

detection, and the common method is replacing the arith-

metic mean by the median and replacing the standard devi-

ation by the median absolute deviation (MAD). This is be-

cause the median and MAD are more robust than mean and

standard deviation against extreme high or low values. The

MAD is calculated by MAD = median{|xi − median(X)|},
where |.| denotes the operator of absolute values. Conse-

quently, for a data vector xi ∈ X, its modified auto-scaled

value is formulated as

x′
i =

xi − median(X)

MAD
.

(a) Data distribtuion with anomalies in node 1

(b) Data distribtuion without anomalies in node 1

(c) Data distribtuion without anomalies in node 3

(d) Data distribtuion with anomalies in node 4

Fig. 7 Data distribution of the labeled dataset (black star means

normal observations, black circle means anomalous observations)

5.3 Result evaluation metrics

To evaluate our proposed algorithm, four performance

metrics are selected. The first is the accuracy rate (ACC),

which is a traditional metric used to evaluate the classifier

performance in the community of data mining and machine

learning. ACC represents the percentage of right predic-

tion. The second is the true positive rate (TPR), which

represents the percentage of anomalies that are correctly

detected, i.e., the ratio between the number of correctly de-

tected anomalies and the total number of anomalies. The

third is the false alarm rate (FAR) or false positive rate

(FPR), which represents the percentage of normal data that

are incorrectly considered as anomalies, i.e., the ratio be-

tween the number of normal data detected as anomalies and

the total number of normal data. ACC, TPR and FAR can

be calculated by

ACC =
TP + TN

TP + FP + TN + FN

TPR =
TP

TP + FN

FAR =
FP

FP + TN
(5)

where TP, FP, TN and FN denote the number of true pos-

itive sample points, the number of false positive sample

points, the number of true negative sample points and the

number of false negative sample points, respectively.

The 4th metric is selected to evaluate our method, which

is the area under cover (AUC)[15, 20] . Compared to the

TPR and FAR, AUC is widely used to measure the overall
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performance of anomaly detector regardless of the threshold

between the true positive and true negative. The calcula-

tion formula is described as [21].

S =

na∑

i=1

ri

AUC =
S − n2

a+na

2

na × nn
(6)

where ri is the rank of the i-th anomalous point list which

is sorted by the anomaly score in ascending order, S is the

sum of the ranks of the actual anomalous points, na and

nn denote the number of true anomalies and the number of

true normal points, respectively.

5.4 Experiment and result analysis

Isolation based anomaly detection method has three crit-

ical parameters which affects the result performance, i.e.,

the sub-sampling size, the ensemble size and the estimated

anomaly rate. According to the result in [15], when the

sub-sampling size is set as 256 and the ensemble size is set

as 100, most datasets have an acceptable detecting perfor-

mance. In order to select the acceptable parameter combi-

nation, extensive experiments are performed based on dif-

ferent parameter combination. For sub-sampling size, its

value is set as 64, 128, 256, 512 and 1024, respectively.

For ensemble size, its value is set as 20, 30, 40, 50 and

60 for each local detector model, respectively. For indoor

observations, the anomaly rate is 2.6% (117/4417≈0.026).

However, in the real application, deciding the true anomaly

rate is always unknown and is not a trivial problem, and

the expert usually gives a rough estimation range based on

their prior knowledge. In our experiment, the anomaly rate

is set as 1%, 2% and 3%, respectively. For outdoor sensor,

the anomaly rate is 0.6% (32/5041≈0.006), so the anomaly

rate is set as 0.3%, 0.6% and 1%, respectively.

The dataset was divided into two parts. For each sensor

dataset, about 66% of the each sensor dataset was used for

training the local detection model, the remaining part was

used for evaluating our proposed method. The experiment

results for node 1 can be seen in Table 2 which is based on

the ensemble model trained by indoor nodes 1 and 2.

From the results presented in Table 2, it can seen clearly

that the estimation metric, ACC, may be not appropriate

for the anomaly detection performance evaluation because

it cannot reflect the effects induced by different parameter

setting, such as ensemble size, sampling size and anomaly

rate for the extreme distribution unbalance in the dataset.

However, for other evaluation metrics, TPR, FAR and ACC

can reflect the different parameter setting. It is clear that

TPR increases and FAR decreases with the ensemble size

and sample size increasing. Similarly, the value of AUC

increases gradually. It can be also seen that when the en-

semble size reaches to a value, such as 40, or sampling size

reaches to 256, the values of different evaluation metrics

vary unnoticeably and become gradually stable. Then the

detecting performance is acceptable too. Therefore, there

is no need to increase the sampling size and ensemble size

further because it only increases the processing time and

memory requirement as well as communication cost with-

out any improvement of the detection performance.

However, for the estimated anomaly rate, different values

may have significant effect on the results. For our proposed

method, the probability of an observation regarded as an

anomaly is based on its anomaly score and its ranking in

the whole testing dataset. If the value that is set lower

than its true anomaly rate, only part of true anomalous ob-

servations is identified as anomaly. Meanwhile, these true

anomalies are regarded as normal observations. As a re-

sult, the FAR is low. On the contrary, when the value of

anomaly rate is set higher than its true anomaly rate, then

Table 2 Experiment result on labeled dataset (indoor) for different parameter combinations

Ensemble size

20 30 40 50 60

Anomaly rate Sampling size ACC TPR FAR AUC ACC TPR FAR AUC ACC TPR FAR AUC ACC TPR FAR AUC ACC TPR FAR AUC

1% 64 0.9740 0.6066 0.0149 0.9579 0.9667 0.6598 0.0086 0.9646 0.9635 0.6000 0.0102 0.9703 0.9635 0.6000 0.0102 0.9561 0.9635 0.6000 0.0102 0.9573

1% 128 0.9635 0.7900 0.0102 0.9700 0.9703 0.7282 0.0067 0.9684 0.9785 0.8821 0.0026 0.9859 0.9808 0.9248 0.0014 0.9898 0.9785 0.8821 0.0026 0.9849

1% 256 0.9758 0.8308 0.0040 0.9733 0.9753 0.8222 0.0042 0.9847 0.9785 0.8821 0.0026 0.9898 0.9817 0.9419 0.0009 0.9926 0.9776 0.8650 0.0030 0.9862

1% 512 0.9731 0.7795 0.0053 0.9849 0.9780 0.8735 0.0028 0.9901 0.9785 0.8821 0.0026 0.9889 0.9771 0.8564 0.0033 0.9897 0.9735 0.8880 0.0051 0.9863

1% 1024 0.9767 0.8479 0.0035 0.9910 0.9731 0.7795 0.0053 0.9850 0.9749 0.8137 0.0044 0.9856 0.9749 0.8137 0.0044 0.9886 0.9744 0.8751 0.0247 0.9674

2% 64 0.9649 0.7137 0.0167 0.9237 0.9590 0.7026 0.0177 0.8612 0.9826 0.8470 0.0156 0.9272 0.9712 0.8333 0.0114 0.9786 0.9699 0.8077 0.0121 0.9705

2% 128 0.9726 0.7890 0.0124 0.9246 0.9826 0.9470 0.0156 0.9808 0.9663 0.8993 0.0140 0.9476 0.9762 0.9274 0.0088 0.9831 0.9703 0.8162 0.0119 0.9749

2% 256 0.9726 0.8290 0.0107 0.9448 0.9771 0.9444 0.0094 0.9827 0.9694 0.9515 0.0123 0.9762 0.9821 0.9385 0.0058 0.9897 0.9708 0.8848 0.0116 0.9822

2% 512 0.9726 0.8590 0.0107 0.9690 0.9722 0.9504 0.0109 0.9799 0.9776 0.9530 0.0080 0.9886 0.9803 0.9443 0.0067 0.9903 0.9789 0.9786 0.0074 0.9890

2% 1024 0.9776 0.9530 0.0081 0.9911 0.9744 0.9832 0.0098 0.9844 0.9776 0.9530 0.0081 0.9884 0.9753 0.9603 0.0093 0.9863 0.9803 0.9743 0.0067 0.9905

3% 64 0.9513 0.7553 0.0267 0.9490 0.9645 0.7032 0.0200 0.9683 0.9744 0.8912 0.0149 0.9832 0.9703 0.8143 0.0170 0.9760 0.9631 0.8375 0.0207 0.9646

3% 128 0.9640 0.7946 0.0202 0.9721 0.9740 0.9227 0.0151 0.9752 0.9740 0.8827 0.0151 0.9778 0.9789 0.9467 0.0126 0.9847 0.9740 0.8427 0.0151 0.9773

3% 256 0.9749 0.8697 0.0147 0.9843 0.9862 0.9434 0.0118 0.9939 0.9726 0.9370 0.0158 0.9794 0.9735 0.9441 0.0153 0.9851 0.9799 0.9538 0.0121 0.9876

3% 512 0.9812 0.9094 0.0114 0.9874 0.9799 0.9938 0.0121 0.9880 0.9785 0.9681 0.0128 0.9859 0.9794 0.9852 0.0123 0.9897 0.9785 0.9281 0.0128 0.9905

3% 1024 0.9744 0.8912 0.0149 0.9852 0.9776 0.9510 0.0133 0.9880 0.9835 0.9721 0.0102 0.9913 0.9780 0.9596 0.0130 0.9882 0.9821 0.9965 0.0109 0.9898
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more observations are identified as anomalies. As a result,

the FAR is high, which can be seen from our experiment

results in Table 2.

The same experiment is repeated for the outdoor labeled

dataset. The global ensemble detector is trained by the

nodes 3 and 4. Similar results can be obtained for node 4.

Here, for the space limitation, we only gave partial results

induced by the different local ensemble size, sampling size

and anomaly rate, respectively, which can be seen in Fig. 8.

In order to evaluate the performance affected by the dif-

ferent sampling sizes, Fig. 8 (a) presents the performance of

TPR, FAR, AUC for testing dataset collected by node 4.

The sampling sizes are set as 64, 128, 256, 512 and 1024,

respectively, and other two parameters are arranged as fixed

values. For example, the local ensemble size is set as 50 and

the anomaly rate is set as 0.006. Similarly, in order to eval-

uate the performance affected by different ensemble sizes,

Fig. 8 (b) presents the performance of TPR, FAR and AUC

for testing dataset collected by node 4. The local ensemble

sizes are set as 20, 30, 40, 50 and 60, respectively, and other

two parameters are arranged as fixed values. For example,

the sampling size is set as 256 and the anomaly rate is set

as 0.006. In order to evaluate the performance affected by

different anomaly rates. Fig. 8 (c) presents the performance

of TPR, FAR, AUC for testing dataset collected by node 4.

The sampling sizes are set as 64, 128, 256, 512 and 1024,

respectively, and the other two parameters are arranged as

fixed values. For example, the local ensemble size is set as

50 and the anomaly rate is set as 0.006. From the above

presented results, it can be clearly seen that anomaly de-

tection ratio increases and the false alarm rate decreases

gradually with the increasing of sampling size and ensem-

ble size. Similarly, the value of AUC increases gradually.

Considering the resources constraints and communication

burden, the local ensemble size is set as 40 or 50, and 256

may be the appropriate value of the sampling size.

For the testing dataset collected from nodes 2 and 3, no

one as anomalous exists, the anomaly score is used to decide

that whether it is anomaly or not. For the space limitation,

we omit the detailed procedure, and only the final results

are presented in Table 3, where sampling size and local en-

semble size are set as 256 and 50, respectively.

(a) The performance (y-axis) versus different sampling sizes in

log2 scale (x-axis)

(b) The performance (y-axis) versus different local ensemble sizes

(x-axis)

(c) The performance (y-axis) versus different anomaly rates (x-

axis)

Fig. 8 Experiment results for different local ensemble sizes, sam-

pling sizes and anomaly rates

Table 3 Experiment results about nodes 2 and 3 for labeled

dataset

Setting Node TPR FAR AUC

Indoor 2 0.9437 0.0054 0.9763

Outdoor 3 0.9386. 0.0057 0.9548

6 Conclusions

The anomaly detection in WSN can improve the relia-

bility and availability of the collected data. Considering

the spatial correlation among the neighbor sensor data, a

distributed anomaly detection method has been proposed

based on the isolation principle. A local detector in each

node is built, and an ensemble strategy among different

nodes is employed. It is worthy to note that instead of

communication raw data between sensors, only the struc-

ture and parameters of the trained detector on each sensor

are broadcasted in its communication range. The exper-

iment results demonstrate that the proposed method has

high detection accuracy and low false prediction.

For the dataset collected from WSNs, it has the charac-

teristic of spatio-temporal correlation, and future research

can integrate the temporal correlation into the proposed

method.
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